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@00

Neural networks

What is neural net?

» parametric family f(x,6), 0 € ©
» with universal approximation properties

» differentiable

Deep Learning is Machine Learning!
Machine Learning is always about searching for function:

IE(X,}/)NData LOSS(f(X, 9)7)/) N mein
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Neural networks

Building neural nets

Common way to build complex functions — composition:
f(x,0) = A(f(f(...)))

Chain rule gives us the derivative Vf(x, 6)

Same works for functions of vectors!
Typical example:

fi(x,0) € {Ax,o(x),...}

where 0 — some element-wise nonlinear function.
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Neural networks

Typical example
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Typical example
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Deep Learning

[ Je]

Goals of deep learning

End-to-end learning

& )
Input P L' j —>»  Features >
Feature Engineering Classifier with
(Manual Extraction+Selection) (a) shallow structure
Input >

Output
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Considering data structure
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Invariants
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Considering data structure
(o] Telele]

Invariants

Translation invariance

Usually followed by:

» max pooling (one invariant is of a particular interest)
» other pooling options possible

» concatenation (for subtasks of same structure)
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Invariants

Size invariance
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Considering data structure
[e]e] le]e]

Invariants

Size invariance

“Local”
feedforward

Max-pooling (convolution) Max-pooling

Feedforward

%
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Considering data structure
[e]e]e] o]

Invariants

Convolutional neural network (CNN)

Resulting network:

27

4 13 13
1 -
5| - SN N N E N B S
IN [ - by [ =% |13 N - 13 3 13 dense’| [dense]
24 sS\L |~ 3 3
- 384 384 256 100¢
Max |
256 0
Max o pooling 4096 4096
Stride\| o4 | PO0liNg pooling
24\|| of &

3
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Considering data structure
[e]e]e] o]

Invariants

Convolutional neural network (CNN)

Output
Layer

FC
Layer 2

[
Layer 1

Fooling
Layer 2

Convaluticn
Layer 2

Foaling
Layer 1

Convolutior
Layer 1

Input Layer
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Considering data structure
[e]e]ele] ]

Invariants

Augmentation

If you can't consider invariants in architecture, enlarge your
dataset.

"
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Sequences as input

Recurrent Neural Networks (RNN)

Applying same idea:
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Recurrent Neural Networks (RNN)

Sequences as input

Naive approach:

51

X2

X1
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Considering data structure

o] lele)

Recurrent Neural Networks (RNN)

Gradients problem

Problem:
Gradient is required to pass LN layers.

Sergey Ivanov (517)

Overview of Deep Learning Instruments



Considering data structure

o] lele)

Recurrent Neural Networks (RNN)

Gradients problem

Problem:
Gradient is required to pass LN layers.

Chain rule says it's multiplication of LN quantities.

Sergey Ivanov (517)

Overview of Deep Learning Instruments



Considering data structure

o] lele)

Recurrent Neural Networks (RNN)

Gradients problem
Y
L
\SI S/
-

Problem:
Gradient is required to pass LN layers.

Chain rule says it's multiplication of LN quantities.
> most absolute values < 1: vanishing gradients problem

» most absolute values > 1: exploding gradients problem
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Considering data structure

[ele] 1o

Recurrent Neural Networks (RNN)

Recurrent units

Neuron
(e:g. o(Ax,))
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Considering data structure

[ele] 1o

Recurrent Neural Networks (RNN)

Recurrent units

8¢ ]

g
-

[ Xy ISt—I]

Neuron Same idea applied
(e.g. 0(Axt)) (redundant)
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Considering data structure

[ele] 1o

Recurrent Neural Networks (RNN)

Recurrent units

L& s
f

__ <7 __
1 1 1
N N
[ Xt I Si—1 ] [ Xt I hi—1 ]

Neuron Same idea applied Recurrent neuron
(e.g. 0(Ax:)) (redundant) (e.g. o(A[xe, he—1]))
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Considering data structure

oooe

Recurrent Neural Networks (RNN)

Recurrent neural nets

(on ) (e ) [wn ] [w])

i 1 i k)
I_.I_.I ............. I
A v N+ L layers for
I NN I W I _____________ s I gradient to pass!
il __T" __T" Iy
TYTYY
T—I—T

Lo J (e ) () (o]




Considering data structure

oooe

Recurrent Neural Networks (RNN)

