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Abstract

The problem of sample size estimation is important in the medical applications, especially
in the cases of expensive measurements of immune biomarkers. The papers describes the
problem of logistic regression analysis including model feature selection and includes the
sample size determination algorithms, namely methods of univariate statistics, logistics
regression, cross-validation and Bayesian inference. The authors, treating the regression
model parameters as the multivariate variable, propose to estimate sample size using the
distance between parameter distribution functions on cross-validated data sets.
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1. Introduction1

The paper is devoted to the logistic regression analysis [? ], applied to classification2

problems in biomedicine. A group of patients is investigated as a sample set; each patient3

is described with a set of features, named as biomarkers and is classified into two classes.4

Since the patient measurement is expensive the problem is to reduce number of measured5

features in order to increase sample size.6

The responsive variable is assumed to follow a Bernoulli distribution. Also, parameters7

of the regression function are evaluated [? ? ].8

With given set of features, the model is excessively complex. The problem is to select9

a set of features of smaller size, that will classify patients effectively. In logistic regres-10

sion features are usually selected by stepwise regression [? ? ]. In the computational11

experiment, exhaustive search is implemented. This makes the experts sure that all pos-12

sible combinations of the features were considered. The authors use the area under ROC13

curve [? ] as the optimum criterion in the feature selection procedure.14

The problem of classification is associated with minimum sample size determination.15

In the paper, the following methods are discussed:16

1. Method of confidence intervals [? ], a method of univariate statistics.17
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2. Method of sample size evaluation in logistic regression [? ? ]. Unlike the previous18

one, this method considers the distribution of the responsive variable according to19

the logistic regression model.20

3. Cross-validation, method which evaluates sample size by observing potential overfit-21

ting [? ? ].22

4. Comparing different subsets of the same sample by computing Kullback-Leibler [? ]23

divergence between probability density functions of model parameters, evaluated at24

these subsets.25

The data, used while conducting computational experiment can be found here [? ].26

2. Classification problem27

Consider the sample set D = {(xi, yi)} , i = 1, . . . ,m, of m objects (patients). Each28

patient is described by n features (biomarkers), xi ∈ Rn and belongs to one of two classes:29

yi ∈ {0, 1}. The logistic regression problem assumes that vector of responsive variables30

y = [y1, . . . , ym]T is a vector of bernullean random variables, yi ∼ B(θi) with the probability31

density function32

p(y|w) =
m∏
i=1

θyii (1− θi)1−yi . (1)

Use the maximim likelihood method, write the error function for (1) as33

E(w) = − ln p(y|w) = −
m∑
i=1

yi ln θi + (1− yi) ln (1− θi). (2)

find vector of parameters ŵ of regression function, one has to solve the following opti-34

mization problem:35

ŵ = arg min
w∈Rn

E(w). (3)

Let us define the probability of a case as36

f(xTi w) =
1

1 + exp(−xTi w)
= θi. (4)

To solve the problem (3), using
df(ξ)

dξ
= f(1− f),

compute gradient of the error function E(w):

∇E(w) = −
m∑
i=1

(
yi(1− θi)− (1− yi)θi

)
xi =

m∑
i=1

(θi − yi)xi = XT (θ − y),

in which θ = [θ1, . . . , θm]T and matrix X =
[
xT1 , . . . ,x

T
m

]T
consists features sets.37
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Parameters are evaluated by Newton-Rafson method. Denote Σ a diagonal matrix with
diagonal elements Σii = θi(1 − θi), i = 1, . . . ,m. Set the initial value w = [w1, . . . , wn]T

of ŵ

wj =
m∑
i=1

yi(1− yi), j = 1, . . . , n.

Then the (k + 1)-th iteration of evaluation of ŵ is38

wk+1 = wk − (XTΣX)−1XT (θ − y) =

(XTΣX)−1XTΣ(Xwk −Σ−1(θ − y)).
(5)

The process is repeated until the Euclidean distance ‖wk+1 −wk‖2 is sufficiently small.39

Thus, the classification algorithm is defined as:40

a(x, c0) = sign
(
f(x,w)− c0

)
, (6)

where c0 is a cut-off value of regression function (4), defined by (7).41

Quality of classification. Let us use an additional to (1) quality functional AUC, or the
area under the ROC-curve. Introduce TPR(ξ), which stands for true positive rate

TPR(ξ) =
1

m

m∑
i=1

[a(xi, ξ) = 1][yi = 1]

and FPR(ξ), false positive rate

FPR(ξ) =
1

m

m∑
i=1

[a(xi, ξ) = 1][yi = 0].

