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ABSTRACT
A computational experiment to select an optimal model requires
consequent trials of models. Due to highly complex dependencies
in the large set of multiscale time series, various forecasting models
are in the competitive set to choose from. �e paper investigates a
problem of models selection. It proposes a new method to compare
heterogeneous models and to select an optimal subset. �is subset
acts in ensemble to boost forecasting quality. �emodels are experts
in the mixture. �eir likelihood is the essential criterion to compare.
A gating function computes the likelihood. �e experiment uses
linearmodel, ensemble of decision trees, SVM and gradient boosting
as the experts. Multiscale sets of industrial and weather time series
illustrate this method with application to the IoT.
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1 INTRODUCTION
To help IT support users to predict system state and failures in
order to perform some preventive maintenance monitoring sys-
tems consider a continuous �ow of data. It comes from numerous
and various sensors of devices from the Internet of �ings. It man-
ages the large scale of measured data. �ese measurements are
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performed at various frequencies. Time series may have missing
values [6] due to down time or due to a device miscon�guration.
Time series analysis [9] and forecasting [13] comes out as the best
candidate to model these big temporal monitoring data.

Building time series forecasts based for large dataset is complex
because of di�erent types of dependencies within feature space.
�erefore using models in ensemble increases the forecasting qual-
ity. Constructing ensembles ofmodels in various applications [1, 11]
is a well-developed technique. �e voting procedures, which com-
bine, average or vote the model forecasts with some weights, are
gradient boosting [3] and Random Forest [4]. �e voting weights
of these procedures are assigned to the models and do not depend
on time or local variations in time series. Each weight keeps its
value a�er optimization on a train dataset.

To make models take responsibility for a particular time or a time
series variation, one uses a gating function. It brings the Mixture of
Experts approach [12]. It decreases the computational complexity
of the forecasting model without a quality loss [11]. Previously this
function appeared in various forms: as simple so�max, as Dirichlet
Process [8], neural-network [11], etc. �e forecasting problem
solutions use gating of the Mixture of Experts in [2, 10].

�is paper treats the weights on the gating function as the like-
lihood of the ensemble models. It investigates the case of using
several heterogeneous models as experts to answer the question:
which experts are the most useful and howmany experts are optimal?
�e model selection procedure includes the robust and most likely
models into the ensemble. �is paper proposed an approach to esti-
mate the likelihood, computed by the gating function. �e model
selection procedure is based on the expert scopes in data and the
likelihood variance. If the model fails to describe the dataset well it
must be pruned.

�e proposed method is tested on real-life data. �e experiment
is held on energy and weather data in Poland [5], which also has
complex structure and cross-correlations [7], the other large sets
of multiscale time series are to be used as well.

2 FORECASTING PROBLEM STATEMENT
�ere given a large set of time series D = {sq }, s 2 RT , q =
1, . . . ,Q , where each time series

s = [s1, . . . , si , . . . , sT ]
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is a sequence of observations si = s (ti ). Each time series s has its
own sampling rate 1/� (q ) : t (q )i = i · � (q ) .

�e problem is to obtain forecasts ŝ(ti ) forTmax < ti  Tmax+�tr.
�e forecasts ŝ should minimize the error function. �is paper uses
MAE and MAPE functions:

MAE =
1
r
kŝ � sk1, MAPE =

1
r

��� ŝ � ss ���1.
2.1 Design matrix construction
Represent the forecasting problem as the multiscale autoregression
problem, where target variables are the vectors of lagged values
s (ti ).

Denote by z a row of the design matrix Z. It collects the time
series sq over some time period �tp. �e vector z includes samples
from the history of time series from D.

�e design matrix Z for the multiscale autoregressive problem
statement is constructed as follows. Let denote sqi by i-th segment
of the time series sq

[xqi |y
q
i ] = (1)

sq (ti � �tr � �tp), . . . ,
|                        {z                        }

xqi

sq (ti � �tr), . . . , sq (ti )
|                        {z                        }

yqi

],

where sq (t ) is an element of time series sq . To construct the design
matrix, select ti , i = 1, . . . ,m from G = {t1, . . . , tT } such that
segments si = [xi |yi ] cover time series s without intersection in
target parts yi :

|ti+1 � ti | > �tr. (2)

Following (1) and (2), split segments [x(q )i |y
(q )
i ], i = 1, . . . ,m from

all time series {sq } and form the matrix

Z =
2666664

x
1⇥n

y
1⇥r

X
m⇥n Y

m⇥r

3777775
(3)

Denote a row from the pair X,Y as x, y and call these vectors the
features and the target. State the regression problem:

ŷ = f (x, ŵ), ŵ = argmin
ŵ

S
⇣

w|f (w, x), y
⌘

, (4)

where f is a forecasting model with parametersw and S is the error
function MSE.

