Overview of Deep Learning Instruments

Sergey Ivanov (517)

qbrick@mail.ru

September 17, 2018

Data representation

Deep Learning

Deep Learning

Neural networks

Goals of deep learning

Considering data structure

Invariants

Recurrent Neural Networks (RNN)

Long Short-Term Memory (LSTM)

Data representation

Word embeddings

Encoder-decoder architectures

Examples

Generative models

Stochastic models

Variational AutoEncoder (VAE)

Generative Adversarial Networks (GAN)

MSU

Section 1

Deep Learning

Sergey Ivanov (517)

Deep Learning

Deep Learning

•00

What is neural net?

Deep Learning

•00

What is neural net?

▶ parametric family $f(x, \theta)$, $\theta \in \Theta$

Deep Learning

•00

What is neural net?

- ▶ parametric family $f(x, \theta)$, $\theta \in \Theta$
- with universal approximation properties

Deep Learning

What is neural net?

- ▶ parametric family $f(x, \theta)$, $\theta \in \Theta$
- with universal approximation properties
- differentiable

What is neural net?

- ▶ parametric family $f(x, \theta)$, $\theta \in \Theta$
- with universal approximation properties
- differentiable

Deep Learning is Machine Learning!

Machine Learning is always about searching for function:

$$\mathbb{E}_{(x,y)\sim\mathsf{Data}} \operatorname{\mathsf{Loss}}(f(x,\theta),y) o \min_{\theta}$$

Deep Learning

Building neural nets

Common way to build complex functions — composition:

$$f(x,\theta)=f_1(f_2(f_3(\dots)))$$

Chain rule gives us the derivative $\nabla f(x, \theta)$

Deep Learning

Building neural nets

Common way to build complex functions — composition:

$$f(x,\theta)=f_1(f_2(f_3(\dots)))$$

Chain rule gives us the derivative $\nabla f(x, \theta)$

Same works for functions of vectors!

Building neural nets

Common way to build complex functions — composition:

$$f(x,\theta)=f_1(f_2(f_3(\dots)))$$

Chain rule gives us the derivative $\nabla f(x, \theta)$

Same works for functions of vectors!

Typical example:

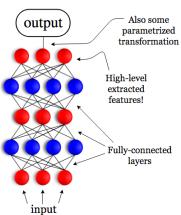
$$f_i(x,\theta) \in \{Ax, \sigma(x), \dots\}$$

where σ — some element-wise nonlinear function.

Deep Learning

000

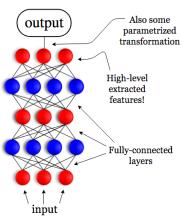
Typical example



Deep Learning

000

Typical example



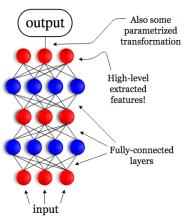
Output:

- regression:
 - just numbers

Deep Learning

000

Typical example



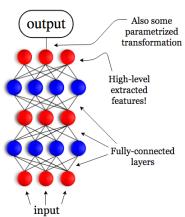
Output:

- regression:
 - just numbers
 - parameters of distribution

Deep Learning

000

Typical example

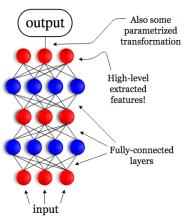


Output:

- regression:
 - just numbers
 - parameters of distribution
- classification:
 - × just classes

Deep Learning

Typical example

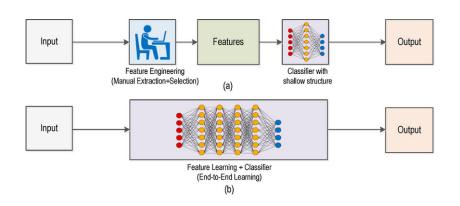


Output:

- regression:
 - just numbers
 - parameters of distribution
- classification:
 - × just classes
 - probabilities of classes

000 •0

End-to-end learning



Deep Learning

0.

Automation is the goal!

In DL we are required to specify:

net topology

Generative models

Goals of deep learning

0

Automation is the goal!

- net topology
 - trial and error
 - evolutionary methods

0

Automation is the goal!

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI

Deep Learning

0

Automation is the goal!

- ► net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoML
- regularization

Deep Learning

0.0

Automation is the goal!

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI
- regularization
 - dropout
 - batch normalization

Deep Learning

Automation is the goal!

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI
- regularization
 - dropout
 - batch normalization
 - Bayesian neural nets

Deep Learning

Automation is the goal!

In DL we are required to specify:

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI
- regularization
 - dropout
 - batch normalization
 - Bayesian neural nets

optimization method

Automation is the goal!

In DL we are required to specify:

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI
- regularization
 - dropout
 - batch normalization
 - Bayesian neural nets

optimization method

Data representation

use more or less universal methods like Adam

Automation is the goal!