Here the following denotation is used:

[y = 1] =

{
1, y = 1;

0, y 6= 1.

Thus, the more AUC value is, the better classifier is.42

Defining c0 value. Every point of the ROC-curve corresponds to some c0 value. As shown43

in 1, the most distant from segment [(0,0);(1,1)] point of the ROC-curve corresponds to c044

value used in (6):45

ĉ0 = arg max
ξ∈[0,1]

∥∥(TPR(ξ),FPR(ξ)
)
− (ξ, ξ)

∥∥
1
. (7)

Defining ĉ0 includes computing AUC value and, therefore, computation of (6) and iterative46

estimation of parameters w (5).47
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Figure 1: Sample size m∗, estimated by confidence interval method and method for logistic regression.

3. Feature selection problem48

Let A be a subset of indexes of the features, A ⊆ J = {1, . . . , n}, Â — optimal set49

of indexes. Denote XA, matrix composed of the columns of matrix X with indexes in A,50

wA — the corresponding vector of parameters. Thus, the feature selection problem is a51

maximization one:52

Â = arg max
A⊆I

AUC(A), provided |A| = const. (8)

The value of AUC(A) ≡ AUC(XA, ŵA, ĉ0,y) is computed for set A of indexes end the53

parameters ŵA c0 are defined by (3) and (7).54

The maximization problem (8) is solved in the computational experiment by exhaustive55

search. This approach is possible due to relatively small amount of features and is required56

by experts.57

As the cardinality of A is unknown, set of indexes of objects I is divided into two58

subsets I = LtT , learning set and test set. Parameters w are estimated at DL, while the59

classification quality is computed at DT . Maximum cardinality of A is limited by experts:60

|A| shall not exceed four elements. Refer to the feature sets, obtained by solving (8), as61

optimal sets, and name the features included into optimal sets as the most informative62

features.63

4. Sample size determination64

Investigated data describes patients of two classes: those who have already experienced65

a heart attack and patients that might experience it in future. Concentrations of proteins66

in blood cells are used as features. There are thirty one patients in first class and fourteen67

in the second. Having this few observations we must estimate minimum sample size m∗68

required to obtain adequate results of classification. In this chapter four methods of sample69

size determination are presented. The results of implementing this methods are described70

and analyzed in the section “Computational experiment”.71
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4.1. Method of confidence intervals72

Consider the data set D = {(xi, yi)} , i ∈ I = {1, . . . ,m} in which every responsive
variable yi depends on a single independent variable xi ∼ N (µ, σ2). Suppose ∆ = x̄− µ is
the difference between the average

x̄ =
1

m

m∑
i=1

xi

and known expected value µ of the random variable xi. Given the variance σ2 we obtain73

a standard normally distributed variable74

Z =
x̄− µ
σ

√
m =

∆

σ

√
m ∼ N (0, 1). (9)

Then m∗ can be computed with significance level α as75

m∗ =
(zα/2σ

∆

)2
, (10)

where zα/2 is defined by P
{
|Z| ≥ zα/2

}
= α.76

When m ≥ 30 the variable Z can be regarded as normally distributed even if the
distribution of xi is different from normal or if σ in (9) is replaced with

s =

√√√√ 1

m− 1

m∑
i=1

(xi − x̄)2.

