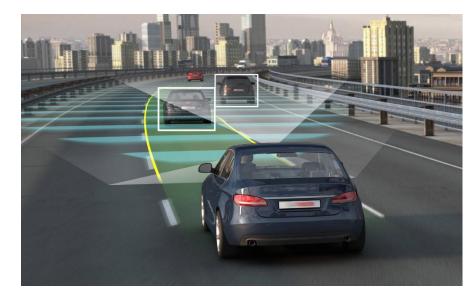
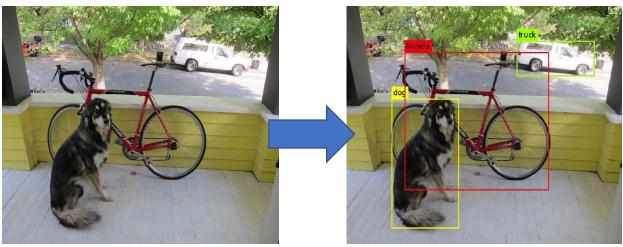
Алгоритм мимикрии с использованием генеративных состязательных сетей для задач обнаружения объектов

ФГУП ГОСНИИАС

Визильтер Ю.В.

Горбацевич В.С.


Финогеев Е.Л.


Моисеенко А.С.

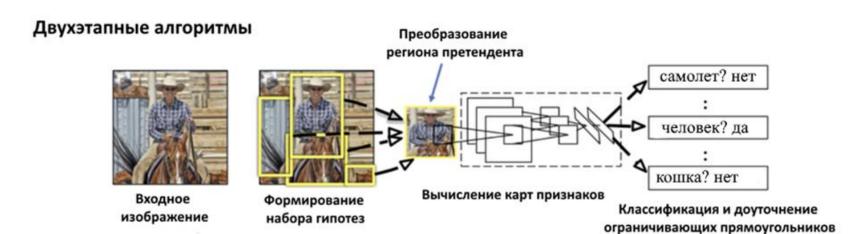
Обнаружение объектов

Обнаружение

- выделение объемлющих прямоугольников
- классификация объектов

<u>Обнаружение объектов</u> – одна из наиболее практически востребованных задач в техническом зрении

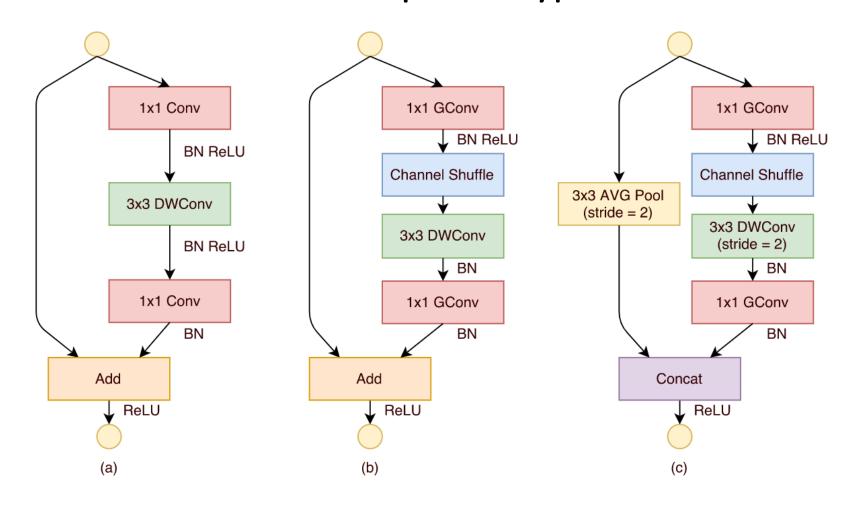
Обнаружение объектов



Особенности встраиваемых систем

- ✓ Низкая вычислительная мощность
- ✓ Работа в реальном времени
- ✓ Высокое качество работы