Recurrent neural nets

v N+ L layers for

D & & G gadent 0 pas

1 1 f A ? Was previous
N - S option better at
{—) {—) J; > { something?
e I R §
1 1 I I

Lxa ) (e ) (x ) Cow
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Considering data structure

@00
Long Short-Term Memory (LSTM)

Memory

Consider writing to memory task, i. e. the following operation:

if need_to_write(x):
c = f(x)

How to express it in terms of computational graphs?
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Considering data structure

@00
Long Short-Term Memory (LSTM)

Memory
Consider writing to memory task, i. e. the following operation:

if need_to_write(x):
c = f(x)

How to express it in terms of computational graphs?

c *= 1 - need_to_forget(x)
c += need_to_write(x) * f(x)

Memory update formula

ct=foc—1+weof(xe) we,f€{0,1}

where o is element-wise multiplication.
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Long Short-Term Memory (LSTM)

Gates

we, fr are also some functions of input! For example,

I[Ax; > 0]
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Long Short-Term Memory (LSTM)

Gates

we, fr are also some functions of input! For example,
I[Ax; > 0]

DL main rule: if something is not differentiable, make a smooth
(soft) version of it!
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Considering data structure

o] lo}
Long Short-Term Memory (LSTM)

Gates

we, fr are also some functions of input! For example,
I[Ax; > 0]

DL main rule: if something is not differentiable, make a smooth
(soft) version of it!

1.0 memmmmmmmmmmmmmemeeceee e

0.8
= 0.6 —— Indicator
2 e i
5 0.4 Sigmoid

0.2

00] ————————————————— oo

—60 —-40 —20 0 20 40 60
AXf
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Considering data structure

[ele] J
Long Short-Term Memory (LSTM)

LSTM: recurrent neurons with memory.

MEMORY|

C—1 71— 2>

—r—> concatenation

hy—y

INPUT X;
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Considering data structure

[ele] J
Long Short-Term Memory (LSTM)

LSTM: transforming data: ¢; = tanh(Ac [x¢, ht—1])

\

MEMORY|
—_
Cr—1

_Z{___ hyperbolic tangent from

Candidate value linear transformation
for writing to )
T memory! —r—> concatenation
[,
INPUT X;
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Considering data structure

[ele] J
Long Short-Term Memory (LSTM)

LSTM: writing gate: wy = o(Aw [x¢, ht—1])

MEMORY|

C—1 71— 2>

sigmoid from linear
transformation ("gate")

Shouldwe ™ - (., hyperbolic tangent from
wite? ) ] /—\Candidate alne linear transformation

for writing to

memory! concatenation

hy—y

ERCE

fork

/

INPUT X;
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Considering data structure

[ele] J
Long Short-Term Memory (LSTM)

LSTM: ¢ = froci 1+ wroc,

MEMORY|

C—1 71— 2>

element-wise
multiplication

&

sigmoid from linear
transformation ("gate")

Shouldwe ™ - /[ hyperbolic tangent from
wite? ) ] /—\Candidate alne linear transformation

!

for writing to

memory! concatenation

hy—y

fork

4G

INPUT X;
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Considering data structure

[ele] J
Long Short-Term Memory (LSTM)

LSTM: ¢t = froct—1+ wrocy

[ _— N

element-wise

MEMORY|
VR ® multiplication
Cy_1 Ct N
element-wise
addition

sigmoid from linear
transformation ("gate")

hyperbolic tangent from
linear transformation

44 G

for writing to

memory! concatenation

Shouldwe _:: RN
write? - Candidate value

hy—y

fork

INPUT X;
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Considering data structure

[ele] J
Long Short-Term Memory (LSTM)

LSTM: ¢ =froci—1+wrocy

FORGE'ITING WRITING \ N
MEMORY| element-wise
multiplication

N
Cr—1
element-wise
addition
sigmoid from linear
[ transformation ("gate")

hyperbolic tangent from

linear transformation
[,

D

44 G

concatenation

fork

INPUT X;
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Considering data structure

[ele] J
Long Short-Term Memory (LSTM)

LSTM: ht = I+ o ¢t

c ORGETTING

MEMORY|

WRITING

\

Cr—1

hy—y

READIN(y

INPUT X;
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Considering data structure

[ele] J
Long Short-Term Memory (LSTM)

LSTM: full scheme

c ORGETTING

MEMORY ¢
Cy_1 & Ct
T T -- OUTPUT
hi_t hy
READIN(y
INPUT X;
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Data representation