Otherwise it is essential that xi is normally distributed; moreover the variance σ should be77

known.78

In this paper a multi feature problem is considered and every responsive variable yi is79

described by the vector of independent variables xi. Nevertheless, the formula (10) can be80

used for each feature separately as components of xi are assumed to be independent.81

This method only helps to obtain rough estimation of m∗. The reason is that neither µ
nor σ2 are known. Also it is more likely that xi is distributed as a mixture of distributions:

xi ∼

{
N (µ1, σ

2
1), with probability θi;

N (µ2, σ
2
2), with probability 1− θi,

(11)

where θi is defined by (4)82

4.2. Method of sample size evaluation in logistic regression.83

Fixate a set A of indexes. For every feature in the set, defined by A we can compute
the sample size m∗, required to include this feature into the model feature set. Consider
hypothesis

H0 : wj = 0, j 6∈ A,
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where wj — j-th element of vector w of logistic regression parameters. This way, we assume
that j-th feature is not included into model. Having estimated vector of parameters under
H0, we obtain vector wA, and under alternative H1 : wj 6= 0 we get wA∗ , where indexes
set A∗ is composed of A and index j. Then H0 and H1 can be reformulated in terms of
parameters θi of Bernullean distribution B(θ) and rewritten as

H0 : θ = θA, H1 : θ = θA∗ .

Note that the exact values of θi in every case are not important, we are only interested
in cut-off value c0. Finally, we have:

H0 : 1− c0 = p0, H1 : 1− c0 = p1.

To test hypothesis H0 calculate statistic

Z =
p̂− p0√
p0c0/m

, p̂ =
1

m

m∑
i=1

yi

where p̂ is the maximum likelyhood estimator for θ. Under H0,

Z ∼ N
(
p1 − p0,

√
p1c1
p0c0

)
.

Then

Z

√
p0c0
p1c1

+
p0 − p1√
p1c1/m

=

√
p0c0
p1c1

(
Z +

p0 − p1√
p0c0

√
m

)
∼ N (0, 1).

With significance level α power of the criterion can be computed

1− β = P{|Z| > Zα/2|H1} = Φ

(√
p0c0
p1c1

(
Zα/2 +

p0 − p1√
p0c0/m

))
.

Thus we obtain formula for m∗84

m∗ =
p0c0

(
Z1−α/2 + Z1−β

√
p1c1
p0c0

)2
(p1 − p0)2

. (12)

Note that m∗, given by (12) depends on index j of feature appearing in H0.85

4.3. Cross-validation.86

This method provides minimum sample size estimation, based on observing overfitting.87

When using this approach, data sample is divided into learning DL = {(xi, yi)} , i ∈ L and88

test set DT = {(xi, yi)} , i ∈ T , where I = L
⊔
T . Fixate a set A of indexes of model89

features. Denote AUC(A,D) as thye quality functional value, computed at the data set D.90
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Decrease of thew quality functional AUC(A, DT ) value computed at training set compared91

to AUC(A, DL) might indicate overfitting. Define overfitting as the following ratio92

RS(m) =
AUC(A, DT (m))

AUC(A, DL(m))
. (13)

In this case model f approximates learning set, but can’t be used to discribe test set. Over-
fitting might occur when sample size m is too small. To estimate m∗, we consequentially
increase sample size m while splitting data set into learning and test sets in a given ratio:

|T (m)|/|L(m)| = const ≤ 0.5.

With increase of m RS(m) approaches to one. We find the sample size m∗ adequate, if for93

every m ≥ m∗ RS(m) ratio is more than given 1− ε1.94

4.4. Using Kullback-leibler divergence to estimate sample size.95

The presented approach is based on comparing probability density functions of model
parameters. Consider two “similar” sets of indexes of objects B1 ∈ J and B2 ∈ J . Indexes
sets B1 and B2 are regarded as “similar” if

|B1 \ B2 ∪ B2 \ B1| = 1.

This way B2 can be obtained from B1 by deleting, replacing or adding one element. Pa-
rameters, evaluated at different samples also differ. Figure 2 shows how the separating
hyperplane given by

xTw = ln(
c0

1− c0
)

changes when two elements are added to sample. If sample DB1 is large enough, parameters

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

Figure 2: Two classes are separeted by hyperplane. Doted line represents the hyperplane position after
the two objects (in circles) were added.

w1 evaluated at DB1 should not be significantly different from w2 obtained at “similar”
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sample DB2 . The simplest way to compare them is to compute Euclidean distance between
w1 and w2:

||w1 −w2|| =

√√√√ |A|∑
i=1

(
w1
i − w2

i

)2
.