In DL we are required to specify:

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI
- regularization
 - dropout
 - batch normalization
 - Bayesian neural nets

optimization method

Data representation

- use more or less universal methods like Adam
- ✓ Meta-learning

Automation is the goal!

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI
- regularization
 - dropout
 - batch normalization
 - Bayesian neural nets

- optimization method
 - use more or less universal methods like Adam
 - ✓ Meta-learning
- data representation

Automation is the goal!

In DL we are required to specify:

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI
- regularization
 - dropout
 - batch normalization
 - Bayesian neural nets

optimization method

Data representation

- use more or less universal methods like Adam
- ✓ Meta-learning
- data representation
 - "stack more layers"
 - "we need to go deeper"

Automation is the goal!

- net topology
 - trial and error
 - evolutionary methods
 - ✓ AutoMI
- regularization
 - dropout
 - batch normalization
 - Bayesian neural nets

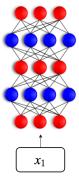
- optimization method
 - use more or less universal methods like Adam
 - ✓ Meta-learning
- data representation
 - "stack more layers"
 - "we need to go deeper"
 - ✓ ?!?

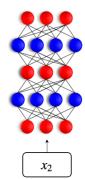
Section 2

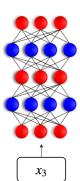
Considering data structure

Deep Learning

Pooling invariants





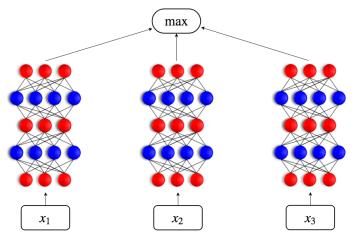


Sergey Ivanov (517)

MSU

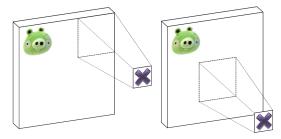
Deep Learning

Pooling invariants

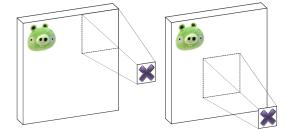


Deep Learning

Translation invariance



Translation invariance



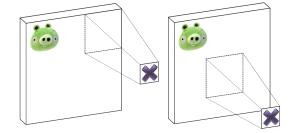
Usually followed by:

- max pooling (one invariant is of a particular interest)
 - other pooling options possible

Data representation 000 00000

Invariants

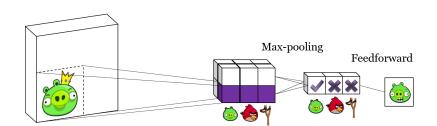
Translation invariance



Usually followed by:

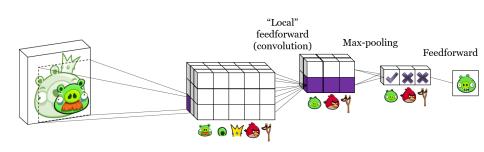
- max pooling (one invariant is of a particular interest)
 - other pooling options possible
- concatenation (for subtasks of same structure)

Size invariance

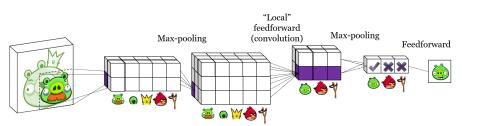


Invariants

Size invariance

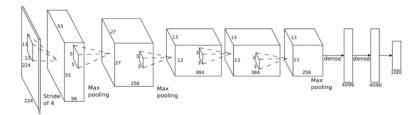


Size invariance



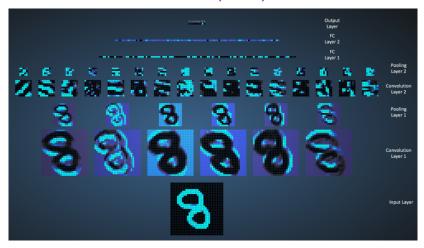
Convolutional neural network (CNN)

Resulting network:



Invariants

Convolutional neural network (CNN)

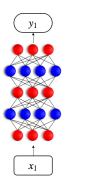


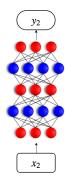
Augmentation

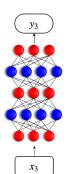
If you can't consider invariants in architecture, enlarge your dataset.

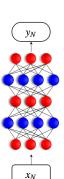
Sequences as input

Applying same idea:







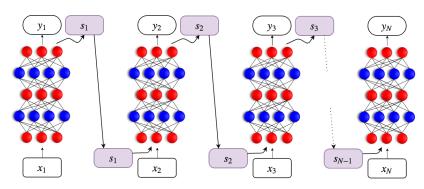


Data representation 000 00000 Generative models

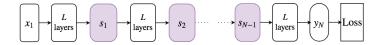
Recurrent Neural Networks (RNN)

Sequences as input

Naive approach:



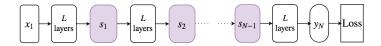
Gradients problem



Problem:

Gradient is required to pass *LN* layers.

Gradients problem

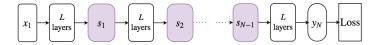


Problem:

Gradient is required to pass LN layers.

