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AnHOTaMsa

MogenupoBaHue YeJIOBEIECKOIO MOAXO0Ia K PEIIeHUI0 TOM UM MHON 3aJadd JacTo
HCIIONIB3ETCSI JJI TIOCTPOEHMSI aBTOMATUYECKAX aJTOPUTMOB. B pabore mpejraraercs
AJITOPUTM, CIIOCOOHBIN OTBEYATH Ha BOIIPOCHI, CBSI3aHHBIE C IIPOCTPAHCTBEHHBLIM pPacIIo-
JIOXKeHHEM OOBEKTOB, HEefCTBHUS KOTOPBIX OMMCAHBI B HMCXOIHOM Tekcre. HoBusHa aJi-
FOPUTMa 3aKJII0YaeTCs B TOM, YTO JIJIsl OIpPE/Ie/IEHNs] OTBETA IMPOU3BOJIUTCS I'e€HepaAIlUs
[IOCJIEIOBATE/IHbHOCTH KaJIPOB O PACIIOJIOXKEHUH OOBEKTOB B IIPOCTPAHCTBE U BPEMEHU,
AQHAJIOTMYHO TOMY, KaK 3TO IPEICTaBJseT cebe YeIOBEK.

Kaxkmoe citoBo pencrasisieTcst B Bue cKpbiToit Mapkosckoit menn. Kaxkmoe cocTo-
sTHUE KazKJIOH MOJIe/I UMeeT 3aJ[aHHOe Pacipe/ie/ieHne 3HaueHni IIPU3HAKOB (IIPU3HAKY
3aBHUCSAT OT PACIIOJIOKEHUsI OObEKTOB Ha KaJpe), C TIOMOIIBIO KOTOPBIX PACCIUTHIBACTCSI
npaBonoobue mapol (KaJap BHIEO, COCTOSIHUE MOJIENN CIOBA).

JLj1st reHepalIuy oCIeI0BaTE/IbHOCTI KaJIPOB, Harnbojiee TOYHO OINUCHIBAIOIIMX II0JIY-
YeHHBIH HabOp MoJeeil CI0B, UCIOJIB3YETC s TeHepaTop CIyYalHbIX TPAeKTOPHUil 00beK-
TOB, OCHOBaHHBIN Ha ajroputMme Merpomnonuca-l'actunrca. OyHkimeir KadecTBa MOJY-
YEHHOI I10C/IeI0BATE/ILHOCTH KaIPOB SIBJISIETCS IPOU3BEICHIE IIPaBIOION00NI Moie e
CJI0B Ha HauboJjiee BEPOATHOM PACIPEIEICHIN UX COCTOSHUN 10 KaIpaM.

ITocrpoennas cucreMa B COCTOSHAN OTBEYaTh Ha HAOOP BOIPOCOB O M3MEHSIOIINXCSI
BO BpeMeHHt HpOCTpaHCTBeHHOﬁ CprKType O6”beKTOB7 N3HAYAJIbBHO OIIMCAHHBIX B TEKCTO-

BoOIt dopme.



AnHOTaMsa

To build algorithms for automatic problems solving, one often models human notions
about problem solving procedure.

In this paper we construct an algorithm that answers questions about the spatial
structure of objects, actions of which are described in the input text. The novelty of the
algorithm lies in generation of additional visual information, just as a person responds
to this type of questions, imagining spatial scenery in their mind. A sequence of frames
is generated according to the similarity to the sentences of the source text. We use the
three step answer generation procedure. The first step is the generation of all possible
answers. The second step is the matching with the obtained visual information. The
third step is to select the answer, which has the maximum answer-video likelihood.

Every word from the original text is represented as a linear hidden Markov model.
For each state of the each word model there is a prior distribution of feature values
(features depends on objects on a frame), which is responsible for the likelihood for
(video frame, state of word model) pair.

To generate visual information that would be the most similar to the obtained set
of models, the random generator of objects trajectories, based on Metropolis-Hastings
algorithm, is used. The product of likelihoods of the most probable path through word
model states is used as the quality function of obtained video.

The constructed system can answer a set of questions about the time-varying spatial

structure of objects, described in text form.



