ПОИСК СТРУКТУРНЫХ РАЗЛИЧИЙ ИЗОБРАЖЕНИЙ

Корнилов Ф.А.

Институт математики и механики им. Н.Н. Красовского УрО РАН
Отдел прикладных проблем управления
г. Екатеринбург, 2014

Задача поиска структурных различий изображений

- Рассматриваются два снимка одного и того же участка земной поверхности.
- Предполагается, что они геометрически выровнены и имеют одинаковый размер в пикселях.

Структура изображения и структурное различие

Определение 1.

Структурой Ω изображения f назовем семейство $\pounds_f = \{L_f(i)\}_i$ множеств уровня $L_f(i) = \{x \in X \mid f(x) = i\}$ функции f .

Определение 2.

Структурным различием назовем множество пикселей, удовлетворяющее следующему условию:

$$SD(f,g) = \{x \in X \mid |f'(x) - g(x)| > T$$
или $|f(x) - g'(x)| > T\},$

где T — некоторое пороговое значение, f' и g' определены формулами:

$$f' = \arg\min(\|r - g\|^2 + \chi(r; f) \mid r \in \Phi),$$

$$g' = \arg\min(\|r - f\|^2 + \chi(r; g) \mid r \in \Phi).$$

Общая схема алгоритма поиска структурных различий

- . Исходные изображения сканируются локальным окном размера $\,d\times d$.
- . Для каждого положения окна строятся проекции $\,f'=P_gf\,$ и $g'=P_fg$:

$$P_fg(x) = \sum_i \frac{\sum\limits_{x' \in X} g(x') \cdot \chi_i^f(x')}{\sum\limits_{x' \in X} \chi_i^f(x')} \cdot \chi_i^f(x), \text{ где } \chi_i^f(x) = \left\{ \begin{array}{l} 1, \text{ если } f(x) = i, \\ 0, \text{ иначе.} \end{array} \right.$$

- . Строятся разностные изображения $\,R_{fg}(x)=|f'(x)-g(x)|\,$ и $R_{gf}(x)=|g'(x)-f(x)|$.
- . Для завершения симметризации строится результирующее разностное изображение $R(x) = \max(R_{fg}(x), R_{gf}(x))$.
- . Производится пороговая обработка изображения $\,R\,.$

Модель структурного различия 1

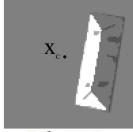
К каждому изображению добавляется дискретный, стационарный и независимый в каждой точке аддитивный шум с известными параметрами. В результате получается два случайных поля:

$$\begin{split} f &= \{f(x_i)\}_{i=1}^S = \{f^0(x_i) + n_\eta\}_{i=1}^S, \\ g &= \{g(x_i)\}_{i=1}^S = \{g^0(x_i) + n_\xi\}_{i=1}^S. \end{split}$$

Задача локализации структурного различия

Требуется построить методику расчета условных вероятностей:

Условие 1: $p(R(x_c)=i\mid x_c$ принадлежит объекту $)\equiv r^+(i)$.

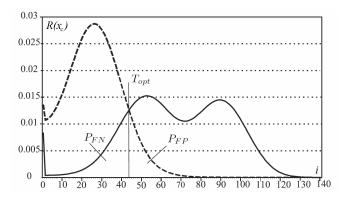

Условие 2: $p(R(x_c)=i\mid x_c$ принадлежит фону $)\equiv r^-(i)$.

Изображение 1

Изображение 2 Условие 1

Изображение 2 Условие 2

Оптимальный порог


В качестве критерия оптимальности используется минимум суммы ошибок первого и второго рода.

Теорема

Оптимальный порог алгоритма поиска структурных различий на основе морфологического проектора вычисляется по следующей формуле

$$T_{opt} = \arg\min_{T} \left(\sum_{i < T} r^{+}(i) + \sum_{i > T} r^{-}(i) \right)$$

Оптимальный порог

Графики распределений $\,r^+(R)\,$ (сплошная линия) и $\,r^-(R)\,$ (пунктирная линия).

Функции преобразования яркости

- 1. морфологический проектор;
- 2. регуляризованный вариант морфологического проектора:

$$P_f g(x) = \frac{\sum\limits_i \tilde{f}_i(x)}{\sum\limits_j \tilde{\chi}_i^f(x)} = \sum\limits_i \left(\frac{\sum\limits_{x' \in X} g(x') \cdot \tilde{\chi}_i^f(x')}{\sum\limits_{x' \in X} \tilde{\chi}_i^f(x')} \cdot \frac{\tilde{\chi}_i^f(x)}{\sum\limits_j \tilde{\chi}_i^f(x)} \right),$$

где $ilde{\chi}_i^f$ вычисляется по формуле

$$\tilde{\chi}_i^f(x) = \exp\left(-\frac{(f(x) - i)^2}{\sigma_c^2}\right) \cdot \exp\left(-\frac{(x - x_c)^2}{\sigma_d^2}\right);$$

Функции преобразования яркости

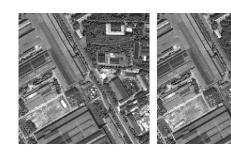
3. линейная функция преобразования яркости:

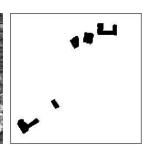
$$f'(x) = k \cdot f(x) + b,$$

где коэффициенты находятся с помощью МНК по двум фрагментам изображений, ограниченных сканирующим окном, из соотношения

$$k \cdot f(\cdot) + b = g(\cdot);$$

4. квадратичная функция преобразования яркости:


$$f'(x) = a \cdot f^2(x) + b \cdot f(x) + c,$$


где коэффициенты находятся с помощью МНК по двум фрагментам изображений, ограниченных сканирующим окном, из соотношения

$$a \cdot f^2(\cdot) + b \cdot f(\cdot) + c = g(\cdot).$$

Модель структурного различия 2

Фрагменты модельных изображений городской застройки и их ручная разметка.

Сравнение и исследование работы алгоритмов

Максимальные значения верного обнаружения TP (минимальные значения пропуска FP) при зафиксированном уровне FP=0.1 (TP=0.9) для алгоритмов поиска структурных различий, и оптимальные параметры, при которых они получены:

Алгоритм	TP_{max}	FP_{min}	Параметры
Рег. морфологический проектор			
	0.890949		
Морфологический проектор	0.885229	0.120545	d = 27
Линейная функция	0.884299	0.122274	d=23

Заключение

Была представлена формализация задачи поиска структурных различий и две модели для теоретического и практического исследования алгоритмов. Можно сформулировать следующие направления дальнейшей работы:

- 1. Получить теоретические формулы для оптимального порога алгоритмов поиска структурных различий. Определив эти формулы для остальных алгоритмов, можно будет сформулировать утверждение о теоретическом преимуществе одного из них.
- 2. Разработать версии алгоритмов, работающие с многоканальными изображениями. Возможно, стоит использовать также данные различных геофизических полей например, поле высот строений и сооружений.