Chain rule says it's multiplication of LN quantities.

Gradients problem



Problem:

Gradient is required to pass *LN* layers.

Chain rule says it's multiplication of LN quantities.

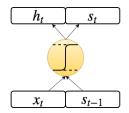
- ▶ most absolute values < 1: vanishing gradients problem
- ▶ most absolute values > 1: exploding gradients problem

Recurrent units

Neuron (e.g.
$$\sigma(Ax_t)$$
)

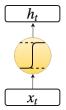
Recurrent units

Neuron (e.g. $\sigma(Ax_t)$)

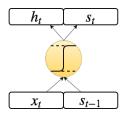


Same idea applied (redundant)

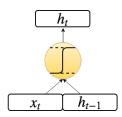
Recurrent units



Neuron (e.g. $\sigma(Ax_t)$)



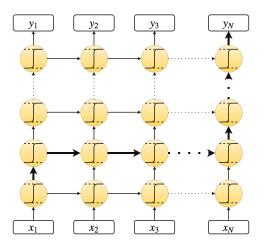
Same idea applied (redundant)



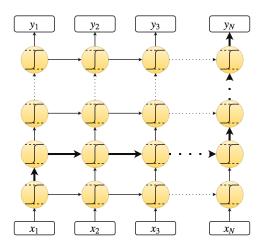
Recurrent neuron (e.g. $\sigma(A[x_t, h_{t-1}])$)

Deep Learning

Recurrent neural nets



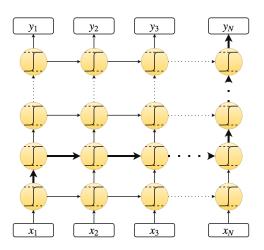
Recurrent neural nets



✓ *N* + *L* layers for gradient to pass!

Generative models

Recurrent neural nets



- ✓ *N* + *L* layers for gradient to pass!
- ? Was previous option better at something?

MSU

Long Short-Term Memory (LSTM)

Memory

Consider writing to memory task, i. e. the following operation:

How to express it in terms of computational graphs?

Memory

Consider writing to memory task, i. e. the following operation:

How to express it in terms of computational graphs?

Memory

Consider writing to memory task, i. e. the following operation:

How to express it in terms of computational graphs?

Memory

Deep Learning

Consider writing to memory task, i. e. the following operation:

Data representation

How to express it in terms of computational graphs?

Memory update formula

$$c_t = f_t \circ c_{t-1} + w_t \circ f(x_t) \quad w_t, f_t \in \{0, 1\}$$

where o is element-wise multiplication.

Considering data structure

○○○○

○○○

○
○
○
○

Long Short-Term Memory (LSTM)

Gates

 w_t, f_t are also some functions of input! For example,

$$\mathbb{I}[Ax_t>0]$$

Generative models

MSU

Long Short-Term Memory (LSTM)

Gates

 w_t, f_t are also some functions of input! For example,

$$\mathbb{I}[Ax_t>0]$$

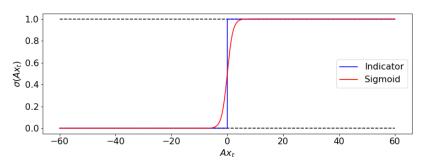
DL main rule: if something is not differentiable, make a smooth (*soft*) version of it!

Gates

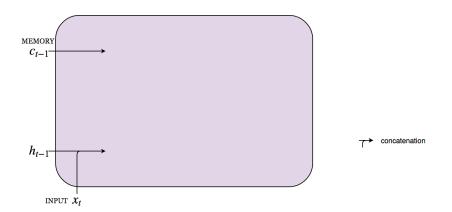
 w_t , f_t are also some functions of input! For example,

$$\mathbb{I}[Ax_t > 0]$$

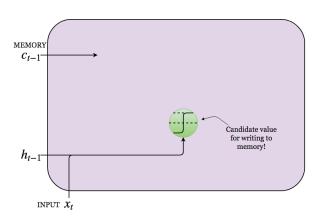
DL main rule: if something is not differentiable, make a smooth (*soft*) version of it!



LSTM: recurrent neurons with memory.



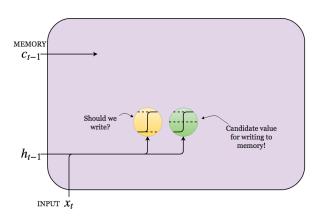
LSTM: transforming data: $c'_t = \tanh(A_c[x_t, h_{t-1}])$

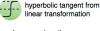


concatenation

Deep Learning

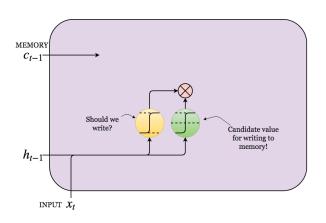
LSTM: writing gate: $w_t = \sigma(A_w[x_t, h_{t-1}])$