Section 3

Data representation
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Data representation
[ Jele)

Word embeddings

Word embeddings

[“l want to search for blood pressure result history”, i

want

“Show blood pressure result for patient”, ... ] o

1
2

3

search 4

é é ﬁ Input Layer for 5
6

7

8

9

blood
pressure

result

history

show 10
patient 1
LAST 20
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Data representation
[ Jele)

Word embeddings

Word embeddings

[“l want to search for blood pressure result history”,
“Show blood pressure result for patient”, ... ]

Input Layer

(Learned Vectors)

Embedding Layer
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Data representation
o] e

Word embeddings

Embeddings can be:
» learned end-to-end
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> learned end-to-end
> learned separately via special algorithms like Word2Vec

» pre-trained (which is an example of transfer learning)
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Data representation
o] e

Word embeddings

Embeddings can be:
> learned end-to-end
> learned separately via special algorithms like Word2Vec

» pre-trained (which is an example of transfer learning)

spain \
Italy \Madzid
me

Germany ——_ Rod
Berlin

walked

@ Turkey \
Ankara

swam

o

walking

Russia
Moscow
@ Canada —————————— Ottawa

Jepan —— e

9 Vietnam ——— ganos
swimming China ———————————— Beijing
Male-Female Verb tense Country-Capital
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Data representation
ooe

Word embeddings

Embeddings demystified

Embedding Matrix (300 x 100,000)

0 0.64
0.64
0 0.11
0.11
0 -0.57
RLE 1 0.05
0.05 X =
300 0 0.99
dimensions 0.99
-0.01
0 -0.01
0.77
0 0.77

100,000 words One Hot Vector Word Vector

100,000 x 1 300x1
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Data representation

[ Jolelele]

Encoder-decoder architectures

Autoencoder

\J/_\\ feature

representation
ENCODER \code)

L x|
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Data representation

[ Jolelele]

Encoder-decoder architectures

Autoencoder

(Loss = [lx — £]1% J«—
—C_ 2 )

reconstruction ~

\ DECODER

h

\J/_\\ feature

representation

ENCODER ("code™)

L x|
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Data representation

(o] lelele]

Encoder-decoder architectures

Possible usage

[ Loss j

learned
representation

ENCODER

TASK- é
SPECIFIC ,}
NET e

®
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Data representation

(o] lelele]

Encoder-decoder architectures

Possible usage

learned

(Loss=x—2/?)D(  Loss |
representation

output

ENCODER DECODER <. b
TASK- <

g

SPECIFIC ,Q
NET e

®

] |
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Data representation

Encoder-decoder architectures

" Deconvolution”?
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Data representation

[o]e]e] le]

Encoder-decoder architectures

Transposed convolution

Woo| O | 0 | O u.
ot Wo,1 | Woe| O 0
PO 0 X3
= B wo,2 | wo 1 | wo,o =
- O | Wo,2 | Wo,1 | Wo,0 L=
Wio| O |woz|wos EX
oting in = Wiy |wio| 0 |woz _Y_ As
s o e iz [ 0 . ExEl
_ 0 [wip W10 ¥i — |
e o]0 sl aa] 0 i o | g E o © las x Y = B
o malmalmai] & msfuasTmd] 8 sl s =
T S e g x wa|was| O |wiz (A X
© 10| 0 |mslwayiwanl O |whslwialwn O [wysl ] . - L i 5
FR— R W22 | Wz |wao| 0 ax1 Xia
o 0 |wzz|wzyWao '
K M et o 0 W22 | W21
0| o0 0 |wyz X12
ololo]o | X5 |
o oo Hia
16x4 Xis

Sparse Matrix €' 16x1

Convolution Deconvolution(Transpose conv)
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Data representation

[o]e]e]e] ]

Encoder-decoder architectures

Unpooling

Layer Above ) I \ D
Reconstruction I D ! | Pooled Maps
[3 Pooling

=

Re ctlﬁcd
Feature Maps
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Data representation

[o]e]e]e] ]

Encoder-decoder architectures

Unpooling

Layer Above

Reconstruction I I D " ]:I | i POOJEd Maps

Pooling

Max Locations
“Switches”

Re ctlﬁcd
Feature Maps
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Data representation

[o]e]e]e] ]