2.2 Rolling validation procedure
To test forecast model on �ow data use the rolling validation pro-
cedure (5). �e procedure makes K forecasts yk for segments xk .
Each segment xk starts at time-point tk . It has a �xed length �tk .
To construct a design matrix for each time-point tk split time-scale
into K segments �tr up to the end. For each time-point tk do the
following:

1) construct the validation vector x⇤val,k for time series of the
length �tr as the �rst row of the design matrix Z,

2) construct the rest rows of the design matrix Z for the time
a�er tk and present it as

Z =

2666666666664

. . . . . .
xval,k
1⇥n

yval,k
1⇥r

Xtrain,k
mmin⇥n

Ytrain,k
mmin⇥r

. . . . . .

3777777777775
,
x???k (5)

3) optimize model parameters w, � using Xtrain,k ,Ytrain,k , (run
additional cross-validation procedure on there rows to select
the optimal model structure, if necessary),

4) optimize model parameters w using Xtrain,k ,Ytrain,k and com-
pute residues �k = yval,k � f (xvalk ,w) and MAPE,

5) increase k and repeat.

3 MIXTURE OF EXPERTS
Assume the model f with gaussian noise �

y = f (x,w) + �, f (x,w) = wTx, y ⇠ N (wTx, � ).

Suppose that each model f (x,wk ) generates a sample (x, y) with
probability p (k |x,w). �en the following factorization holds

p (y|x,� ) =
K
X

k=1
p (y,k |x,� ) =

K
X

k=1
p (k |x,� )p (y|k, x,� ) =

= p (y|x,� ) =
K
X

k=1
�k (x, vk )N (y|wT

kx, � ), (6)

where

�k (x, vk ) =
exp(vT

kx)
PK
k 0=1 exp(v

T
k 0x)
.

In general case, the model likelihood �k (x) can be more com-
plex. Call the gating function a mapping � : X ! [0; 1]K . It
shows how model fk is con�dent on a sample xi . Denote by
� = [w1, . . . ,wK ,V, �] the vector of hyperparameters, where V is
the vector of the gating function parameters. With the likelihood
of fk model on input (x, y) denoted as p (k |x,w), the y distribution
is

p (y|x,� ) =
K
X

k=1
p (y,k |x,� ) =

K
X

k=1
p (k |x,� )p (y|k, x,� ) =

=

K
X

k=1

exp(vT
kx)

PK
k 0=1 exp(v

T
k 0x)

exp
 

� 1
2�k

⇣

y � fk (x,wk )
⌘2

!

.

Let �ik be the likelihood of fk on input xi , matrix � = [�ik ] shows
model-sample likelihoods. Columns of matrix � are values of gating
function � on dataset samples.

3.1 EM algorithm
To optimize the vector of hyperparameters � two-step iterative
procedure can be used.

E-step: Using current estimations wr
1 , . . . ,w

r
K ,V

r , �r recom-
pute matrix

� (r+1) = [�1 (X), . . . ,�K (X)]
as following:

� (r+1)ik = E(zik ) = p (k |xi ,� (r ) ) = (7)
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=
�k (xi )N (�i | fk (xi ,w(r )

k ), � (r ) )
PK
k 0=1 �k 0 (xi )N (�i | f (xi ,w(r )

k 0 ), �
(r ) ).

M-step: Using new values of �ik models parameters can be re-
estimated:

vk = argmax
v

m
X

i=1
� r+1ik ln�k (xi , v),

wk = argmax
wk

266664�
m
X

i=1
� r+1ik (yi � fk (xi ,wk ))

2
377775 ,

�k = argmax
�

266664n ln � �
m
X

i=1

1
�
(yi � fk (xi ,wk ))

2
377775 .

To initialize the experts they can be trained on data subsets �e
subsets can be chosen according to prior knowledge or randomly
picked from training data.