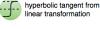


Deep Learning

LSTM:
$$c_t = f_t \circ c_{t-1} + w_t \circ c'_t$$



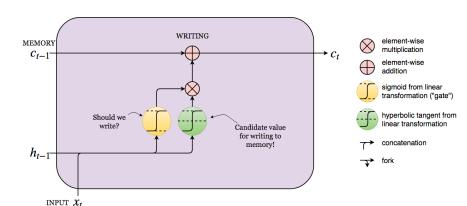
element-wise multiplication



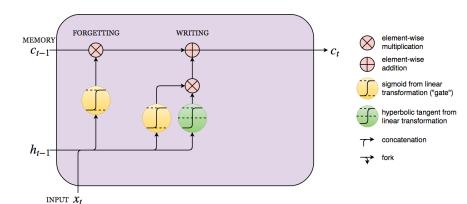
concatenation

→ fork

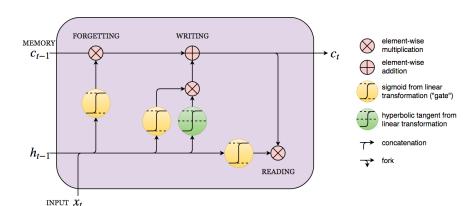
LSTM:
$$c_t = f_t \circ c_{t-1} + w_t \circ c_t'$$



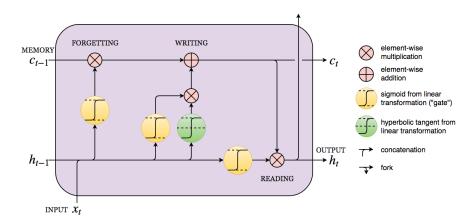
LSTM:
$$c_t = f_t \circ c_{t-1} + w_t \circ c_t'$$



LSTM: $h_t = r_t \circ c_t$



LSTM: full scheme



000 00000 000

Section 3

Data representation

Deep Learning

Data representation

•oo

·oooo

Generative models

Word embeddings

Word embeddings

["I want to search for blood pressure result history", "Show blood pressure result for patient", ...]

7

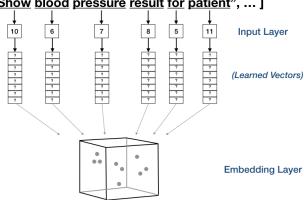
Input Layer

i	1
want	2
to	3
search	4
for	5
blood	6
pressure	7
result	8
history	9
show	10
patient	11
LAST	20

Word embeddings

Word embeddings

["I want to search for blood pressure result history", "Show blood pressure result for patient", ...]



i	1
want	2
to	3
search	4
for	5
blood	6
pressure	7
result	8
history	9
show	10
patient	11
LAST	20

Word embeddings

Deep Learning

Embeddings can be:

▶ learned end-to-end

Word embeddings

Deep Learning

Embeddings can be:

- ▶ learned end-to-end
- ► learned separately via special algorithms like Word2Vec

Word embeddings

Embeddings can be:

- ▶ learned end-to-end
- learned separately via special algorithms like Word2Vec
- pre-trained (which is an example of transfer learning)

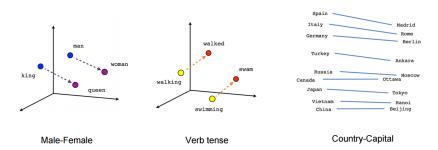
Deep Learning

Embeddings can be:

- learned end-to-end
- ▶ learned separately via special algorithms like Word2Vec

Data representation

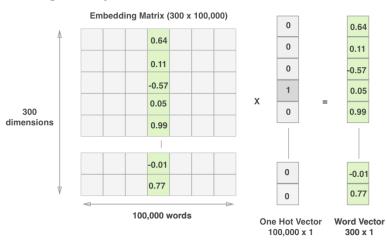
pre-trained (which is an example of transfer learning)



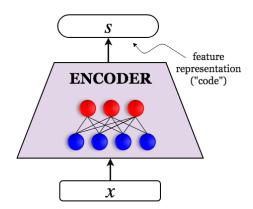
MSU Sergey Ivanov (517)