Encoder-decoder architectures

Unpooling

Layer Above I I

Reconstruction " ]:I Pooled Maps

Unpooling @ Poohng
Max Locations BN
I . : I “Switches” = /F' \I:'

‘ Unpooled Rectiﬁcd‘

Maps Feature Maps

Sergey Ivanov (517)
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Data representation

000

Examples

7x7 14x14

Unpooling

Unpooling

Unpooling
—u 9
~Unpooling

~
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Data representation

(o] le]

Examples

Inside decoder for segmentation
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Data representation

ooe

Examples

Machine translation

Translation
The| protesis escalated over  the| weskend <E05=
generated
Encoder:
Builds u
P Decoder
sentence
meaning
Source Die  Proteste waren am Weochenende eskaliert<EQS= | The protests escalated over | the weekend Feeding in
sentence last word

Sergey Ivanov (517)
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Generative models

Section 4

Generative models

Sergey Ivanov (517)
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Generative models
[ lele}

Stochastic models

coos
coss

Sergey Ivanov (517)

Loss

Stochastic nodes:

sample Esp(s|x,0) f(s,0) = mgin

p(s | x)
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Generative models
[ lele}

Stochastic models

coos
coss

Sergey Ivanov (517)

Loss

Stochastic nodes:
sample Es~p(5|x’9)f(5, Q) — mein
Where used:

ps | x) » Hard attention mechanisms
» Reinforcement learning

» Generative models
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Generative models
(o] le}

Stochastic models

VOESNp(s\X,G)f(Sa 0) = Es~p(s|x,9)f(57 H)Vg |Og p(S ’ X, 9) +
Esp(six,0) Vof (s,0)

_l’_

lsee proof in appendix

Sergey Ivanov (517)
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Generative models
(o] le}

Stochastic models

VOESNp(s\X,G)f(Sa 0) = Es~p(s|x,9)f(57 H)Vg |Og p(S ’ X, 9) +
+ Eoup(six,0)Vof(s,0)

Monte-Carlo estimation

%f(S,G)V@lOgP(S|X,0)+V9f(5,0), sz(S‘X79)

lsee proof in appendix

Sergey Ivanov (517)
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Generative models
(o] le}

Stochastic models

VOESNp(s\X,G)f(Sa 0) = Es~p(s|x,9)f(57 H)Vg |Og p(S ’ X, 9) +
+ Eoup(six,0)Vof(s,0)

Monte-Carlo estimation

%f(S,G)V@lOgP(S|X,0)+V9f(5,0), sz(S‘X79)

v' universal approach

x "high variance”

lsee proof in appendix
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Generative models
ooe

Stochastic models

Reparametrization trick

Sergey Ivanov (517)
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Generative models
ooe

Stochastic models

Reparametrization trick

cooe

T

z p B o ®@
( -.:'.':::
e S

Sergey Ivanov (517)
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Generative models

[ Jole}

Variational AutoEncoder (VAE)

Sampler

Suppose we want to model data distribution p(x).
Problem: data space is usually too complex.

Sergey Ivanov (517)
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Generative models

[ Jole}

Variational AutoEncoder (VAE)

Suppose we want to model data distribution p(x).
Problem: data space is usually too complex.

% 1. sample z from noise distribtuion, e. g.
N(0,1)

2(a). transform noise using neural net to object
x = f(z,0)

& 2(b). sample x ~ p(x | z,0
S (b) p p(x | z,0)

Sergey Ivanov (517)
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Generative models
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z contains all information about interdependencies!

round 65536: train in latent space
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Generative models

[ele] J

Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE)

|
—_
]
-
—
=
X

N(©,I)

Sergey Ivanov (517)
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Generative models

[ele] J

Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE)

cose

P

Sergey Ivanov (517)
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Generative models

[ele] J

Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE)

DECODER

cose

“K1) geee
iENCODER

Sergey Ivanov (517)
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Generative models

[ele] J

Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE)

DECODER

cose

P
~ gz | x)

= N(u, o) ENCODER
i

Sergey Ivanov (517)
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Generative models

[ele] J

Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE)

DECODER %
)
z

CN (u, ot |

ENCODER

Sergey Ivanov (517)
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Generative models

[ele] J

Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE)

(- logp(x | 2)) P (KL(N (. 6% || N0, D)

DECODER% /_/

D o ®@
CN(}J,OJ’I

ENCODER

X

Sergey Ivanov (517)
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Generative models

Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN)

Psynth Ddata

» most genius idea of our
x22) X decade

—~
N
-

( NOISE )

Sergey lvanov (517)
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Generative models

Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN)

Loss

/> DISCRIMINATOR
o
psynth,—I L\ Ddata . .
» most genius idea of our
Hz) M decade
x(z2) X2
x(z3) X3

% GENERATOR

P

&+J

.