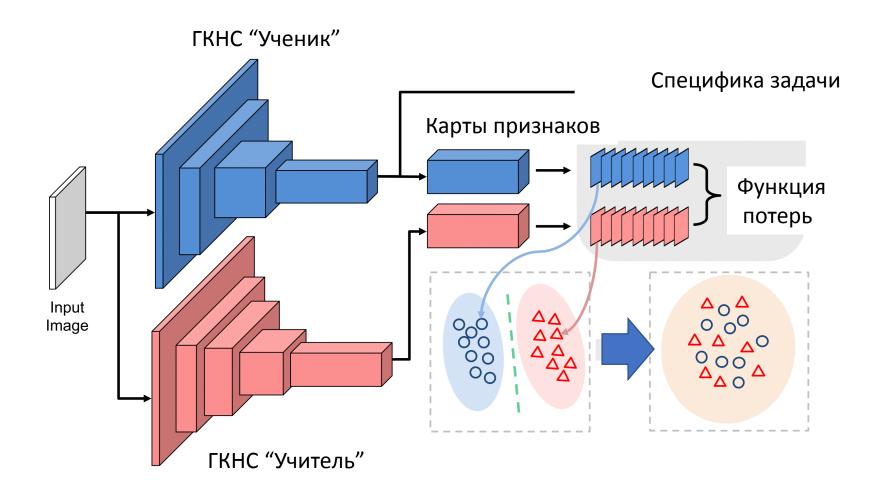
Подходы к обнаружению объектов


- ✓ Медленные
- ✓ Высокое качество

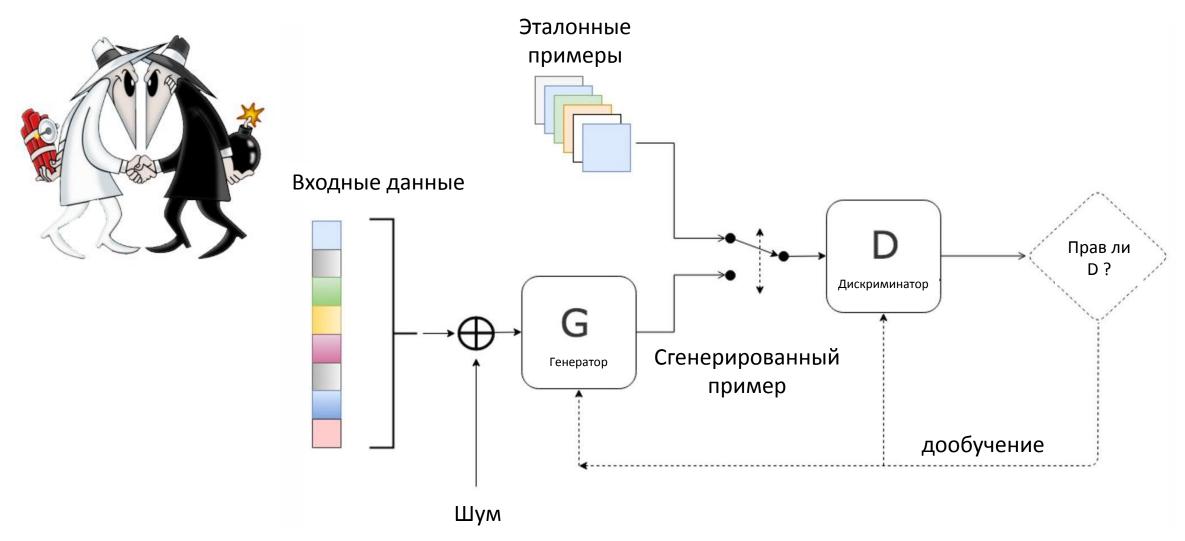
Алгоритмы: Faster R-CNN, R-FPN, Light-Head R-CNN