Word embeddings

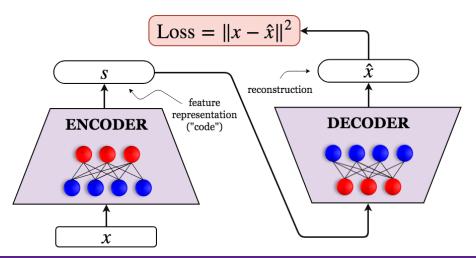
Embeddings demystified



Autoencoder

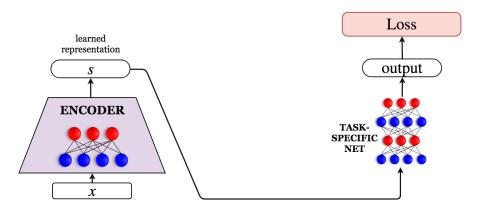


Autoencoder

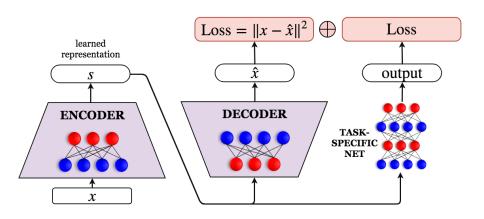


Encoder-decoder architectures

Possible usage

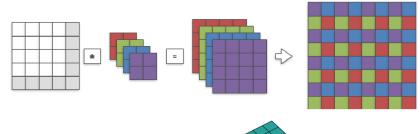


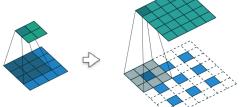
Possible usage



Encoder-decoder architectures

"Deconvolution"?

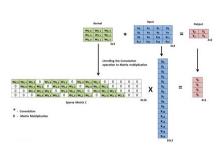




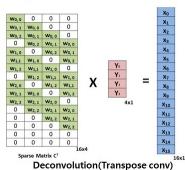
Data representation ○○○
○○○◆○ Generative models

Encoder-decoder architectures

Transposed convolution



Convolution



Deconvolution (manapose conv)

Data representation

○○

○○○

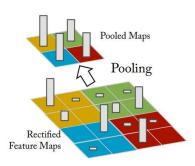
○○○

○○○

Generative models

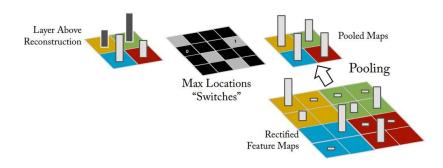
Encoder-decoder architectures

Unpooling



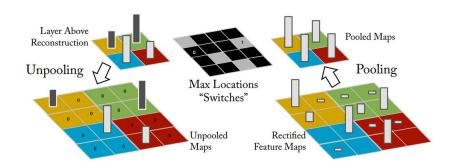
Encoder-decoder architectures

Unpooling



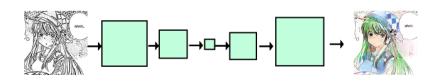
Encoder-decoder architectures

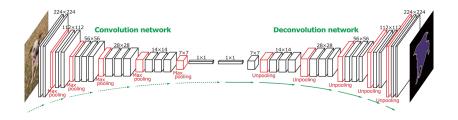
Unpooling



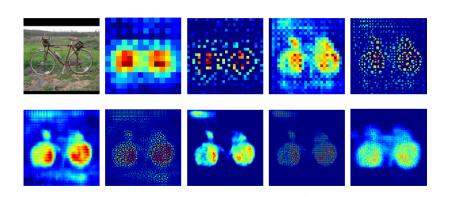
Examples

Deep Learning

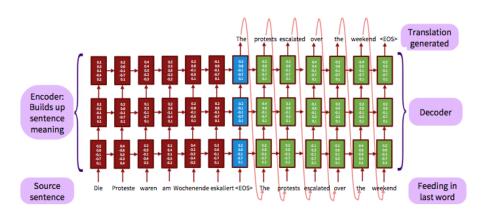




Inside decoder for segmentation



Machine translation



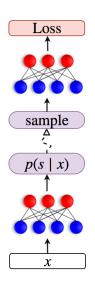
Generative models

Section 4

Generative models

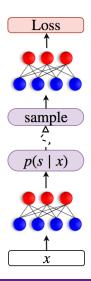
Sergey Ivanov (517) MSU

Deep Learning



Stochastic nodes:

$$\mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) \to \min_{\theta}$$



Stochastic nodes:

$$\mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) o \min_{\theta}$$

Where used:

- Hard attention mechanisms
- Reinforcement learning
- Generative models

REINFORCE1

$$\nabla_{\theta} \mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) = \mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) \nabla_{\theta} \log p(s \mid x,\theta) + \mathbb{E}_{s \sim p(s|x,\theta)} \nabla_{\theta} f(s,\theta)$$

¹see proof in appendix

REINFORCE1

$$\nabla_{\theta} \mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) = \mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) \nabla_{\theta} \log p(s \mid x,\theta) + \mathbb{E}_{s \sim p(s|x,\theta)} \nabla_{\theta} f(s,\theta)$$

Monte-Carlo estimation

$$pprox f(s, \theta) \nabla_{\theta} \log p(s \mid x, \theta) + \nabla_{\theta} f(s, \theta), \quad s \sim p(s \mid x, \theta)$$

¹see proof in appendix

Deep Learning

REINFORCE¹

$$\nabla_{\theta} \mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) = \mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) \nabla_{\theta} \log p(s \mid x,\theta) + \mathbb{E}_{s \sim p(s|x,\theta)} \nabla_{\theta} f(s,\theta)$$

