
 1

Reinforcement learning
Episodes 0 & 2

Introduction & Temporal Difference

 2

Supervised learning

 Given:
● objects and answers

● algorithm family

● loss function

Find:

θ '← argminθ L(y ,aθ(x))

L(y ,aθ(x))

aθ(x)→ y

(x , y)

 3

Supervised learning

 Given:
● objects and answers

● algorithm family

● loss function

Find:

θ '← argminθ L(y ,aθ(x))

L(y ,aθ(x))

aθ(x)→ y

(x , y)
[banner,page], ctr

linear / tree / NN

MSE, crossentropy

 4

Supervised learning

 Great... except if we have no reference answers

 5

Online Ads

We have:
● YouTube at your disposal
● Live data stream

(banner & video features, #clicked)
● (insert your favorite ML toolkit)

We want:
● Learn to pick relevant ads

Great... except if we have no reference answers

Ideas?

 6

Giant Death Robot (GDR)

We have:
● Evil humanoid robot
● A lot of spare parts

to repair it :)

We want:
● Enslave humanity
● Learn to walk forward

Great... except if we have no reference answers

Ideas?

 7

Duct tape approach

 8

Common idea:
● Initialize with naïve solution
● Get data by trial and error and error and error and error

● Learn (situation) → (optimal action)
● Repeat

Duct tape approach

 9

Duct tape approach

Problem 1:
● What exactly does the “optimal action” mean
in the Giant Death Robot setting?

Push yourself forward
as far as you can at

each tick

Do what allows you
to walk farther over

next N seconds

VS

 10

Problem 2:
● If you only act by the “current optimal” policy,
you may never hit the global optimum.

● If your learned to fall down and crawl forward,
that it will never get examples of how to walk
because it always crawls.

● Ideas?

Duct tape approach

 11

Duct tape approach

 12

The MDP formalism

s∈S

a∈A

Classic MDP(Markov Decision Process)
Agent interacts with environment
● Environment states:
● Agent actions:
● State transition:
● Reward:

P(st+1∣s t , at)

r t=r (st , at)

 13

Optimal policy formalism

Objective:
Total reward

Rt=r t+γ⋅r t+1+γ
2
⋅r t+2+...+γ

n
⋅r t+n

Rt=∑
i

γ
i
⋅r t+i

γ∈(0,1)const

π=P (a∣s) : E [R]→max

Reinforcement learning:
● Find policy that maximizes

the expected reward

γ ~ patience
Cake tomorrow is γ as good as now

 14

Optimal policy formalism

Objective:
Total reward

Rt=r t+γ⋅r t+1+γ
2
⋅r t+2+...+γ

n
⋅r t+n

Rt=∑
i

γ
i
⋅r t+i

γ∈(0,1)const

π=P (a∣s) : E [R]→max

Reinforcement learning:
● Find policy that maximizes

the expected reward

Trivia: which γ implies that
“only the present time matters”?

 15

Simple example

 16

Simple example

Trivia:
What are the
optimal actions
for each state?
● γ = 0

 17

Simple example

Trivia:
What are the
optimal actions
for each state?
● γ = 0
● γ = 0.99

 18

We rewrite R with sheer power of math!!

Optimal policy

 19

Recurrent optimal strategy definition

Optimal policy

 20

Value iteration (Temporal Difference)

Idea:
● For each state, obtain V(state)

V (s)=maxa[r (s , a)+γ⋅V (s '(s , a))]

 21

Value iteration (Temporal Difference)

Idea:
● For each state, obtain V(state)

V (s)=maxa[r (s , a)+γ⋅E s '∼P (s '∣s , a)V (s ')]

Stochastic
action outcome

Trivia: if we know the exact V(s) for all states,
how do we determine the best actions?

 22

Value iteration (TD)

Idea:
● Iterative updates

V i+ 1(s) :=maxa[r (s , a)+γ⋅E s '∼P (s '∣s ,a)V i(s ')]

∀ s ,V 0(s):=0

 23

Voila! We've solved the reinforcement learning!

 24

Voila! We've solved the reinforcement learning!
Or have we?

What happens if we apply it to real world
problems?

 25

Reality check: web

● Cases:
● Pick ads to maximize profit
● Design landing page to

maximize user retention
● Recommend items to users

● Common traits:
● Independent states
● Large action space

 26

Reality check: dynamic systems

 27

Reality check: MOAR

● Cases:
● Robots
● Self-driving vehicles
● Pilot assistant
● More robots!

● Common traits:
● Continuous state space
● Continuous action space
● Partially-observable environment
● LONG sessions

 28

Reality check: videogames

● Trivia: What are the states and actions?

 29

Other use cases

● Personalized medical treatment

● Even more games (Go, chess, etc)

● Trivia: What are the states and actions?

 30

Other use cases

● Conversation systems (additional goals)

● Portfolio management (aka asset allocation)

 31

Real world

observe
apply
action

action
Obser
vation

Agent

?!
We never know exactly

how it works

 32

Real world

observe
apply
action

actionObser
vation

Agent

?!
We never know exactly

how it works

Large?
Conti-
nuous?

Partial?
~Infinite?

 33

Problem:

We never know actual

P(s'|s,a)

Learn it?

Get rid of it?

 34

One approach:
action Q-values

argminQ (Q(st , at)−[r t+γ⋅maxa 'Q (s t+1 , a ')])2

π (s): argmaxaQ(s , a)

From V to Q

We no longer need
P(s' | s,a)

 35

Exploration Vs Exploitation

Balance between using what you learned and trying to find
something even better

 36

Exploration Vs Exploitation
Strategies:

• ε-greedy
• With probability ε take a uniformly random
action; otherwise take optimal action.

• Softmax
Pick action proportional to softmax of shifted
normalized Q-values.

• Some methods have a built-in
exploration strategy (e.g. A2c)

P(a)=softmax (
Q (a) –Qmean

Qvariance
)

 37

Problem:

State space is usually large,

sometimes continuous.
And so is action space;

However, states do have a structure, similar
states have similar action outcomes.

 38

From tables to approximations

● Before:
– For all states, for all actions, remember Q(s,a)

● Now:
– Approximate Q(s,a) with some function
– e.g. linear model over state features

Trivia: should we use linear regression or logistic regression?

argminw , b(Q (st , a t)−[rt +γ⋅maxa 'Q(s t+1 , a ')])2

 39

From tables to approximations

● Before:
– For all states, for all actions, remember Q(s,a)

● Now:
– Approximate Q(s,a) with some function
– e.g. linear model over state features

argminw , b(Q (st , a t)−[rt +γ⋅maxa 'Q(s t+1 , a ')])2

Q(s ,a)=∑
i

W a ,i⋅f i(s)+ba

 40

Smells like a neural network

 41

Not so fast...

 42

Let's write some code!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

