Reinforcement learning Episodes 0 & 2

Introduction & Temporal Difference

Supervised learning

Given:

- objects and answers
- algorithm family
- loss function

Find:

(x, y) $a_{\theta}(x) \rightarrow y$ $L(y, a_{\theta}(x))$

$$\theta' \leftarrow argmin_{\theta} L(y, a_{\theta}(x))$$

Supervised learning

Given:

- objects and answers
- algorithm family
- loss function

Find:

(x, y)[banner,page], ctr $a_{\theta}(x) \rightarrow y$ linear / tree / NN $L(y, a_{\theta}(x))$ MSE, crossentropy

$$\theta' \leftarrow argmin_{\theta} L(y, a_{\theta}(x))$$

Supervised learning

Great... except if we have no reference answers

Online Ads

Great... except if we have no reference answers

We have:

- YouTube at your disposal
- Live data stream (banner & video features, #clicked)
- (insert your favorite ML toolkit)

We want:

• Learn to pick relevant ads

Giant Death Robot (GDR)

Great... except if we have no reference answers

We have:

- Evil humanoid robot
- A lot of spare parts to repair it :)

We want:

- Enslave humanity
- Learn to walk forward

"I'M LEAVING YOU," SHE TOLD ME.

"OH, I DON'T THINK SO," I REPLIED,

"DUKT TAPE KAN FIX ANYTHING."

IWW. ROKK PAPER KYNIK .KOM

Common idea:

- Initialize with naïve solution
- Get data by trial and error and error and error and error
- Learn (situation) \rightarrow (optimal action)
- Repeat

Problem 1:

• What exactly does the "optimal action" mean in the Giant Death Robot setting?

Push yourself forward as far as you can at each tick VS

> Do what allows you to walk farther over next N seconds

Problem 2:

- If you only act by the "current optimal" policy, you may never hit the global optimum.
- If your learned to fall down and crawl forward, that it will never get examples of how to walk because it always crawls.
- Ideas?

The MDP formalism

Classic MDP(Markov Decision Process) Agent interacts with environment

- Environment states: *s*∈*S*
- Agent actions: $a \in A$
- State transition: $P(s_{t+1}|s_t, a_t)$
- **Reward:** $r_t = r(s_t, a_t)$

Optimal policy formalism

Objective: **Total reward** $R_{t} = r_{t} + \gamma \cdot r_{t+1} + \gamma^{2} \cdot r_{t+2} + \dots + \gamma^{n} \cdot r_{t+n}$ VILL PRESS 鼻 $R_t = \sum \gamma^i \cdot r_{t+i} \qquad \gamma \in (0,1) const$ LEVER FOR $y \sim patience$ Cake tomorrow is y as good as now OD **Reinforcement learning:** Find policy that maximizes the expected reward 13 $\pi = P(a|s) : E[R] \rightarrow max$

Optimal policy formalism

NILL PRESS 鼻 LEVER FOR OD

Objective: Total reward

$$R_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \dots + \gamma^n \cdot r_{t+n}$$

$$R_t = \sum_i \gamma^i \cdot r_{t+i} \qquad \gamma \in (0,1) \text{ const}$$

Trivia: which y implies that "only the present time matters"?

Reinforcement learning:

• Find policy that maximizes the expected reward

 $\pi = P(a|s) : E[R] \rightarrow max$

Simple example

Simple example

Trivia: What are the optimal actions for each state? • y = 0

Simple example

Trivia: What are the optimal actions for each state? • $\frac{\sqrt{2}}{\sqrt{2}} = 0$

Optimal policy

We rewrite R with sheer power of math!!

Optimal policy

Recurrent optimal strategy definition

Value iteration (Temporal Difference)

Idea:

• For each state, obtain V(state)

$$V(s) = max_a[r(s,a) + \gamma \cdot V(s'(s,a))]$$

Value iteration (Temporal Difference)

Idea:

• For each state, obtain V(state)

$$V(s) = max_{a}[r(s, a) + \gamma \cdot E_{s' \sim P(s'|s, a)}V(s')]$$

$$\downarrow$$
Stochastic action outcome

Trivia: if we know the exact V(s) for all states, how do we determine the best actions?

Value iteration (TD)

Idea:

• Iterative updates

$$\forall s, V_0(s) := 0$$

$$V_{i+1}(s) := max_a[r(s, a) + \gamma \cdot E_{s' \sim P(s'|s, a)} V_i(s')]$$

	0.00 →	0.00 →	0.00 ኑ	1.00		
	0.00 →		∢ 0.00	-1.00		
	0.00 >	0.00 >	0.00 ≯	0.00		
VALUES AFTER 1 ITERATIONS						

0.51)	0.72)	0.84)	1.00		
0.27		0.55	-1.00		
0.00	0.22 ♪	0.37	◀ 0.13		
VALUES AFTER 5 ITERATIONS					

Voila! We've solved the reinforcement learning!

Voila! We've solved the reinforcement learning! Or have we?

What happens if we apply it to real world problems?

Reality check: web

- Cases:
 - Pick ads to maximize profit
 - Design landing page to maximize user retention
 - Recommend items to users
- Common traits:
 - Independent states
 - Large action space

^{\$275} срм

\$195 CPM ⁵260

\$175

CPM

^{\$235} срм

\$125

CPM

Cositescout

AD SPOT

עעעעעווי

RTB

8

Reality check: dynamic systems

Reality check: MOAR

• Cases:

- Robots
- Self-driving vehicles
- Pilot assistant
- More robots!

Common traits:

- Continuous state space
- Continuous action space
- Partially-observable environment
- LONG sessions

Reality check: videogames

• Trivia: What are the states and actions?

Other use cases

• Personalized medical treatment

• Even more games (Go, chess, etc)

• Trivia: What are the states and actions?

Other use cases

Conversation systems (additional goals)

• Portfolio management (aka asset allocation)

Real world

Real world

Problem:

We never know actual P(s'|s,a)

Learn it? Get rid of it?

From V to Q

 $argmin_{O}(Q(s_{t}, a_{t}) - [r_{t} + \gamma \cdot max_{a'}Q(s_{t+1}, a')])^{2}$ $\pi(s)$: argmax_a Q(s, a)

Exploration Vs Exploitation

Balance between using what you learned and trying to find something even better

Exploration Vs Exploitation

Strategies:

- \cdot ε-greedy
 - With probability ε take a uniformly random action; otherwise take optimal action.
- \cdot Softmax

Pick action proportional to softmax of shifted normalized Q-values.

$$P(a) = softmax(\frac{Q(a) - Qmean}{Qvariance})$$

 Some methods have a built-in exploration strategy (e.g. A2c)

Problem:

State space is usually large, sometimes continuous.

And so is action space;

However, states do have a structure, similar states have similar action outcomes.

From tables to approximations

- Before:
 - For all states, for all actions, remember Q(s,a)
- Now:
 - Approximate Q(s,a) with some function
 - e.g. linear model over state features

$$argmin_{w,b}(Q(s_t, a_t) - [r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a')])^2$$

Trivia: should we use linear regression or logistic regression?

From tables to approximations

- Before:
 - For all states, for all actions, remember Q(s,a)
- Now:
 - Approximate Q(s,a) with some function
 - e.g. linear model over state features

$$argmin_{w,b}(Q(s_t, a_t) - [r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a')])^2$$

$$Q(s,a) = \sum_{i} W_{a,i} \cdot f_i(s) + b_a$$

Smells like a neural network

Not so fast...

Let's write some code!