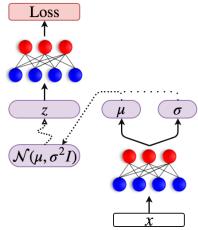
Monte-Carlo estimation

$$pprox f(s, \theta) \nabla_{\theta} \log p(s \mid x, \theta) + \nabla_{\theta} f(s, \theta), \quad s \sim p(s \mid x, \theta)$$

- √ universal approach
- × "high variance"

¹see proof in appendix

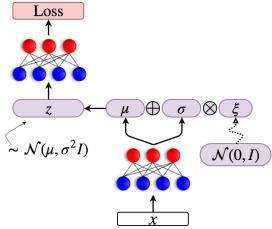
Reparametrization trick



MSU

Stochastic models

Reparametrization trick

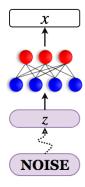


Sampler

Suppose we want to model data distribution p(x). **Problem:** data space is usually too complex.

Sampler

Deep Learning

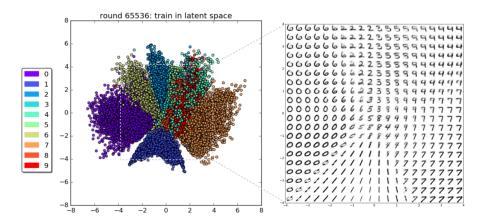


Suppose we want to model data distribution p(x). **Problem:** data space is usually too complex.

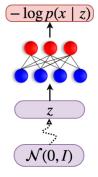
Data representation

- 1. sample z from noise distribtuion, e. g. $\mathcal{N}(0,I)$
- 2(a). transform noise using neural net to object $x = f(z, \theta)$
- 2(b). sample $x \sim p(x \mid z, \theta)$

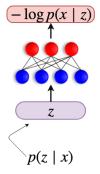
z contains all information about interdependencies!

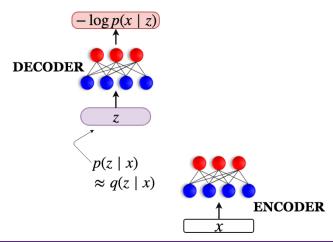


Variational AutoEncoder (VAE)

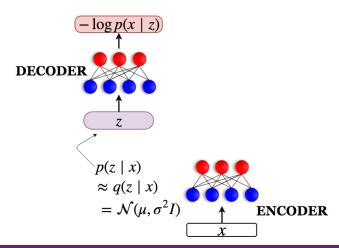


Variational AutoEncoder (VAE)

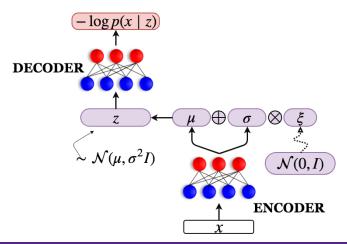




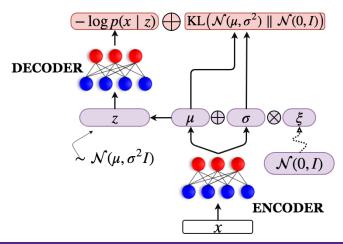
Variational AutoEncoder (VAE)

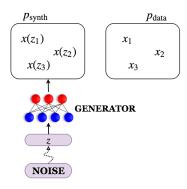


Variational AutoEncoder (VAE)



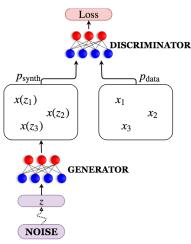
Variational AutoEncoder (VAE)





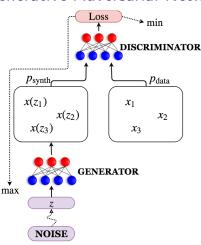
 most genius idea of our decade

Generative Adversarial Networks (GAN)

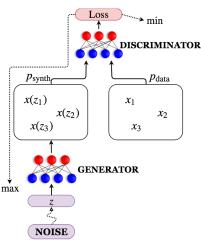


 most genius idea of our decade

Generative Adversarial Networks (GAN)



most genius idea of our decade



- most genius idea of our decade
- :) universal approach!
- :(adversarial training is unstable

Section 5

APPENDIX

$$\nabla_{\theta} \mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) =$$

$$abla_{ heta} \mathbb{E}_{s \sim p(s|x, heta)} f(s, heta) =
abla_{ heta} \int_{s} p(s \mid x, heta) f(s, heta) ds =$$

$$egin{array}{lcl}
abla_{ heta} \mathbb{E}_{s \sim p(s|x, heta)} f(s, heta) &=&
abla_{ heta} \int_{s} p(s\mid x, heta) f(s, heta) ds = \\ &= \left\{ egin{array}{lcl} \hat{s} \\ \hat{s} \end{array}
ight\} &=&
abla_{ heta}
abla_{ heta} (p(s\mid x, heta) f(s, heta)) ds =
abla_{ heta}
abla_$$