1. Introduction

How does a typical Question Answering system work? Firstly, it performs question analysis.
Secondly, the system produces a query for its database (it could be stored outside the whole
system, like the Internet). And the last step is ranking answers (to return the best one).
Today, many people use Al assistants (like Siri or Google Now) in their daily routine. But
these systems can only extract information from the knowledge base, but they can not imagine
your movements from natural language and speech. In this paper we propose an approach
that helps the machine to understand movements of object from text (these movements would
be generated) and to answer questions about that.

According to [1], typical QA systems can be divided into three main categories:

Linguistic approach. The first QA systems (1960s) were NL query front-ends for knowledge
database (like BASEBALL |[2]). Database size imposed a limitation: these systems were able
to answer questions only inside a restricted area. Next step of evolution was acquiring the

Internet as a knowledge database (examples: START [3,4], [5] and [6]).

Statistical approach. Size of data, created by mankind, has increased importance of
statistical techniques. They have been applied to different stages of a QA system (analysis of
question type, predictions about expected answers, etc). Famous systems are IBM’s statistical
QA [7], [8]. According to [1], [9] has investigated the prospects of applying statistical methods
to answer finding task in QA and discovered that these techniques performed quite well
depending on the underlying data set characteristics — vocabulary size, the overlap between

question and answers, between multiple answers, etc.

Pattern matching approach. Here one could use text patterns to answer some types of
questions. For example, the question «Where is Disney located?» relies on pattern «Where
is <object> located?”» and produce answer «<Object> located at <Location> ». Many of
the QA systems automatically recognize such text patterns from text passages rather than
employing complicated linguistic tools to text for retrieving answers.

Idea of extending text QA to work with some types of media is pretty natural: there is

a lot of information in the Internet in media form. In [10] authors try to enrich text answer
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Puc. 1: Difference between Multimedia QA and other QAs (image taken from [13])

with media (image or video) information from internet. The paper [11] tries to work only
with key shots from video. The study [12| used NLP to create similar questions and rerank
obtained videos queues with video analysis.

Some papers provided idea of answering questions about images or videos. For example,
in [14] authors built Spot — a system able to answer specific questions about surveliance
videos. START translated an English question into inner representation (video filter) that
used to transform (dynamically) raw video [3]. Also, neural architectures were used for QA
about images [15].

This paper solves the problem of answering questions about movements of objects by
generating video-like info, describing these movements. Thus, we provide an approach for
QA that is similar to human thinking: generation of a video-like scene while answering the
question. We use the idea proposed in [16] about word representation as multistate FSM
(hidden Markov model) over features extracted from video (see Section 3). Same as [17],
we represent all words as HMM, not only verbs. Using START [3| we construct sentence-
specific structure from HMMs, representing separate words, considering the relations between

the objects. Following [17], in Section 4 we create a function S : (B, s, ) — (7, J), where B



represents the information extracted from a video clip, s represents the sentence, A represents
word meanings, 7 is the video-sentence score, and J is a collection of tracks, one for each
participant in the event described by the sentence, corresponding to the best video-sentence
score. In Section 5 we describe track generation procedure for given sentence. In Section 6

we use this generation procedure to answer hypothetical spatial questions.



2. Definitions

2.1. Frame and Video

Let frame be RGB-image with rectangular detections of objects. Each detection is assigned

to some object class, like chair or person. Video is a sequence of T" frames.

2.2. Features

A feature is a function that maps objects positions into finite set of values. In this paper two

type of features are used:
1. features that depend on single object (e.g. velocity orientation)
2. features that depend on two objects (e.g. distance between objects)

Consider feature distance between objects. There is a real distance between objects
and the distance in the image is a proxy for that real distance, so we quantize the image

distance into 5 bins which one can interpret as:
e very close
e close
e medium
e far
e very far

For every pair of objects on frame fr we compute distance between them and further
assign one of the feature distance between objects values.
We extract these features from objects tracks and use them in Word Models.