✓ Реальное время

Мобильные архитектуры ГКНС

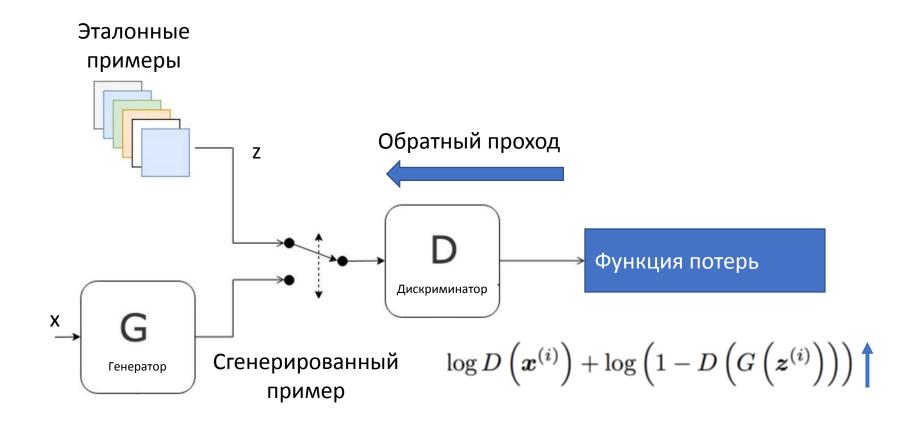

Архитектуры:

MobileNet v1,v2 ShuffleNet v1,v2

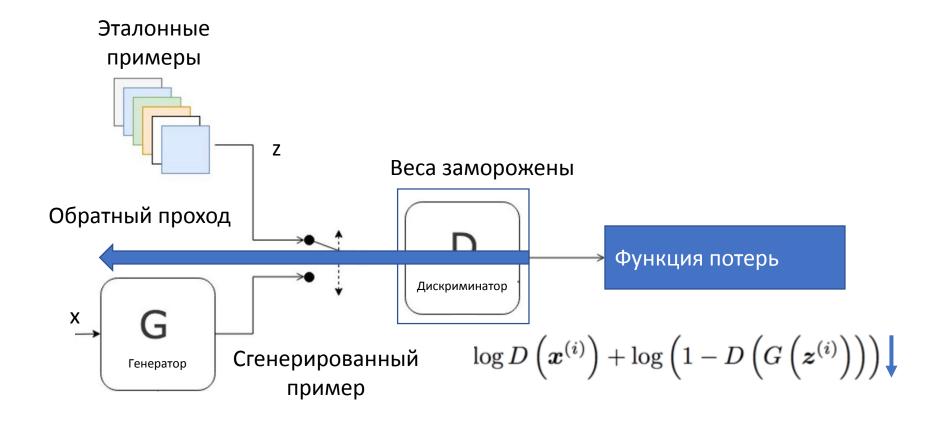

Особенности

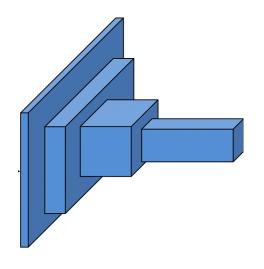
- ✓ Низкая вычислительная сложность
- ✓ Эффективные слои