In this paper probability density functions of parameters at DB1 and DB2 are compared by96

computing Kullback-Leibler divergence between them. Consider model function (4) and97

assumption about the random variable yi distribution (1). Having fixated the data set D98

and model fA = f(XT
Aw), rewrite (1) as99

p(y|X,w, fA) ≡ p(D|w, fA) =
m∏
i=1

θyii (1− θi)1−yi . (14)

Suppose as well, that the vector of regression parameters w follows normal distribution100

w ∼ N (w0, σ
2I|A|) with the density function101

p(w|fA, α) =
( α

2π

) |A|
2

exp(−α
2
||w −w0)||2), (15)

in which α−1 = σ2, I|A| — the unit matrix of size |A|.102

To find the probability density function p(w|D,α, fA) of the regression parameters, use103

Bayes’ theorem104

p(w|D,α, fA) =
p(D|w, fA)p(w|α, fA)

p(D|α, fA)
, (16)

where p(D|w, fA) is the data likelihood, p(w|α, fA) given a priori probability density func-
tion. In (16) the normalization factor p(D|α, fA) is defined by

p(D|α, fA) =

∫
p(D|w, fA)p(w|α, fA)dw.

Substituting (14) and (15) into (16) and denoting Z(α) = p(D|α, fA), we obtain

p(w|D, fA) =
p(y|x,w, fA)p(w|fA, α)

Z(α)
=

=
α
|A|
2

(2π)
|A|
2 Z(α)

exp(−α
2
||w −w0)||2)

m∏
i=1

θyii (1− θi)1−yi ,

where Z(α) = p(D|α, fA) is the normalization factor.105

Consider two “similar” samples DB1 and DB2 . Denote the posterior distributions106

p1(w) ≡ p(w|DB1 , α, fA) and p2(w) ≡ p(w|DB2 , α, fA) respectively. “Similarity” of these107

distribution can be computed as108

DKL(p1, p2) =

∫
w∈W

p1(w) ln
p1(w)

p2(w)
dw. (17)
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To estimate the minimum sample size m∗ we randomly delete objects from data set one109

by one, consequently reducing sample size m, and computing the posterior distribution of110

vector w by (15). Then Kullback-Leibler divergence (17) between the probability density111

functions of parameters evaluated at “similar” data sets. This process is repeated N times112

and then the results are everaged. The sample size m∗ is considered adequate if Kullback-113

Leibler divergence (17) changes less than in ε2 for m ≥ m∗.114

5. Computation experiment115

5.1. Experiment on real data.116

The data set contains observations of concentrations of 20 proteins in blood cells for117

patients of two classes, containing 31 and 14 objects respectively. In the table 2 all features,118

or biomarkers, are listed.119

Table 1: The results of feature selection
A S(A)

K, L , L/P 0.9750
K, L, K/M, K/Q 0.9671

K, L, L/M, L/T/SO 0.9933
K, L, K/M, L/R 0.9867
K, K/M, L/P, 0.9742

The table 1 presents optimal sets of features, corresponding to maximum AUC values120

and the exact AUC values. K = 5 optimal sets were selected for investigation.121

Table 2: Number of entries into K optimal sets for each feature.
K L K/M L/M K/N K/O L/O K/P L/P K/Q
5 4 3 1 0 0 0 0 2 1

K/R L/R L/R/SA L/T/SA L/T/SO U/V U/W U/X U/Y U/Z
0 1 0 0 1 0 0 0 0 0

Due to high costs of medical investigation of one patient, it is essential to reduce number122

of measured biomarkers. It is suggested to measure only the most informative features.123

Having united indexes of all the features from the table 1, obtain a set of indexes of most124

informative features S =
K⋃
i=1

{Ai}. For every feature from ?? number of times it was125

involved in S is computed. The table 2 show this number for every feature.126

Minimum sample size determination. To evaluate quality of classification leave one out127

cross-validation was used. Every object of data set was once in a test set, and was classified128

by (6). Resutls of this procedure are in the table 3. For every class it’s rate of correctly129

classified objects is presented.130

Decrease of quality of classification with decrease of sample size signifies low sample size,131

that’s why computational experiment also includes minimum sample size determination.132
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Table 3: Rates of correctly classified objects at LOO

A1 A3

?? ??

 K  L  K/M  L/M  L/P  K/Q  L/R  L/T/SO
10

0

10
2

10
4

Biomarkers

Sa
m

pl
e 

si
ze

 

 

Statistical method
Method for logistic regression

Figure 3: Sample size estimations computed by method of confidence intervals and method for logistic
regression for the most informative features.