In this paper we used next features:
1. class

2. distance between objects



3. relative orientation
4. relative position

5. relative velocity

2.3. Viterbi algorithm

The Viterbi algorithm [18| is used when one wants to calculate the most probable path
through the states of HMM over time. Main problem here is that with n states and T
moments of time we have about n” (at least by grown rate) probable paths. If one tries to
calculate probabilities through all of them he faces lack of computing power. Viterbi’s idea is
that, if we think about state k& in moment ¢, we can consider only one way of max probability
(and throw others). Therefore, if several paths converge at k in moment ¢, one do not have to
calculate every path, and all, except the most probable way, could be discarded from future
computations.

In fact, instead of computing all length 7" paths from £° to k"' we will compute values

v(i,t) — the highest path probability reach k' from k° by ¢ iterations. It means
v(i,t+1) = max[v(s, t) - p(s, i)], (1)

where p(s, 1) is probability of moving from k* to k*. Number of calculations will be O(T'S?),
where S is max output degree among states. This is much better than S? from baseline
method.

One can see here there are no restrictions for function p. Also, we could use any scores
for states. This changes Equation 1 into

v(i,t + 1) = score(i) - max [v(s, t) - p(s,1)] . (2)

S

Lets solve the following task: find the highest probability of length 7" path from the Oth

state to any state. This algorithm could be described as:

10



v(i,0) = 0;

v(0,0) = score(0);

fort =1to T do

for 1 = 1 ton do
v(i, t) = 0;

for s = 1 ton do

if v(i,t) <wv(s,t —1)-p(s,i) then
‘ ’U(ia t) = U(S>t - 1) ' p(s,i)
end
end

v(i, t) = v(i,t) - score(i);

end

end
Algorithm 1: Viterbi algorithm for HMM with transition function p and score of states.
The Algorithm 1 could be used to solve Equation 2 after logarithm transformation.

This transformation allows us to solve the following problem: assume we have a score for
every object detection on frame and transition score between these detections on adjacent
frames. We want to find one track though time among these detection. Track is a sequence of
detections (one per frame) with small sum of distances between object detection (described

in 4.1.1) on adjacent frames. Therefore Viterbi algorithm could find the best track.

11



3. Word model

We want to describe time-varying series of
actions (i.e. obj; picks up objy). Assume that Word Model (HMM)
State 1 State 3

this action is represented as movements objs

near obj; on frames of video. We want to

introduce single model for each word which _

consists of list of states, and every state will 0.99 0.99 1.00

linked with set of objects positions (usually it’s Puc. 2: Word model

their position on frames). Every state of model

describes part of action. A linear HMM [16, 19| will be used here. Note that the number of

dependent objects is constant among states of the model (because every part of action should

involve the same objects as previous). One can see Word Model scheme on Figure 2.
Consider two examples of Word model for word pick up and approach. Every state

of first model is linked with part of whole pick up action:
statey: objo, is much lower than obj; on the frame
states: objs is lifts up (to obj)

statez: objs is close to objy

Note that during these actions obj; should be more or less stationary.

Similarly, Word Model approach states will relate to

statey: obj, is far away from obj; on the frame
statey: 0bjo is on medium distance from obj;

states: obj, is close to objq

Note that during these actions obj; do not have to be stationary.

Usually, every simple action could be split into 3-4 parts. It means, by default we have
much more frames than part of action. Therefore, every action (and, accordingly, every model

state) will be linked with continuous sequence of frames. To find how well state of Word

12



Tabmuma 1: Feature distance between objects distributions inside states of Word Model

approach

feature value | p in st; | p in sty | p in st3
very close 0.0 0.0 0.6
close 0.0 0.25 0.4
medium 0.0 0.5 0.0
far 0.4 0.25 0.0
very far 0.6 0.0 0.0

Model fits objects positions on frame we use a set of features, that could measure similarity

between state and objects positions.

3.1. Word Model state

How to understand that one state of Word Model fits current frame well? To solve this

problem for every feature f we need to determine how well feature value v fits this state. It

can be recorded as feature values distribution, e.g. the first state of approach Word Model

means that objects have some space between. One can see distributions for feature distance

between objects in Table 1.

We can describe Word Model in the following way:

e number of objects, which positions will be used for computing likelihood

e list of states of HMM (they usually refer to part of whole word action)

Also, every state of model contains the following information:

e subset of features with prior probability distributions on these features values

e probability of moving to the next state and probability of staying in this state (usually

0.01 and 0.99). We do not have to store any other probabilities, because they are 0 (we

use linear HMM)

Note, that these features may be applied not for all dependent objects, but for its subset.