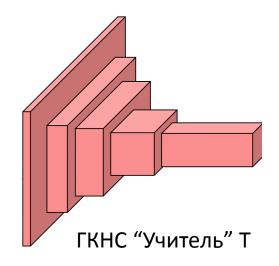
Мимикрия – передача знаний



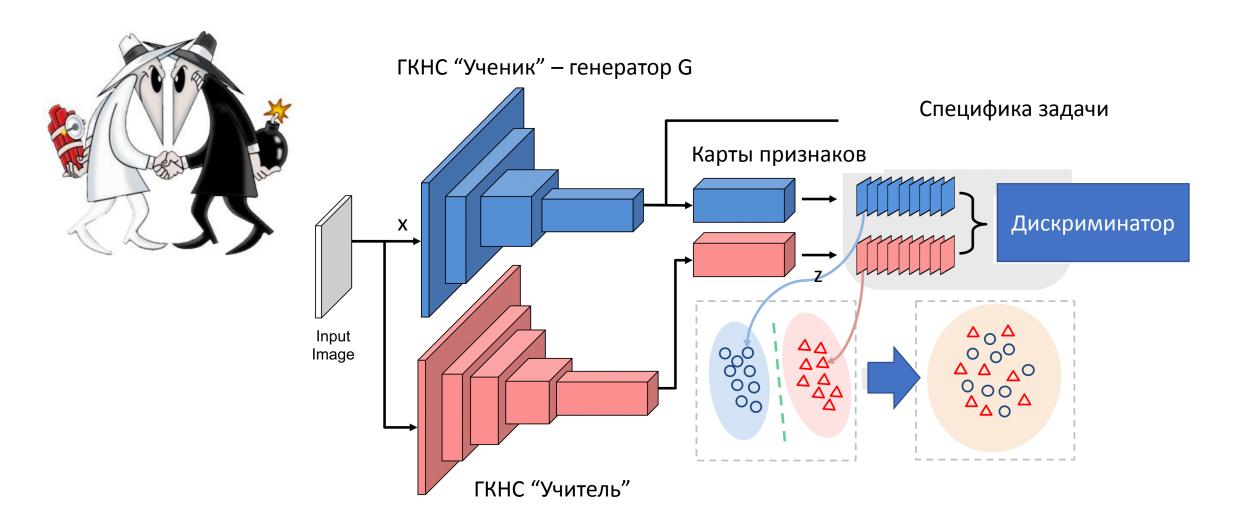
Мимикрия — это процесс, при котором менее нейронная сеть ученик обучается путем повторения глубоких признаков либо результатов сети учителя


Идея состязательных сетей в одновременном обучении двух сетей — Дискриминатора и Генератора. При этом генератор должен сгенерировать данные неотличимые от некоторого набора эталонных данных, а дискриминатор должен отличать сгенерированные данные от эталонных

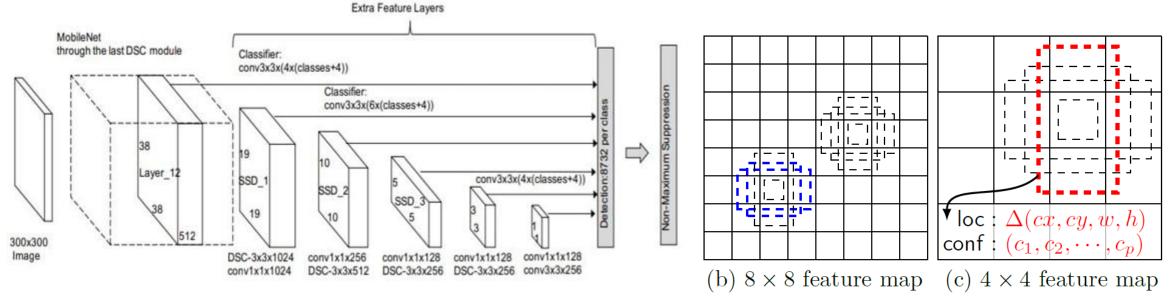

Этап 1. Обучение дискриминатора



Этап 2. Обучение генератора



ГКНС "Ученик" G



Сеть –ученик выступает в роли "Генератора"