4 MODEL SELECTION USING GATING
FUNCTION

Call model insigni�cant, if it has insigni�cant likelihood on almost
all samples from the training set.

Figure 1 illustrates the model selection procedure. �e upper
plot shows a dataset for univariate regression. It contains piecewise
linear functions of four segments with added noise. �e parameters
of �ve linear models are optimized on this dataset. �e lower plot
shows the likelihood (8) of each expert over the dataset. �e model
number �ve has near-zero likelihood. It does not a�ect the quality
of approximation. So the model is insigni�cant and should be
pruned from the ensemble.

As the gating function returns the likelihood of every expert on
data samples, a neural network may be used for this purpose. In this
paper the gating function is a 3-layers NN of following structure:
f = a(hN (. . . h1 (x))) (w), where hk are autoencoders and a is a
so�max classi�er:

f (w, x) =
exp(a(x))

P

j exp(aj (x))
, a(x) =W

T

2tanh(W
T

1x), (8)

hk (x) = � (Wkx + bk ),
where w minimizes the error function.

�e model selection procedure:
1) initialize the experts on preselected or random samples from

the training set,
2) tune the MoE ensemble with the EM algorithm (Sec. 3.1),
3) prune insigni�cant models and train the new ensemble contain-

ing only signi�cant ones.

5 COMPUTATIONAL EXPERIMENT
A real-life dataset [5] is used to test the proposedmethod. It contains
energy consumption and weather conditions in Poland through
2000-2004 (Fig. 2). �e provided time series are:

• Energy consumption (per hour)
• Maximum temperature (per day)
• Minimum temperature (per day)
• Wind power(per day)
• Relative humidity (per day)
• Solar conditions (per day)

Figure 1: Five linear experts �tting the toy data

�e target time series is the energy consumption. �e goal is to
predict energy consumption for the next 24 hours based on the last
6 days history. To solve the forecasting problem the next models
were used:

Figure 2: Time series visualization.
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• Linear model (simple linear regression with no regulariz-
ers)

• Random forest regressor (with 50 estimators)
• Multiple Output XGBoost regressor
• Multiple Output SVR

�e problem was solved by every model by itself and by the ensem-
ble of the models. Table 1 shows the results.

Figure 3: Likelihood of experts on energy-weather data.

Figure 3 shows the estimated likelihoods of the experts on the
�rst 500 samples of the training set. �e gating function (8) returns
the likelihood of each expert. Each sample of the dataset is an
observation. �e samples come in chronological order and join
samples of time series in the dataset [5]. Two models (SVR and
XGBR) has near-zero likelihoods, therefore they are pruned out of
the selected ensemble. �e Linear and the Random forest models
show signi�cant likelihoods, which have one-week period. �e
Linear regression is more con�dent on weekdays (likelihood⇡ 0.3)
than on weekends (likelihood⇡ 0.15). Random forest in contrast
has higher likelihood (⇡ 0.85) on weekends. �ese models comple-
ment each other. �eir ensemble shows be�er quality and less (up
to 10 times) computational time.

Table 1: Errors of models on train and test

Error MAE MAPE Likelihood
Model train test train test in ensemble
MO SVR 70014 68822 0.198 0.204 0.005
Linear reg 10738 16350 0.033 0.053 0.17
Random Forest 5501 17160 0.017 0.055 0.82
MO XGB 3563 17375 0.012 0.055 0.005
MoE (all) 6250 16641 0.020 0.054 –
MoE (RF + Lin Reg) 5656 16120 0.018 0.052 –

6 CONCLUSIONS
�is paper proposes a method to select heterogeneous forecasting
models using the gating function in the Mixture of Experts. An op-
timal ensemble of models makes forecast of large set of multiscale

time series. Set of simple models appears to be more optimal, than
one overcomplicated. �e gating function de�nes the model likeli-
hood on data samples. �e computational experiment analyses the
model selection results based on the values of the gating function.
�e proposed method prunes experts with insigni�cant likelihood
in the ensemble. �is method reduces computational complexity
of the selected models and improve quality of forecasts. �e ex-
periment tested four di�erent models: Support Vector Regression,
Gradient Boosting (XGBR), Linear Regression and Random Forest.
�e achieved result shows that two models are insigni�cant in the
ensemble. It shows be�er quality of forecasts and up to 10 times
higher computational e�ciency.
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