Example: Word Model pick up. In this action obj; should not move, so here feature velocity

13



magnitude is used. This feature takes one object position as input, whereas whole model

depends on two objects.

Word Model (HMM)
State 1 State 3

WM 1 WM 2 WM 3 WM 4

Word Model State

A[Feat1]Prob1| =
flp . Feat 2|Prob 2 ’
1lor
l 0.6 ettt Feat 3|Prob 3
31025 Feat 4|Prob 4 rdkl

41 0.05

Puc. 3: System overview: connection among Word Models and Objects, Word Model, Word
Model state and one feature values distribution over one state.

Left-top. Every Word Model has one or more dependent objects. These connections are
shown here as arrow at .

Right-top.  Every Word Model is HMM, so it has transition probabilities (that are shown
as arrows at right-top).

Right-bottom. State of Word Model: features and its values distributions.

Left-bottom. One feature and its values probability in current state.
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3.2. State-frame likelihood

Consider Word Model m, st — all states of model m and objects objs = [objy, ..., 0bjq], where
d is equal to number of input object for model m. Now we are able to compute likelihood of

pair (st, 0bjs):

d=1: Lg_s(st,objs)= T[] fi(obj1)

fi€st
d=2: Ly s (st,objs) = [ f(objr,0bja) [ fi(obj1) [ fa(obj2)
fEst f1€st fo€Est

where f is feature, that takes two objects as args, fi; — feature, that takes first model object
as args, fo — second. The algorithm do not limit d, but in practice now we use models with

d=1and d = 2 only.

3.3. Model-video likelihood

We're able to determine, how good current model fits set of frames. Let ¢, be a number of
dependent objects for Word Model m with s,, states, and n be a number of frames fry, ..., fr,
(with g ordered objects positions on each frame). We want to link every frame with some
state of m. If one names states as parts of whole model action, frames assigned to state will
show action of this state (of course it will work in case model fits video well).

Assume we have translation the function
tr:{1,....,n} = {1,..., s}, such that z >y = tr(z) > tr(y).

The function tr maps number of frame into assigned model state. Then the following

Equation holds:

L(m, {fr}, tr) = [ Lot—pr(stuwy, fro) [ [ hmm(tr(t = 1), tr(t)) (3)

t=1 t=2
where Ly, is likelihood of (state-frame) pair, defined in 3.3 and hmm(tr(t — 1),tr(t))

is probability of moving from state tr(t — 1) to state ¢r(t) for model m.

Equation 3 is used below as evaluation function, describing how good model fits pair (list
of frames, translation function).

Due to machine precision, below we will maximize only log(L). It could be reformulated

in following way:

15



n n

log(L) = > A(k', fre) + Y a(k'"™, k"),

where k' means state tr(t), h(k', fr;) = log Lg— (K", fr¢), and

a(k' 1 kY = a(tr(t — 1), tr(t)) = log hmm(tr(t — 1), tr(t)).

16



4. Scoring

In this section we solve the following problem: find how well given sentence S describes given

video (list of frames) V' = (vy,...,v,). We should solve the following tasks:

e find detections of objects
e transform detections into logical connected tracks
e parse input sentence and produce word models for all words

e find translation function for every model (¢r, that was used in Equation 3)

4.1. Object and Tracks Detection

Assume we have a video (or, at least, list of frames). The first problem we faced is to find
all detections of all objects on each frame. The idea of joint track and action recognition is
taken from [17]. Our task is to find tracks of specific objects with specific properties. Building
acceptable image detector is a hard problem and it is beyond this paper scope, so we will
use [20,21] and will try to maximize quality of output detections of objects. This detector
works as the black box, that by pair (frame (picture), objects class) produces list of pairs
(object detection, detection score). Our approach assumes that we could find at least one
acceptable object for each track on each frame. We could easily throw out unused detections.
So we will use overgeneration (and will take a big amount of objects from detector).