$$egin{array}{lcl}
abla_{ heta} \mathbb{E}_{s \sim p(s|x, heta)} f(s, heta) &=&
abla_{ heta} \int_{s} p(s\mid x, heta) f(s, heta) ds = \\ &= \left\{ egin{array}{lcl} igstar_{s} igwedge &=&
abla_{ heta}
abla_{ heta} p(s\mid x, heta) f(s, heta) ds =
abla_{ heta}
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta}
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s\mid x, heta) \nabla_{ heta} f(s\mid x, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s\mid x, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s\mid x, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s\mid x, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s\mid x, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s\mid x, heta) ds =
abla_{ heta} p(s\mid x, heta) \nabla_{ heta} f(s\mid x, heta) ds =
abla_{ heta} p(s\mid x, heta) ds =
abla_{ heta} p($$

$$\nabla_{\theta} \mathbb{E}_{s \sim p(s|x,\theta)} f(s,\theta) = \nabla_{\theta} \int_{s} p(s|x,\theta) f(s,\theta) ds =$$

$$= \left\{ \sum_{s} \right\} = \int_{s} \nabla_{\theta} (p(s|x,\theta) f(s,\theta)) ds =$$

$$= \int_{s} \nabla_{\theta} p(s|x,\theta) f(s,\theta) ds + \int_{s} p(s|x,\theta) \nabla_{\theta} f(s,\theta) ds =$$

$$= \int_{s} \nabla_{\theta} p(s|x,\theta) f(s,\theta) ds + \mathbb{E}_{s \sim p(s|x,\theta)} \nabla_{\theta} f(s,\theta) = \dots$$

$$\ldots = \int\limits_{s} \nabla_{\theta} p(s \mid x, \theta) f(s, \theta) ds + \mathbb{E}_{s \sim p(s \mid x, \theta)} \nabla_{\theta} f(s, \theta) =$$

Log-derivative trick

$$\nabla_{\theta} p(s \mid x, \theta) = p(s \mid x, \theta) \nabla_{\theta} \log p(s \mid x, \theta)$$

$$\ldots = \int_{s} \nabla_{\theta} p(s \mid x, \theta) f(s, \theta) ds + \mathbb{E}_{s \sim p(s \mid x, \theta)} \nabla_{\theta} f(s, \theta) =$$

Log-derivative trick

$$\nabla_{\theta} p(s \mid x, \theta) = p(s \mid x, \theta) \nabla_{\theta} \log p(s \mid x, \theta)$$

$$\dots = \int_{s} \nabla_{\theta} p(s \mid x, \theta) f(s, \theta) ds + \mathbb{E}_{s \sim p(s \mid x, \theta)} \nabla_{\theta} f(s, \theta) =$$

$$= \int_{s} p(s \mid x, \theta) \nabla_{\theta} \log p(s \mid x, \theta) f(s, \theta) ds + \mathbb{E}_{s \sim p(s \mid x, \theta)} \nabla_{\theta} f(s, \theta) =$$

Log-derivative trick

$$\nabla_{\theta} p(s \mid x, \theta) = p(s \mid x, \theta) \nabla_{\theta} \log p(s \mid x, \theta)$$

$$\dots = \int_{s} \nabla_{\theta} p(s \mid x, \theta) f(s, \theta) ds + \mathbb{E}_{s \sim p(s \mid x, \theta)} \nabla_{\theta} f(s, \theta) =$$

$$= \int_{s} p(s \mid x, \theta) \nabla_{\theta} \log p(s \mid x, \theta) f(s, \theta) ds + \mathbb{E}_{s \sim p(s \mid x, \theta)} \nabla_{\theta} f(s, \theta) =$$

$$= \mathbb{E}_{s \sim p(s \mid x, \theta)} \nabla_{\theta} \log p(s \mid x, \theta) f(s, \theta) + \mathbb{E}_{s \sim p(s \mid x, \theta)} \nabla_{\theta} f(s, \theta)$$

VAE: notation

Suppose we have:

- \triangleright p(z) some fixed distribution
- ▶ $p_{\theta}(x \mid z)$ distribution with parameters θ
- ▶ $q_{\phi}(z \mid x)$ approximation of $p_{\theta}(z \mid x)$ (which is intractable for us) with parameters ϕ

VAE: notation

Suppose we have:

- \triangleright p(z) some fixed distribution
- ▶ $p_{\theta}(x \mid z)$ distribution with parameters θ
- ▶ $q_{\phi}(z \mid x)$ approximation of $p_{\theta}(z \mid x)$ (which is intractable for us) with parameters ϕ

By definition, $p_{\theta}(x) = \int_{z} p_{\theta}(x \mid z) p(z) dz$ is a function of θ and is also intractable.