( NOISE )

Sergey lvanov (517)
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Generative models

L]
Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN)

~{__Loss .. .

2 DISCRIMINATOR

» most genius idea of our
decade

max

—~
N
-

( NOISE )
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Generative models

L]
Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN)

~{__Loss .. .

2 DISCRIMINATOR

v

most genius idea of our
decade

universal approach!

o
S
N

:( adversarial training is

x(z3)
1 :
%GENERATOR unstable

max

—~
N
-

( NOISE )

Sergey Ivanov (517)
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APPENDIX

Section 5

APPENDIX

Sergey Ivanov (517)
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APPENDIX
[ Jo}

REINFORCE proof

REINFORCE derivation pt.1

VOESNP(S\X,G)f(Sv 9)

Sergey Ivanov (517)
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APPENDIX
[ Jo}

REINFORCE proof

REINFORCE derivation pt.1

VOESNP(S\X,G)f(Sve) = V@/P(S ’ X, H)f(5>9)ds =

S

Sergey Ivanov (517)
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APPENDIX
[ Jo}

REINFORCE proof

REINFORCE derivation pt.1

VOESNP(S\X,G)f(Sve) = V@/P(S ’ X, H)f(5>9)ds =

:{ E} = /Ve(p(s\x,e)f(s,e))ds:

Sergey Ivanov (517)
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APPENDIX
[ Jo}

REINFORCE proof

REINFORCE derivation pt.1

VOESNP(S\X,G)f(Sve) = V@/P(S ’ X, H)f(5>9)ds =

:{ g} = /Vg(p(s\x,e)f(s,ﬂ))ds:

= /Vgp(s | x,0)f(s,0)ds + /p(s | x,0)Vof(s,0)ds =

S

Sergey Ivanov (517)
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APPENDIX
[ Jo}

REINFORCE proof

REINFORCE derivation pt.1

VOESNP(S\X,G)f(Sve) = V@/P(S ’ X, H)f(5>9)ds =

:{ E} = /Ve(p(s\x,e)f(s,e))ds:

= /Vgp(s | x,0)f(s,0)ds + / p(s | x,0)Vef(s,0)ds =

S

= /VGP(S | x,0)f(s,0)ds + Es~p(s|x,9)vef(5’0) =

Sergey Ivanov (517)
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APPENDIX
(o] J

REINFORCE proof

REINFORCE derivation pt.2

o= [ apls | % O (5,0)d5 + Eumpis Vo (s.6) =

Sergey Ivanov (517)
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APPENDIX
(o] J

REINFORCE proof

REINFORCE derivation pt.2

Log-derivative trick

Vop(s | x,0) = p(s | x,0)Vglog p(s | x, 0)

L= / Vop(s | x.0)F(5,0)ds + Eqp(speg) Vo (s,0) =
S

Sergey lvanov (517)
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APPENDIX
(o] J

REINFORCE proof

REINFORCE derivation pt.2

Log-derivative trick

Vop(s | x,0) = p(s | x,0)Vglog p(s | x, 0)

— [ Vap(s | 0)F(5.0)d5 + Eovpisiay Vof (5,6) =
S

= /p(S ‘ X, 9)V9 log p(S ‘ X, e)f(sa 0)6/5 + I[‘Esr\ap(s|x,0)v9f(sv 9) =

s

Sergey Ivanov (517)

Overview of Deep Learning Instruments



APPENDIX
(o] J

REINFORCE proof

REINFORCE derivation pt.2

Log-derivative trick

Vop(s | x,0) = p(s | x,0)Vglog p(s | x, 0)

= /V@[)(S | X, G)f(sa 9)0’5 + IEs~p(s|x,9)v9f(57 9) =
s

= /p(S ‘ X, 9)V9 log p(S ‘ X, H)f(sa H)ds + I[‘Esr\ap(s|x,0)v9f(sv 9) =

s

= Esop(six,0)Valog p(s | x,0)f(s,0) + Esop(six,0)Vaf(s,0)

Sergey Ivanov (517)
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APPENDIX