This subsection task:
input: few classes of objects (e.g. bicycle or car), image detector
output: smooth trajectories (at least one for every class)
We use the same notation as [17]:
e j — one object track
e ;' — object detection assigned for track j on frame ¢

° b;zg — detection chosen for track (trajectory) ! on frame t.

17



e f(b) — detection score by image detector

e g(b,0') — score function shows how detections b, ¥, chosen for one track, fit this track

(temporal-coherence score)

4.1.1. One Track Identification

The simplest case: we have detections of one class. We want to choose one detection per

frame for smooth object track j. What does «smooth object tracks mean? This means:
1. track: list of detection, one per frame
2. object: each of these detections should has acceptable score

3. smooth: distance between object detections on adjacent frames should be relatively

small

How could we satisfy «smooth» requirement? One could estimate movements of detection
by adjacent frames, because in the common case object movements per frame are relatively
small comparing to detection size (usually detection is a box). So, «smooth» means that next
object detection position should be near some «estimated» position.

Main idea of using optical flow [22] as a distance correction is to decrease g as much as
possible for b,V from the same track. If b, 0’ is in one track then optical flow vector direction
will be similar to direction of vector bb/. We used OpenCV [23| Python implementation, that
computes a dense optical flow using the Gunnar Farneback’s algorithm [24].

So, we will find best track for video B using the following equation:

max (Zf bt —I—Zg bttllybz 1) (5)

This equation could easily be solved by Viterbi [18| algorithm (in fact, dynamic programming).
That will produce a lattice size J x T', where J is maximum between number detections on
each frame.

In this paper

f =min(1, max(—1, detection__score)), and

g = —distance(b,b") + optical _ flow(b, V).

18



4.1.2. Many Tracks Identification

Lets generalize our problem: now we have L different classes of objects (and j! object
detections of class i on frame t), and we want to find L different smooth tracks on video

B. Then equation for this task is:

maxz <Zf bt —I—Zg btt 1,bt 1 ) (6)

This will produce lattice of size LJ X T, that would be solved in polynomial time by
Viterbi algorithm.

4.2. Joint Action and Track Detection

We know how to compute model-video likelihood (by video here we mean ordered list of
detections with length equal to number of dependent model’s objects) from Equation 4. But
from video we could only get a list of detections for every class (that should be assigned to
models). Also one model represents only one word, but from the sentence we will obtain much
more models. Moreover, sometimes we need to change track configuration (if many detection
of one objects are generated) using informations from objects. From paper [17] we could get
an idea of computing objects, word models states and track assignments together.

Firstly, we could just summarize Equations 4 and 6 (they are still independent) and

maximize result to produce best model states k for found track(s) on frame fr;:

max [Z (Zf (b, +Zg (0205 )

Here L is number of tracks we need for model m, k — states of model m.

+ max Lz; h(k', fry) + ; a(k'™t kY (7)

Secondly, we need to configure tracks (assume we have two objects tracks here) for model
m. To understand why we need this, one could imagine two cars on video. The first car (¢;)
is recognized better, than second (¢3), and the first track has bigger score. But this track fits
model badly (¢; just moved on road, ¢, crashed into tree (that is why last frames detections
have fewer score), m is crash). So we have to choose track for ¢y despite the fact it has lower
score. So we will optimize them altogether:

L T T n n
s [Z (Z Fb) + 3 g0 ) FIORK fr)+ D atk LK) ()
’ t=1 t=2 t=1 t=1

19



Parts of Equation 8 are linked because of h(k', fr;). fr; here means ordered list of
detections from tracks on frame ¢ from video ([0, ...,0%,]). This also might be solved by
Viterbi algorithm: we will produce lattice of size L x T' x P¢ x |k|, where P“ means product
of average number of detections per object class power number of classes (C).

Equation 8 allows us to choose detections-tracks, tracks-models and states-frames synchronized.
That leaves only one problem unsolved: we should use more models. But what links Word
Model with outside parts of equation? It is translation function that assigns states to frames.
What if we build many Word Models into one hyper Word Model, that takes more objects?
That means that:

1. k' — (KL, k) - (k= K)
M
2. Equation 3 translates into [] (Equation 3)

m=1

So, we need to rewrite our Equation 8 into:

max [Z (Zf (%) Z (bttll,bz Y ) +Z <Zh ,f1e) +ia(kfnl,kfn)>] (9)

It will produce lattice from Figure 4. This Equation is the most general case of this
equations type. To solve it with Viterbi algorithm we will produce lattice from Figure 4
(image from [17]).