For arbitrary $q_{\phi}(z \mid x)$:

$$\log p_{\theta}(x) =$$

For arbitrary $q_{\phi}(z \mid x)$:

$$\log p_{\theta}(x) = \log p_{\theta}(x) \int_{z} q_{\phi}(z \mid x) dz =$$

For arbitrary $q_{\phi}(z \mid x)$:

$$\log p_{\theta}(x) = \log p_{\theta}(x) \int\limits_{z} q_{\phi}(z \mid x) dz = \int\limits_{z} q_{\phi}(z \mid x) \log p_{\theta}(x) dz =$$

For arbitrary $q_{\phi}(z \mid x)$:

$$\log p_{\theta}(x) = \log p_{\theta}(x) \int_{z} q_{\phi}(z \mid x) dz = \int_{z} q_{\phi}(z \mid x) \log p_{\theta}(x) dz =$$

$$= \int_{z} q_{\phi}(z \mid x) \log \frac{p_{\theta}(x)p_{\theta}(z \mid x)}{p_{\theta}(z \mid x)} dz =$$

For arbitrary $q_{\phi}(z \mid x)$:

$$\log p_{\theta}(x) = \log p_{\theta}(x) \int_{z} q_{\phi}(z \mid x) dz = \int_{z} q_{\phi}(z \mid x) \log p_{\theta}(x) dz =$$

$$= \int_{z} q_{\phi}(z \mid x) \log \frac{p_{\theta}(x)p_{\theta}(z \mid x)}{p_{\theta}(z \mid x)} dz = \int_{z} q_{\phi}(z \mid x) \log \frac{p_{\theta}(x, z)}{p_{\theta}(z \mid x)} dz =$$

For arbitrary $q_{\phi}(z \mid x)$:

$$\log p_{\theta}(x) = \log p_{\theta}(x) \int_{z} q_{\phi}(z \mid x) dz = \int_{z} q_{\phi}(z \mid x) \log p_{\theta}(x) dz =$$

$$= \int_{z} q_{\phi}(z \mid x) \log \frac{p_{\theta}(x)p_{\theta}(z \mid x)}{p_{\theta}(z \mid x)} dz = \int_{z} q_{\phi}(z \mid x) \log \frac{p_{\theta}(x, z)}{p_{\theta}(z \mid x)} dz =$$

$$= \int_{z} q_{\phi}(z \mid x) \log \frac{p_{\theta}(x, z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)} dz$$

Split into summation of three components:

$$egin{array}{lll} \log p_{ heta}(x) &=& \displaystyle\int\limits_{z} q_{\phi}(z\mid x) \log \dfrac{p_{ heta}(x\mid z)}{q_{\phi}(z\mid x)} dz + \\ &+& \displaystyle\int\limits_{z} q_{\phi}(z\mid x) \log \dfrac{p(z)}{q_{\phi}(z\mid x)} dz + \\ &+& \displaystyle\int\limits_{z} q_{\phi}(z\mid x) \log \dfrac{q_{\phi}(z\mid x)}{p_{ heta}(z\mid x)} \end{array}$$

KL-divergence

For two distributions $p(\xi)$, $q(\xi)$ with shared domain:

$$\mathsf{KL}(p(\xi) \parallel q(\xi)) := \int\limits_{\xi} p(\xi) \log \frac{p(\xi)}{q(\xi)} d\xi \geq 0$$

$$\begin{array}{ll} \log p_{\theta}(x) & = \mathsf{data} \ \mathsf{term} & \mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x \mid z) - \\ & -\mathsf{prior} \ \mathsf{coherence} & \mathsf{KL}(q_{\phi}(z \mid x) \parallel p(z)) + \\ & + \mathsf{approximation} \ \mathsf{error} & \mathsf{KL}(q_{\phi}(z \mid x) \parallel p_{\theta}(z \mid x)) \end{array}$$

VAE justification

Variational lower bound

$$\log p_{\theta}(x) \geq \mathbb{E}_{z \sim q_{\phi}(z\mid x)} \log p_{\theta}(x\mid z) - \mathsf{KL}(q_{\phi}(z\mid x) \parallel p(z))$$

VAE justification

Variational lower bound

$$\log p_{\theta}(x) \geq \mathbb{E}_{z \sim q_{\phi}(z\mid x)} \log p_{\theta}(x\mid z) - \mathsf{KL}(q_{\phi}(z\mid x) \parallel p(z))$$

For every θ there is $q_{\phi}(z \mid x)$ so that inequality turns into equality (when $q_{\phi}(z \mid x) = p_{\theta}(z \mid x)$ almost everywhere)

if q is a model of enough capacity, i. e. can model any distribution

VAE justification

Variational lower bound

$$\log p_{\theta}(x) \geq \mathbb{E}_{z \sim q_{\phi}(z\mid x)} \log p_{\theta}(x\mid z) - \mathsf{KL}(q_{\phi}(z\mid x) \parallel p(z))$$

For every θ there is $q_{\phi}(z \mid x)$ so that inequality turns into equality (when $q_{\phi}(z \mid x) = p_{\theta}(z \mid x)$ almost everywhere) \Rightarrow optimization of log $p_{\theta}(x)$ is equivalent to optimization of lower bound.

if q is a model of enough capacity, i. e. can model any distribution