[ Jelelele}

VAE proof

VAE: notation

Suppose we have:
» p(z) — some fixed distribution
» py(x | z) — distribution with parameters 0

> gy(z | x) — approximation of pg(z | x) (which is intractable
for us) with parameters ¢

Sergey Ivanov (517)
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APPENDIX

[ Jelelele}

VAE proof

VAE: notation

Suppose we have:
» p(z) — some fixed distribution
» py(x | z) — distribution with parameters 0

> gy(z | x) — approximation of pg(z | x) (which is intractable
for us) with parameters ¢

By definition, pg(x) = [ pg(x | z)p(z)dz is a function of § and is
also intractable. :

Sergey Ivanov (517)
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APPENDIX

[¢] lele]e}

VAE proof

VAE: Treating latent variables

For arbitrary gq4(z | x):

log py(x) =

Sergey lvanov (517)
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APPENDIX

[¢] lele]e}

VAE proof

VAE: Treating latent variables

For arbitrary gq4(z | x):

log pg(x) = log pa(x) / qe(z | x)dz =

z

Sergey lvanov (517)
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APPENDIX

[¢] lele]e}

VAE proof

VAE: Treating latent variables

For arbitrary gq4(z | x):

log pg(x) = log pg(x)/q¢(z | x)dz = /q¢(z | x)log po(x)dz =

z z

Sergey Ivanov (517)
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APPENDIX

[¢] lele]e}

VAE proof

VAE: Treating latent variables

For arbitrary gq4(z | x):

log pg(x) = log pg(x)/q¢(z | x)dz = /q¢(z | x)log po(x)dz =

z z

_ 2 1) log PPXPo(2 1 %)
= [ aste 1o PR

z

Sergey Ivanov (517)
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APPENDIX

[¢] lele]e}

VAE proof

VAE: Treating latent variables

For arbitrary gq4(z | x):

log pg(x) = log pg(x)/q¢(z | x)dz = /q¢(z | x)log po(x)dz =

im0 [ g
—z/%( ) log 202 X Z/%( ) log 2022

Sergey lvanov (517)
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APPENDIX

[¢] lele]e}

VAE proof

VAE: Treating latent variables

For arbitrary gq4(z | x):

log pg(x) = log pg(x)/q¢(z | x)dz = /q¢(z | x)log po(x)dz =

im0 [ g
<—!qa ) log 202 X !ﬁa ) log 2022

ey Pol DAz X))
‘/%(’”gMAm%&uﬂ

z

Sergey lvanov (517)
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APPENDIX

[e]e] lele}

VAE proof

Split into summation of three components:

log pp(x)

Sergey Ivanov (517)
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/ (2| x)log 20X 12
Z| X)log ———
do 8 a7 | x

z

[az 13108 02

z

[ atz 1510 225

z

%(ZIX)
qs(z | x)
po(z | x)




APPENDIX

[e]e]e] o}

VAE proof

KL-divergence

For two distributions p(£), g(§) with shared domain:

KL(p(€) | a(€)) = ! plO)log 2 de > 0
log pa(x) = data term E,q4(zlx) o8 po(x | z) —

—prior coherence  KL(gy(z | x) || p(z)) +
+approximation error  KL(q4(z | x) || pe(z | x))

Sergey Ivanov (517)
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APPENDIX

[e]e]e]e] }

VAE proof

VAE justification

Variational lower bound

log pg(x) = Ezrq,(z1x) l0g po(x | 2) — KL(qs(2 | x) || p(2))

Sergey Ivanov (517)
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APPENDIX

[e]e]e]e] }

VAE proof

VAE justification

Variational lower bound

log po(x) = E;q,(z|x) log po(x | 2) = KL(qe(z | x) || p(2))

For every § thereis  g4(z | x) so that inequality turns into equality
(when g4(z | x) = ps(z | x) almost everywhere)

if g is a model of enough capacity, i. e. can model any distribution
Sergey Ivanov (517)
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APPENDIX

[e]e]e]e] }

VAE proof

VAE justification

Variational lower bound

log po(x) = E;q,(z|x) log po(x | 2) = KL(qe(z | x) || p(2))

For every § thereis  g4(z | x) so that inequality turns into equality
(when g4(z | x) = pa(z | x) almost everywhere) = optimization of
log pg(x) is equivalent to optimization of lower bound.

if g is a model of enough capacity, i. e. can model any distribution
Sergey lvanov (517)
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