In histogram 3 sample size values m∗, computed for separate feature by (10) and (??)133

are represented. Sample size m∗ was only computed for those features included in model,134

the rest of them are not informative and should not be considered.135

15 20 25 30

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Sample size

R
S

Figure 4: RS(m) ratio.

Note that sample size estimations, obtained by (10) and (??) have similar dependence136

on feature’s index. The reason is that in both methods sample size estimation of j-th feature137

depends on how informative the feature is. In logistic regression informative features have138

significant value of corresponding element wj of parameters vector. In (??) (p0 − p1)2 is139

placed in denominator. The nearer wj to zero, the less (p0 − p1)2 value is, and therefore,140
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the larger m∗ is. This way, minimum values of m∗ correspond to the most informative141

features, abnormally large values (∼ 104 or more) answer to those features, that are not142

included in model — they have the least wj values.143

The dependence of RS(m), defined by (13) on sample size m is plotted in 4. Provided144

with data set, described in 5.1 RS(m) ratio is unable to reach an asymptote, and the145

following form of the dependence RS(m) can’t be analyzed, so the estimation given by this146

method is m∗ ≥ 30.147

Figure 5.1 shows the dependence of averaged by N = 100 trials Kullback-Leibler (17)148

divergence on sample size m is depicted. It is seen, that having more than 27 elements in149

data set leads to changing of Kullback-Leibler divergence relatively slowly: when the sample150

size m > 27 is reduced by one element, the graph shows almost no change of Kullback-151

Leibler divergence, compared to the area of smaller m. Thus, we obtain minimum sample152

size estimation m∗ ≥ 30.
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Figure 5: a. Averaged Euclidean divergence ||wm −wm+1|| b.Kullback-Leibler divergence between prob-
ability density functions of model parameters.

153

To compare the results obtained by different methods, we represent them in the ta-154

ble 4. The amount of observations in investigated data is quite small, so cross-validation155

method end method involving Kullback-Leibler divergence computation only provide us156

with lower bound of m∗.These methods are more suited for large data sets. Confidence157

interval method and method for logistic regression show numerically different result, as the158

confidence interval method is quite rough. However the dependence of m∗ on feature index159

is practically the same for these methods, both of them give estimations which depend on160

how informative the feature is.

Table 4: Sample size estimations.

confidence intervals logistic cross-validation Kullback-Leibler
102 − 104 ∼100 ≥ 30 ≥ 30

161
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5.2. Experiment on synthetical data.162

The experiment was also carried out on synthetical data. Each class contain one noisy163

feature and two informative feature (distributed normally and uniformly), and contains164

100 objects. It is seen 6, that classes are easily distinguished.165
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Figure 6: Data set represented by two informative features.
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Figure 7: Dependence of RS ratio on m, obtained with cross-validation 3:1.

It is seen in 7, that for sample size m ≥ m∗ = 100 change of RS(m) ratio is not more166

than 0.01, so we conclude that m∗ ≤ 100.167

The results of sample size estimation m∗ obtained by (10) and (??), are illustrated by 8.168

In this case, estimations of m∗ given by confidence interval method are more precise169

(closer to those obtained by cross-validation). This might happen because the example is170

too simple. The real data, investigated in 5.1 is assumed to follow a mixture of normal171

distributions (11). To approximate real data, consider data set with just one independent172

variable, distributed as (11). Dependence of sample size estimations on |µ1−µ2| difference173

is observed. It is seen in 9, that in this case (10) gives overrated results, while estimations174

of m∗, obtained by (??) are more adequate.175
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Figure 8: Sample size m∗, estimated for each model feature by confidence interval method and method for
logistic regression.
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Figure 9: Sample size m∗, estimated by confidence interval method and method for logistic regression.

6. Conclusion176

The paper presents an algorithm that classifies patients with cardio-vascular decease.177

To select the regression model the exhaustive search algorithm is used. The paper proposes178

a new method of sample size determination. It is based on cross-validation technique179

and uses the Kullback-Leibler divergence between two distribution of model parameters,180

evaluated on similar data subsets. Four various algorithms os sample size determination181

are compared.182
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