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What is about

Consider models of algorithms and learning methods which
make possible to build collections of correct algorithms.

Correct algorithm produces correct output for all learning
samples and we call them basic correct algorithms

Question
How to build new correct algorithms from other correct

algorithms that could extend capabilities of basic correct
algorithms?

Some kinds of aggregation operations can be used for building
new correct algorithms from other correct algorithms




Initial definitions

X — space of input informations about objects

Y — set of possible answers to given question about objects
y: X — Y —mapping from input informations to answers
a: X = Y —algorithm (a € A), which approximates y

A — space of basic algorithms

X — finite subset of X (samples)

a is correct on X if it evaluates valid answers on X

F is correct operation with algorithms from A on X if for any
tuple {aq, ..., a;;} of correct algorithms on X the new algorithm
a = F{aq, ..., a}is correct on X




Quality functions of answers

Consider algorithms that represented in the form a = R o A:

A — estimating operator, R — decision rule
U € RY - space of estimations

Quality function of answer Q(u, y) evaluates quality of answer

Y = a(X) on the base of estimation u = A(X) and correct
answer y

Subset Q;; © image () associates with answers y = a(X) that
accepted as correct as y

Answer y = a(X) is correctif Q(u | y) € Qy.




Monotone/unimodal functions

f: U — R ~—function of many arguments
fis monotone if Vy € R: f~1(y) is connected set

Denote DAy) = {u: f(u) <y}

fis monotone increasing if Vy € R:

y1 <y2 = DAy1) € DAy2)
fis monotone decreasing if Vy € R:

y1 2 y2 = DAy1) € DAy2)

fis unimodal if the set {u: uis local min/max of f} is connected




Loss functions

Loss function is mapping Q: U XY — R, if
forany y: Qp(u) = Q(w,y) is:

@ monotone,

@ increasing,

@ unimodal (min).

° Oy = {lnellrjl Q(u, y) —minimal losses for correct answers

o Uy = {u: Q(u,y) = Qy} —set of estimates that associates
with correct answer y



Margin functions

Margin function is mapping 0: U X Y — R if
forany y: Qp(u) = Q(w,y) is:

@ monotone,

@ unimodal (max).

@ Uy = {u: Q(u,y) > 0} —set of estimates that associates
with correct answer

) I_Jj; = {u: Q(u,y) < 0} —set of estimates that associates
with incorrect answer

@ 0Uy = {u: Q(u,y) = 0} —set of estimates when definite
answer isn’t possible



Regression problems ( )

Q(a | x) = £(a(X),y) —loss function, Vi = [0, €]

Definition
Function £(y,y) is a loss function if:

Q@ /(y,y) = infy £(y,y)
Qyi<y2<y=>201y) =2tW2y) =2£0.0)
QJ/<y1<);2=>00y) <t1,y) <t(2y)

|

Definitions (correct answer)
@ answer y = a(X) is as correctas y if £(y,y) € Vo.

@ answer y = a(X) is correct if
yeuUy={yeY: £(y) € Vgl




Examples: loss functions

y-jl
1+ |y

(V—J7>e:< €>,E+=[E>O]-E,£>O
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Example (symmetrical)
£.9) = (v =), Vo = [0,¢)

Example (nonsymmetrical)
(a(y—j'/)ﬁ ify>y+¢
£(y,y) =10, ifly—y| <& Vp=1[0,¢),ap >0
By —J)E ify<y—e




Classification problems (' is discrete)

Algorithms for classification are compositions:
a(xX) = Ro A(X).

Quality functions:

@ Q(alx)=u(wp),u: UxY - Rismargin function and

Vg = [0, ]
@ Q(alx)=2(,y),£: UxXY — Ry isloss function and
Vo = [0, €]

Definitions (correct estimate)

@ estimation u = A(X) is correct if u(u,y) € Vo
@ estimation u = A(X) is correct if
ueU;={u:u(y) € Vp}




Examples: classification

Example ( -class classification)
Y={-1,0,+1}, R(u) = signu, u(u,y) = uy
Vo =16, ], Uy = {u: uy > 4}.

Example ( -class classification)
Y={0,1,..,q},A= (44, ..,Am), Uj = Aj(X)

f — . —
y* argyegf_i_fm}{w}, ifu(uy) > ¢
R(u) = { fail, if u(u,y) € (—¢,¢)
0, if u(u,y) < —¢
2(u, ) = e #Wy) u,y) =uy— max {uj
(wy) u(wy) = uy j={1,...,q}\{)7}{ i

Vo = (¢,0), Uy = {u: uy > uy forall y # y}




Aggregation and mean functions

Definition (aggregation function)
M — aggregation functiononY € R, i.e.
@ forany m € N and any tuple {y1, ...,ym}: M{y1, ..., ym} € Y
Q for any m € Nand any palr oftuples ) )
1, o ym} < W1, o ymd: M, o, ym} < M1, .o, ym)

Definition (mean function
M — mean function if

min{yy, ...,ym} < M{y1, ...,ym} < max{ys, ...,ym}

.
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Definition (idempotent function)
— idempotent function if

M{y,..,y} =y




Point-wise correct operations

Definition (point-wise correct algorithm)
a is correct algorithm on X if a(X) is correct for all X € X

Condition (point-wise correct operation)
M is correct operation if for any tuple {y1, ...,ym} € Uy:

M{y1, ...,ym} € Uj,'

Criterion (mean function — correct point-wise operation)
If M is idempotent mean function, then M is correct operation.