Recall that h function means how well detections from frame fit Word model and a means

translation penalty between states for Word model.

20



j=1 bi, 1 b2 1 b3, 1 bl

J= J! biu:l 532:1 bf.n’s:l bt{;T',l
bi,2 b2, 2 b3, 2 bl 2
b}]l:K g,a b%ﬂ?: K bljS: K e bth: K
fh

Puc. 4: Final lattice for solving Equation 9. b?,; here means object detection, 1, ..., K — states

of hyper Word model (union ).
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Puc. 5: Joint sentence-video recognition. Detection of sentence «A person approached a

stationary chair.» on video with two persons (one person is stationary) and two chairs.
Rectangular boxes show detection found on video by [20]. Their count (more than 4) shows

overgeneration of object detections, showed in 4.1.
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Puc. 6: Joint sentence-video recognition. Detection of sentence «A person approached a

stationary chair.» on video with two persons (one person is stationary) and two chairs. Few

frames from video are used to show that algorithm is able to recognize events on video.

23



5. Generation

Our next task is to generate visual information (that is similar to simple generated videos).
This information should be similar to the way people think about these questions. We will

start from the case, where we have only one model.

5.1. Object Trajectories

We want to generate visual information that would be

similar to the simplest videos. That means here will be \,

objects and their movements. But in real videos (with
small amount of exceptions) object will move slowly |

through frames (one might think about video as sequence /
of frames). Therefore, if we interpolate trajectory of any \ . /
object through space and time it will be mostly smooth. L — ______,/
Lets try to generate something, that would be similar to

real trajectories. We will use process of random search of

available trajectories space. Due to huge dimensionality Pmuc. 7: Example of B-spline.
of this space there is a necessity of limitation. It produces Black points represent control
the following requirement: it would be good if whole points.

trajectory could be controlled by relatively small amount

of parameters. That is why B-splines as trajectories were used.

Bi,l(t) = (10)
0 otherwise
r—1; liyk —
Bl’k(t) = —Bi,k—l(t) + —Bi—i-l,k—l(t)- (1].)
Livk—1 — t; Livk — lita

Here ¢t means time (or, in our notation number of frame). These basis functions are one-

dimentional. To produce 2d picture we use function
C(t) = > PB(t) (12)
i=0
Here ]31, e ﬁs — is a set of 2d control points. In this paper we took s near 7. To produce

24



object positions on frame Nt we will compute value c (t). It will be 2d point means position

of object’s center. Knots (g, ...ti4s¢) are taken uniform from [0,77] : tg =0, ..., a5t = T

5.1.1. New Trajectory Generation

Assume we have function C (t) and want to move to the another trajectory. One can understand
that if we change control points F; it changes whole spline, whereas basis functions B, j
remains unchanged. Assume we have s control points, then whole generation procedure:

2T ize and 2y, are sizes of object box;

for i = 0 to s do
Prewl0] = Ulsize, frame _size, — xgel;
Prcw[l] = Ulge, frame_size, — yuize);
énew = C with replace P; < Ppew;

if C)cw is acceptable then
| replace P; with Py,

else
next iteration;

end

end

Algorithm 2: Generation of new trajectory
Also, another option of resampling control point was used: normal distribution with center

in current position. But this did not increase quality of producing trajectories.

5.2. Tracks Generation

This subsection is about solving the following problem. We have Word Model m, and we have
to generate the sequence of frames with the biggest likelihood with m (using Equation ?7).
Lets assume m depends on 2 objects (like approach). First we will represent every object
as rectangular box, that could be described as center position plus size of box.

So, whole algorithm will consist of next two steps (that were repeated while iteration

limit is not reached):

e generating trajectories for objects

e checking if trajectories are acceptable
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Generation is described in 5.1.1. Lets talk about acceptance process. in this paper two

algorithms were used: Metropolis-Hastings algorithm and Simulated Annealing Search.