Сеть –учитель выступает в роли источника референтных сигналов

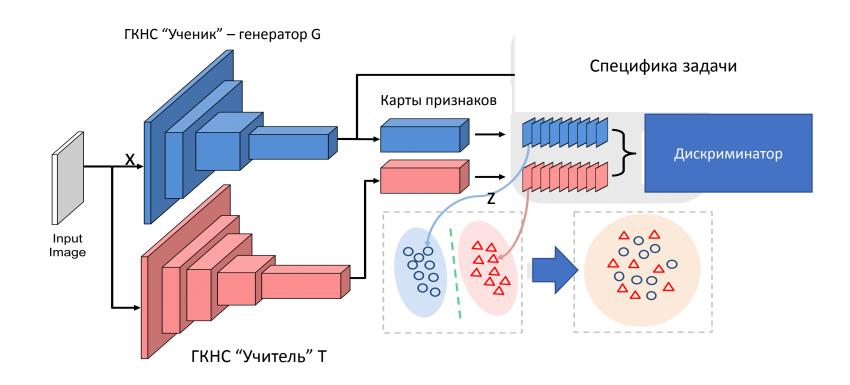
Алгоритм SSD

Архитектура SSD

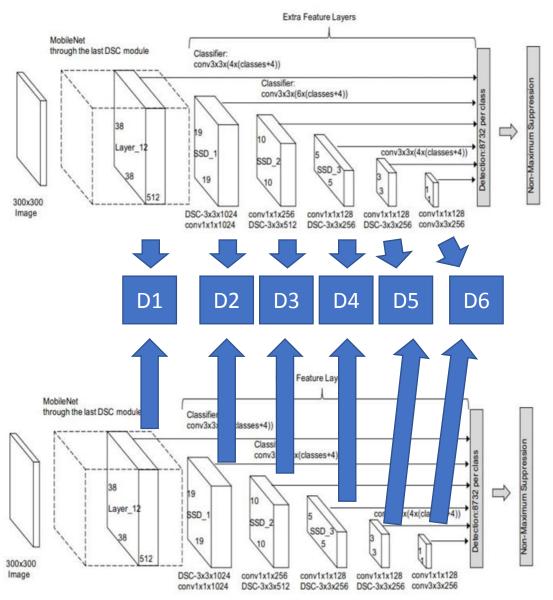
Особенности

- ✓ Можно использовать любую архитектуру базовой ГКНС
- ✓ Признаки с разных слоев используются обнаружения объектов разных размеров
- ✓ Одна из наиболее популярных на практике

Параметры используемых ГКНС


Используемые ГКНС:

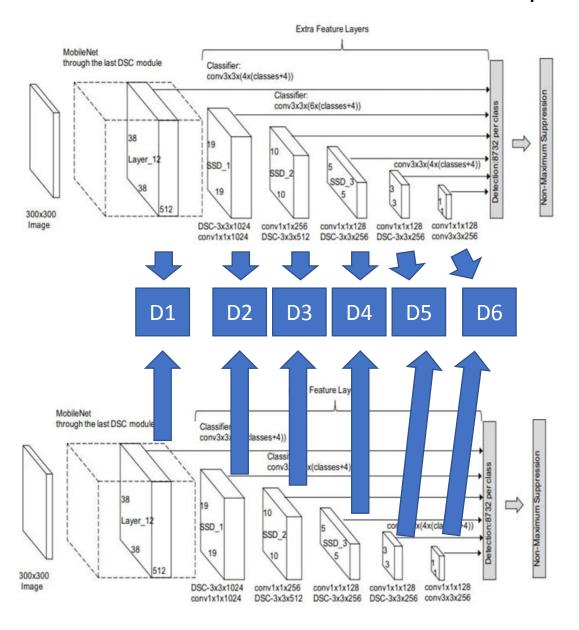
Сеть учитель: SSD – DarkNet 53 (предобученная)


Сеть ученик: MobileNetV2, ShuffleNetV1, MNAS Net

Датасет:

PascalVOC 2007/2012

Описание архитектур


Архитектура Дискриминаторов:

1						
DNet1	DNet2	DNet3	DNet4	DNet5	DNet6	
Pазмер = $19x19$	$ \mathbf{P}$ азмер = $10 \mathbf{x} 10$	Pазмер = $5x5$	Pазмер = 3x3	Paзмep = 2x2	P азме $p = \underline{1x1}$	
Conv	Conv	Conv	Conv	Conv	Conv	
(<u>512</u> -> <u>512</u> , k= <u>3</u> ,	(<u>1024</u> -> <u>1024</u> , k= <u>3</u> ,	(<u>512</u> -> <u>512</u> , k= <u>3</u> ,	(<u>256</u> -> <u>256</u> , k= <u>3</u> ,	(<u>256</u> -> <u>256</u> , k= <u>2</u> ,	(<u>256</u> -> <u>256</u> ,	
s= <u>1</u> , p= <u>1</u> ,	s= <u>1</u> , p= <u>1</u> ,	s= <u>1</u> , p= <u>1</u> ,	s= <u>1</u> , p= <u>1</u> ,	s= <u>2</u> , p= <u>1</u> ,	k= <u>1</u> , s= <u>1</u> , p= <u>0</u> ,	
bias= <u>True</u>)	bias= <u>True</u>)	bias= <u>True</u>)	bias= <u>True</u>)	bias= <u>True</u>)	bias= <u>True</u>)	
InstanseNorm.	InstanseNorm.	InstanseNorm.	InstanseNorm	InstanseNorm	LeakyRely	
LeakyRely	LeakyRely	LeakyRely	LeakyRely	LeakyRely		
$P_{a3Mep} = 19x19$	Pазмер = 10x10	Pазмер = 5x5	Paзмеp = 3x3	Paзмep = 2x2	$Paзмеp = \underline{1x1}$	
Conv	Conv	Conv	Conv	Conv	Conv	
(<u>512</u> -> <u>512</u> , k= <u>3</u> ,	(<u>1024</u> -> <u>1024</u> , k= <u>3</u> ,	(<u>512</u> -> <u>512</u> , k= <u>3</u> ,	(<u>256</u> -> <u>256</u> , k= <u>3</u> ,	(<u>256</u> -> <u>256</u> , k= <u>2</u> ,	(<u>256</u> -> <u>256</u> ,	
s= <u>2</u> , p= <u>1</u> ,	s= <u>2</u> , p= <u>1</u> ,	s= <u>1</u> , p= <u>0</u> ,	s= <u>1</u> , p= <u>1</u> ,	s= <u>2</u> , p= <u>1</u> ,	k= <u>1</u> , s= <u>1</u> , p= <u>0</u> ,	
bias= <u>True</u>)	bias= <u>True</u>)	bias= <u>True</u>)	bias= <u>True</u>)	bias= <u>True</u>)	bias= <u>True</u>)	
InstanseNorm.	InstanseNorm.	InstanseNorm.	InstanseNorm	InstanseNorm	LeakyRely	
LeakyRely	LeakyRely	LeakyRely	LeakyRely	LeakyRely		
Pазмер = $10x10$	Paзмеp = 5x5	Paзмер = 3x3	Paзмеp = 3x3	Paзмep = 2x2	P азме $p = \underline{1x1}$	
Conv	Conv	Conv	Conv	Conv	Conv	
(<u>512</u> -> <u>512</u> , k= <u>3</u> ,	(<u>1024</u> -> <u>1024</u> , k= <u>3</u> ,	(<u>512</u> -> <u>1</u> , k= <u>3</u> , s= <u>1</u> ,	(<u>256</u> -> <u>1</u> , k= <u>3</u> , s= <u>1</u> ,	(<u>256</u> -> <u>1</u> , k= <u>2</u> ,	(<u>256</u> -> <u>1</u> , k= <u>1</u> ,	
s= <u>2</u> , p= <u>1</u> ,	s= <u>1</u> , p= <u>0</u> ,	p= <u>0,</u> bias= <u>False</u>)	p= <u>0</u> , bias= <u>False</u>)	s= <u>1</u> , p= <u>0</u> ,	s= <u>1</u> , p= <u>0</u> ,	
bias= <u>True</u>)	bias= <u>True</u>)			bias= <u>False</u>)	bias= <u>False</u>)	
InstanseNorm	InstanseNorm					
LeakyRely	LeakyRely					
Paзмep = 5x5	Paзмеp = 3x3					
Conv	Conv					
(<u>512</u> -> <u>512</u> , k= <u>3</u> ,	(<u>1024</u> -> <u>1</u> , k= <u>3</u> , s= <u>1</u> ,					
s= <u>1</u> , p= <u>0</u> ,	p=0, bias=False)					
bias= <u>True</u>)						
InstanseNorm.						
LeakyRely.						
Paзмеp = 3x3						
Conv						
$(\underline{512} -> \underline{1}, k = \underline{3}, s = \underline{1},$						
p=0, bias=False)						
Sigmoid						

