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Reinforcement learning
Episodes 0 & 2

Introduction & Temporal Difference



  2

Supervised learning

 Given:
● objects and answers 

● algorithm family 

● loss function 

Find:

θ '← argminθ L( y ,aθ(x ))

L( y ,aθ(x ))

aθ(x )→ y

(x , y)
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Supervised learning

 Given:
● objects and answers 

● algorithm family 

● loss function 

Find:

θ '← argminθ L( y ,aθ(x ))

L( y ,aθ(x ))

aθ(x )→ y

(x , y)
[banner,page], ctr

linear / tree  / NN

MSE, crossentropy
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Supervised learning

 Great... except if we have no reference answers
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Online Ads

We have:
● YouTube at your disposal
● Live data stream

(banner & video features, #clicked)
● (insert your favorite ML toolkit)

We want:
● Learn to pick relevant ads

Great... except if we have no reference answers

Ideas?
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Giant Death Robot (GDR)

We have:
● Evil humanoid robot
● A lot of spare parts 

to repair it :)

We want:
● Enslave humanity
● Learn to walk forward

Great... except if we have no reference answers

Ideas?
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Duct tape approach
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Common idea:
● Initialize with naïve solution
● Get data by trial and error and error and error and error 

● Learn (situation) → (optimal action)
● Repeat

Duct tape approach



  9

Duct tape approach

Problem 1:
● What exactly does the “optimal action” mean 
in the Giant Death Robot setting?

Push yourself forward 
as far as you can at 

each tick

Do what allows you 
to walk farther over 

next N seconds

VS
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Problem 2:
● If you only act by the “current optimal” policy, 
you may never hit the global optimum.

● If your learned to fall down and crawl forward, 
that it will never get examples of how to walk 
because it always crawls.

● Ideas?

Duct tape approach



  11

Duct tape approach
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The MDP formalism

s∈S

a∈A

Classic MDP(Markov Decision Process)
Agent interacts with environment
● Environment states:
● Agent actions:
● State transition: 
● Reward:

P(st+1∣s t , at)

r t=r (st , at)
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Optimal policy formalism

Objective:
Total reward

Rt=r t+γ⋅r t+1+γ
2
⋅r t+2+...+γ

n
⋅r t+n

Rt=∑
i

γ
i
⋅r t+i

γ∈(0,1)const

π=P (a∣s) : E [R ]→max

Reinforcement learning:
● Find policy that maximizes

the expected reward

γ ~ patience
Cake tomorrow is γ as good as now
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Optimal policy formalism

Objective:
Total reward

Rt=r t+γ⋅r t+1+γ
2
⋅r t+2+...+γ

n
⋅r t+n

Rt=∑
i

γ
i
⋅r t+i

γ∈(0,1)const

π=P (a∣s) : E [R ]→max

Reinforcement learning:
● Find policy that maximizes

the expected reward

Trivia: which γ implies that 
“only the present time matters”?
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Simple example
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Simple example

Trivia: 
What are the 
optimal actions 
for each state?
● γ = 0 
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Simple example

Trivia: 
What are the 
optimal actions 
for each state?
● γ = 0 
● γ = 0.99
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We rewrite R with sheer power of math!!

Optimal policy
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Recurrent optimal strategy definition

Optimal policy
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Value iteration (Temporal Difference)

Idea:
● For each state, obtain V(state)

V (s)=maxa[r (s , a)+γ⋅V (s '(s , a))]
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Value iteration (Temporal Difference)

Idea:
● For each state, obtain V(state)

V (s)=maxa[r (s , a)+γ⋅E s '∼P (s '∣s , a)V (s ') ]

Stochastic 
action outcome

Trivia: if we know the exact V(s) for all states, 
how do we determine the best actions?
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Value iteration (TD)

Idea:
● Iterative updates

V i+ 1(s) :=maxa[r (s , a)+γ⋅E s '∼P (s '∣s ,a )V i(s ')]

∀ s ,V 0(s ):=0
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Voila! We've solved the reinforcement learning!
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Voila! We've solved the reinforcement learning!
Or have we?

What happens if we apply it to real world 
problems?
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Reality check: web

● Cases:
● Pick ads to maximize profit
● Design landing page to 

maximize user retention
● Recommend items to users

● Common traits:
● Independent states
● Large action space
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Reality check: dynamic systems
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Reality check: MOAR 

● Cases:
● Robots
● Self-driving vehicles
● Pilot assistant
● More robots!

● Common traits:
● Continuous state space
● Continuous action space
● Partially-observable environment
● LONG sessions
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Reality check: videogames

● Trivia: What are the states and actions?
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Other use cases

● Personalized medical treatment 

● Even more games (Go, chess, etc)

● Trivia: What are the states and actions?
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Other use cases

● Conversation systems (additional goals)

● Portfolio management (aka asset allocation)
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Real world

observe
apply
action

action
Obser
vation

Agent

?!
We never know exactly 

how it works
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Real world

observe
apply
action

actionObser
vation

Agent

?!
We never know exactly 

how it works

Large?
Conti-
nuous?

Partial?
~Infinite?
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Problem:

We never know actual

P(s'|s,a)

Learn it?

Get rid of it?
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One approach: 
action Q-values

argminQ (Q(st , at)−[r t+γ⋅maxa 'Q (s t+1 , a ')])2

π (s): argmaxaQ(s , a)

From V to Q

We no longer need
P(s' | s,a)
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Exploration Vs Exploitation

Balance between using what you learned and trying to find 
something even better
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Exploration Vs Exploitation
Strategies:

• ε-greedy
• With probability ε take a uniformly random 
action; otherwise take optimal action.

• Softmax
Pick action proportional to softmax of shifted 
normalized Q-values.

• Some methods have a built-in
exploration strategy (e.g. A2c)

P(a)=softmax (
Q (a) –Qmean

Qvariance
)
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Problem:

State space is usually large,

sometimes continuous.
And so is action space;

However, states do have a structure, similar 
states have similar action outcomes.
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From tables to approximations

● Before:
– For all states, for all actions, remember Q(s,a)

● Now:
– Approximate Q(s,a) with some function
– e.g. linear model over state features

Trivia: should we use linear regression or logistic regression?

argminw , b(Q (st , a t)−[rt +γ⋅maxa 'Q(s t+1 , a ' )])2
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From tables to approximations

● Before:
– For all states, for all actions, remember Q(s,a)

● Now:
– Approximate Q(s,a) with some function
– e.g. linear model over state features

argminw , b(Q (st , a t)−[rt +γ⋅maxa 'Q(s t+1 , a ' )])2

Q(s ,a)=∑
i

W a ,i⋅f i(s )+ba
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Smells like a neural network
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Not so fast...
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Let's write some code!
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