5.2.1. Metropolis-Hastings Algorithm

As one could understand trajectories space is highly complex, but we want to sample a set
of tracks from it. Here we could use the Metropolis—Hastings [25]| algorithm (because direct
sampling here is difficult).

Generate initial track ¢;

while iteration number is not reached do

Generate track candidate t';
t/
_s(t)
s(t)
if @ > 1 then
| replace t with ¢/

, where s is track score (in the common case from Equation 9);

else
| accept the candidate with probability «

end

end
Algorithm 3: Metropolis-Hastings track(s) generation
But if we want to get more than one tracks we will generate them together, because we

do not need good track for object one and good for object two, we want to get set of tracks

that fits our sentence together.

5.2.2. Simulated Annealing

First described in [26], main idea of this algorithm used in paper is: use temperature function
to increase oscillations of score. This helps algorithm to leave local max. One could see

Algorithm 4.
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Generate initial track ¢;
while iteration number is not reached do

Generate track candidate t';

s(t') —s(t) Y.
a4 exp (T),
T + 0.99T"
s(t')
s(t)
if a > random(0,1) then
| replace t with ¢/

Q<

, where s is track score (in the common case from Equation 9);

else
next iteration;

end

if T is near 0 then
save track;
resample 77

else

end

end
Algorithm 4: Simulated annealing track(s) generation

5.2.3. Scoring function

One can see Algorithms 3 and 4 use scoring function for generated tracks (usually from
Equation 9). For generation purposes we use f = 1 and g = 0 (part of Equation 9 produced
by Equation 5 will be constant). f = 1 means (comparing real video problem) that all objects
have maximal detection score. g = 0 means that tracks will not interfere amongst themselves
(if two position of one object were obtained from the same track then they will be assigned

to one track by solving Equation 9).
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Puc. 9: Joint tracks for sentence «A person approached a stationary bicycles. Red points
mean control points of splines. Points on line (one can see blue pints here) mean object
position on frames extracted from the track. Blue line represents person’s track and green —

bicycle.
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Puc. 10: Generated tracks for sentence «A person joined a stationary bicycle to the left of

a stationary chair». Blue color means person, red means chair, green — bicycle. Red dots

around track of the person and the bicycle are control points, while points on tracks are

object positions on frames.



6. Question Answering

6.1. Parsing

Sentence parsing is performed by START [3].

START (SynTactic Analysis us
natural language processing
English text and produces a

generating module produce:

First of all we need to extract all nouns from

the text. Each of them will be an object

Compute semantic representation

in our system and we will generate a track

A person approached a stationary chair
for it. Secondly, we want to get all noun

Semantic representation

modifiers applied for those objects (such as

[person+619 approach+1 chair+620
[chair+620 has_property+1 stationary]|

«stationary»). Thirdly, we need to identify

verbs and their modifiers. Every action word

[person+619 has_number singular]
[approach+1 has_person 3]
[chair+620 has_number singular’

(verb) handles two objects: an agent and a
patient. Adjective action modifiers are applied

to the agent of action word. Puc. 11: START web interface

6.2. Tracks generation

Our next step is to generate tracks for all the objects. Here we slightly modify the conditions
of Equation 9: we want to finish in the state of hyper word model that corresponds to the
final states of all word models. This means that all actions are represented by words will be
finalized. We also added the start and final empty states to make the models more general
(to find a correct action on a video). One could see the difference in tracks with one word
change on Figure 12.

To check how a (sentence, generated tracks) pair differs from other pairs, we conducted
the following experiment: we create a set of similar sentences and calculate their score on
tracks generated for a different sentence (for every sentence three tracks were generated).