Функция потерь дискриминатора:

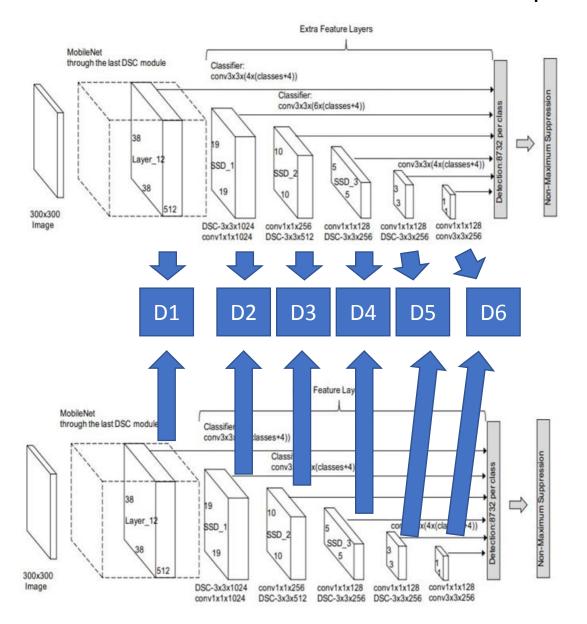
$$I_{GAN} = a L_1(x,z) - (log D(x) + log(1-D(G(z)))$$

Алгоритм SSD

Алгоритм обучения:

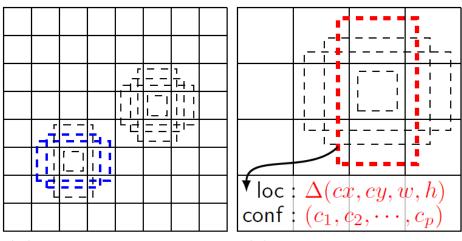
Этап 1. Обучение дискриминаторов

$$loss = -\sum I_{GAN}$$

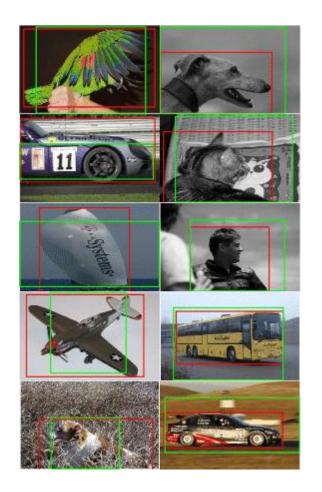

Этап 2. Мимикрия

$$loss = I_{Multibox} + \sum I_{GAN}$$

Этап 3. Обучение "ученика"


$$loss = I_{Multibox}$$

Алгоритм SSD


Вклад D соотв. Различным размерам:

Размер объектов	Прирост АР
Малые(D1,D2)	+ 8%
Средние(D3,D4)	+ 14%
Большие(D5,D6)	+ 12%

(b) 8×8 feature map (c) 4×4 feature map

Результаты

<u>ГКНС "ученик"</u>	<u>ГКНС "учитель"</u>	Test VOC07 mAP, %			
SSD_Lite_MobileNetV2	-	69.3			
SSD_Lite_MobileNetV2	SSD_DarkNet53	71.2			
SSD_Lite_ShuffleNetV1	-	62.4			
SSD_Lite_ShuffleNetV1	SSD_DarkNet53	65.6			
SSD_Lite_MNASnet1	-	65.8			
SSD_Lite_MNASnet1	SSD_DarkNet53	70.2			
Pascal + MS Coco					
SSD_Lite_MobileNetV2	-	71.9			
SSD_Lite_MobileNetV2	SSD_DarkNet53	73.4			

Выводы:

- ✓ Предлагаемый алгоритм позволяет существенно повысить качество обнаружения
- ✓ Не требует изменения архитектуры
- Очень чувствителен к выбору параметров обучения