Generalized Kolmogorov’s mean

Definition (generalized Kolmogorov’s mean)

Mgiuy, ..., um} = g=1(w1g(u1) + - + wmg(um)),
wy ..o, Wm>=>0andwy+--+wm=1
g:U—->Rorg: U—- Ryorg: U— [0,1]—inversible function

Examples (weighted Kolmogorov’s mean)

Y Mg{ul, . um} — (Z Wju](,l?))(l/p) g(s) — y{p)
@ Mg{uq, ..., um} = %ln(Z Wjep”f) g(u) = ebu
o Mg{ut, ..., um} = [Tu;’ g(u) = Inu




Mean aggregation operators

Let < — partial orderon U
M = (Mq, ..., Mm) is aggregation operator on U:
@ for each m and any tuple {uq, ...,um} c U:
M{uq, ..., um} € U;
Q for each m and any palrs of tuples
{ul, . um} < {“1» . um} )
M{ul, .. um} < M{ul, o, Um}

M is mean aggregation operator if

inf{uq, ..., um} < M{uy, ..., um} < sup{uy, ..., um}

M is point-wise correct operation if M{Uj, ..., Uy} < Uy,




Multivariate Kolmogorov’s mean

If M is idempotent operation, i.e. M{u, ...,u} = u, then M is
correct point-wise operation.

Multivariate weighted Kolmogorov’s mean:

Mg{ug, ..., Um} = g—l(z: wig(w)),
where wq + - + wm =1, g: U —» RYis inversible continuous
mapping.

If g(Uy) is a convex set then Mg{Uy, ..., Uy} < Uy, i.e.
multivariate weighted Kolmogorov’s mean Mg is correct
point-wise operation.




Aggregationally correct algorithm

M — aggregation function on image Q.
Aggregation quality functional
Q(al1X)=M{Q(a|%): X €X)

evaluates the quality of algorithm on whole set X on the base
of quality of all answers on X.

Let Vo is subset of values of O, which corresponds correct
algorithms on X.

Definition (Aggregationally correct algorithm)

Algorithm a is aggregationally correct on X if Q(a | X) € Vy.




Linear operations

M — arithmetic weigted mean:

N
M{z1, ..., ZN} = z WkZ,
k=1

F —linear operation:
F{uq,...,um} = aqug + - + ayum,
at, ..., am>=20,a1+ - +a, =1.
Let
O Qy(u) —convexforanyy €Y,
Q Vg is convex;
Q ifQ € Vo u 0"'<0Q,moQ" € Vo.
Then linear operation is aggreagtionally correct operation with
algorithms with respect to Q.




-convex

f:U->R
— idempotent aggregation functionon U € R
G — idempotent aggregation functionon R € R

f(u) is F/G-convex, if
f(Flug, ..., um}) < G{f(uy), ..., f(um)}.

M — aggregation function on R

f(@1u1 + - + amum) < @ifur) + -+ + apfum)
fAlaiug + - + apmum) < max{f(uy), ..., fum)}




Domination of aggregation functions

G is dominated over M if
M{G{u11, ..., u1m}, ..., G{un1, ..., Unm}} <
G{M{u11, ..., un1}, ..., M{u1m, -, Unm}}

If VN € N function H(uq, ..., uy) = M{uy, ..., un} is convex,
then

IVI{Z ajuij, ,z ajuNj} < Z C(jl\/l{u1j, o ¢ UNj};

J J J
i.e. linear weighted mean dominated over M.




Aggregationally correct operations

Let

O Qy(u)—F/G-convexforanyy €Y;

@ G is dominated over M;

© Vy is closed within G;

Q ifQ € Vo u Q'<Q,10Q" E Vo.

Then F —aggreagtionally correct operation with algorithms
with respect to Q.




From domination to convexity

G —aggregation operation on R
F — aggregation operation on R™:
F{luq, ...,uy} = (G{u11, ..., u1m}, ---, G{un1, -, Unm})
H — aggregation operation on image of M
Definition
M — G/H-convex if
M{G{u11, ..., U1m}, ..., G{un1, ---, Unm}} <
H{M{u11, ..., un1}, -.., M{u1m, .., Unm}}-




Aggregationally correct operations

Let

O (y(u) - F/G-convex;

@ M- G/H-convex;

© Vy is closed within H;

Q ifQ € Vgand Q" < Q then Q" € V.

Then F —aggreagtionally correct operation with algorithms
with respect to Q.




Thank you!