The result is presented in table 2. This experiment shows the following results:
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Tabmurma 2: Sentences scores for generated tracks comparison. Sentences:

1
2
3
4
5
6

. A person quickly joined a stationary bicycle

. A person slowly joined a stationary bicycle

. A person quickly approached a stationary bicycle

. A person slowly approached a stationary bicycle

. A bicycle quickly approached a stationary person

. A bicycle slowly approached a stationary person

racks generated

Tracks score for ~~_{" : ’ ’ ! ° ’
1 ~1833.08 | -1860.96 | -1921.21 | -2012.27 | -2126.33 | -2026.94
2 -1906.02 | -1855.29 | -1966.28 | -2056.79 | -2045.61 | -1945.80
3 2157.92 | -2058.76 | -2027.75 | -2287.11 | -2451.74 | -2117.00
4 2117.15 | -2089.26 | -2177.40 | -1756.08 | -1870.14 | -2283.12
5 2162.21 | -2121.47 | -2222.46 | -1800.61 | -1789.42 | -2201.98
6 -2202.99 | -2090.97 | -2072.81 | -2331.64 | -2371.02 | -2035.86

e Row r contains scores of pairs (sentence r, tracks for each sentence). As one can see,

in every row the pair (sentence r, tracks for sentence r) is the one with the maximal

score.

Column ¢ contains scores of pairs (a sentence, tracks for sentence c¢). Here we can see
that for 4 out of 6 columns the score of the pair (sentence ¢, tracks for sentence c) is
maximal in that column. The only exceptions are pairs 3-1 and 6-2, and there is an
explanation: the model for «approach» gives a good score only to the tracks depicting
horizontal movements (the «velocity orientation» distribution is 0.5 for moving to the
left and 0.5 for moving to the right), whereas the model for «join» has a distribution
of (0.25 for each direction in «top», «bottom», «left», «right»). So in case where «join»
generates a horizontal track for the first object, sentence with a change of «joiny —

«approach» has a better score.

e Sentences with different participants but the same structure have different scores on
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Puc. 12: Difference in tracks for sentences with one different word. «Slowly» modifier means
that score function stimulates tracks with big distance between adjacent frames, whereas

«quickly» modifier encourages the sampling algorithm to expand the distance between object

positions on different frames.

each other’s tracks, that means that the class feature captures the difference well.

e These sentences have the same structure and the system tells them apart judging by

their tracks. Sentences where a change («join» — «pick up») was applied differ much

more significantly.

6.3. Answer parsing

Due to a relatively small number of types of questions that could be asked about object

positions, we use pattern matching approach (from Section 1).

We asked the following questions:

Who is near obj in time ¢?

How far is obj; from objy in time t7

Where was obj in time t7

Is obj; left of the objs in time ¢7
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e Is obj; right of the objy in time t7
The first way to solve this task is to:

1. Generate tracks for input text
2. Generate possible answers
3. Rank answers using Equation 9

4. Choose the best answer

To improve this algorithm we could generate 3-4 different scenes (collections of tracks)
and use them all. In this case we could use cosine similarity or correlation between answers
scores vector and initial text scores vector for ranking. But this approach does not achieve
appropriate quality with complex sentences. Also, this cannot work with questions about
exact time.

Therefore, we use another way:
1. Generate 3-4 video-like media
2. Parse question using pattern approach and produce answers

3. Use absolute positions of objects in video to find the best answer
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7. Other Applications

Following [17], we can use Section 4 results for annotating videos. This approach might also

be useful for the following purposes:
1. Action detection on surveillance videos: recognition of potentially dangerous situations.
2. Automatic sports commentary generation

The second application of the proposed method is automatic map creation. Suppose you
have a robot vacuum cleaner in a big house. You could inform your robot that your child is
moving from room one to a chair in room two. The cleaner will reconstruct his movements
to try to avoid him.

The third application is another machine translation approach. We transform sentence
into interlingua visual information. Then we find the sentence in another language that fits

best and return it as translation result.
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8. Conclusion

This paper solves the problem of answering questions about movements of objects by generating
video-like representation depicting these movements. We provide a new approach for answering
spatial questions using generation of video-like information similar to human thinking. We
propose two algorithms for object tracks generation (the objects are taken from the input
sentence). Also, two algorithms for answers ranking are proposed (comparing sentences and
direct video analysis). We achieved the following results: 74% questions about two input
objects were answered correctly. Also, 52% of questions about sentences with three objects
received a right answer. In the future this system could become a part of a larger QA system
(and produce additional information for some spatial questions).

Future work suggestions are to try other types of generation algorithms, other types of

tracks (instead of B-splines) and to speed up the algorithm (GPU realization).
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