АПОСТЕРИОРНЫЕ АЛГОРИТМЫ В ЗАДАЧАХ ГЕОФИЗИЧЕСКОГО МОНИТОРИНГА

Воскобойникова Г. М., Кельманов А.В., Хайретдинов М.С. Институт вычислительной математики и математической геофизики СОРАН, Институт математики им. С.Л. Соболева СО РАН

10-я Международная конференция «Интеллектуальная обработка информации-2014»

о. Крит, 4-11 октября 2014 г

Актуальность работы

Геофизический мониторинг ставит своей целью регулярное слежение за геодинамическими процессами и событиями в зонах подготовки и развития разрушительных природных и техногенных катастроф. Развитие и совершенствование методов геофизического мониторинга относится к числу приоритетных современных проблем. С ними напрямую связаны методы повышения точности оценивания параметров сейсмических и акустических волновых форм.

Цель работы:

- разработка и исследование помехоустойчивых алгоритмов совместного обнаружения и выделения сейсмических волновых форм, основанных на методах дискретной оптимизации;
- оценивание применимости и эффективности созданных программно-алгоритмических средств для решения практических задач: нефтепромыслового бурения; сейсмического мониторинга в периоды лунно-солнечных приливов.

Постановка задачи определения координат события

$$\hat{\eta} = \eta(\gamma, \chi) + \varepsilon$$

 $\hat{\eta} = (\hat{n}_1, \dots, \hat{n}_N)^T$ — вектор времен пробега сейсмических волн, $\eta(\gamma, \chi)$ — N-мерный вектор вычисляемых времен пробега (теоретический годограф); N — число датчиков.

$$\mathcal{E} = (\mathcal{E}_1, \dots, \mathcal{E}_N)^T$$
 – вектор невязок,

 $\chi = (x, y, z, v, t)^T$ – *m*-мерный вектор оцениваемых параметров,

$$\gamma = (\gamma_1, \dots, \gamma_N)$$
 – матрица координат датчиков,

Распределение ошибок $\mathcal{E}_i = \hat{\eta}(\gamma_i, \chi) - \eta(\gamma_i, \chi), i=1,...,N$

где $\varepsilon_i \in \Phi_{0,\sigma^I}^2$ – взаимно независимые случайные величины,

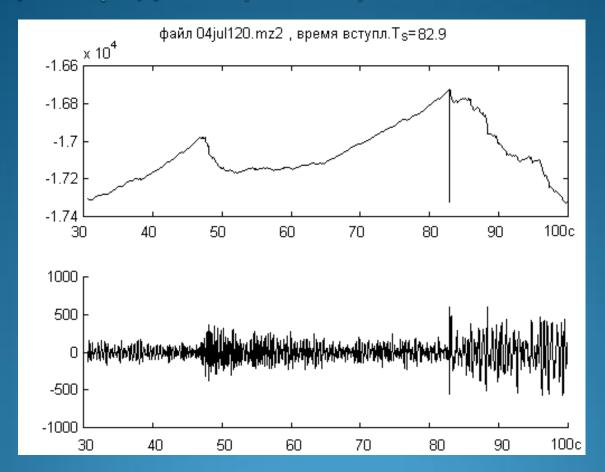
$$E\varepsilon_i=0, E\varepsilon_i\varepsilon_j=\sigma_i^{\ 2}\delta_{ij}, \sigma_i=\sigma(\vec{x}_i), \ \delta_{ij}, \left(i,j=\overline{1,N}\right)$$
 —символ Кронекера

$$\sigma_{AZ}^2 = \sigma_{\eta}^2 F_1(\eta, \gamma), \ \sigma_R^2 = \sigma_{\eta}^2 F_2(\eta, \gamma)$$
 σ_{η}^2 – ошибка оценивания времен прихода, γ – вектор параметров, характеризующий геометрию расстановки сейсмической группы.

Алгоритмы выделения и измерения параметров волновых форм

- Последовательный (on-line) подход ориентирован на отыскание решения задачи, оптимального лишь на текущий момент времени. (Малла С., Добеши И., Чуи К., Никифоров В.И., Рапопорт М.Б. и др.)
- Вейвлет-фильтрация сейсмических волн, позволяющая увеличивать соотношения энергий сигнала и шума. (С. Малла, И. Добеши и др.)
- Алгоритм авторегрессии проинтегрированного скользящего среднего (АРПСС). (Никифоров В.И. и др)
- Алгоритм обратной фильтрация Винера-Колмогорова (деконволюция), предназначенный для сжатия волнового импульса во времени путем приведения его к δ -образному импульсу.
- □ Апостериорный (off-line) подход помехоустойчивой обработки последовательностей волновых форм ориентирован на получение оптимального решения по всем накопленным данным. (Клигене Н.И., Дарховский Б.С., Кельманов А.В. и др.)

Алгоритм авторегрессии проинтегрированного скользящего среднего (АРПСС)



Пример вычисления времен вступлений волн от двух последовательных взрывов: вверху — вид решающей функции, внизу — искомая запись шума и двух волновых импульсов на его фоне.

Апостериорные алгоритмы определения параметров волновых форм в шумах.

Постановка задачи.

$$Y = (y_0, ..., y_{N-1}) = X + \Xi$$
 – наблюдаемый вектор

$$X = (x_0, ..., x_{N-1}) \in \Re^N$$
 – вектор с компонентами $x_n = \sum_{m=1}^M u_{n-n_m}(m), n = 0, ..., N-1,$

$$\Xi = (\varepsilon_0, ..., \varepsilon_{N-1}) \in \Phi_{0,\sigma^2 I}$$
. – вектор шумовых компонент

$$U_m = (u_0(m), ..., u_{q-1}(m)), m = \overline{1,M}$$
 – волновая форма $0 < \sum_{i=0}^{q-1} u_j^2(m) < \infty$,

Условие квазипериодичности для моментов времени вступления волн $n_1,...,n_M$

$$q \leq T_{\min} \leq n_i - n_{i-1} \leq T_{\max} < \infty, i = 2, \dots, M$$

Необходимо:

по наблюдаемому вектору Y найти набор времен вступлений $n_1,...,n_M$

Дискретные экстремальные задачи в геофизическом мониторинге

Задача 1: Дано: числовая последовательность $Y=(y_0,...,y_{N-1})$ натуральные числа $q,\,M,\,T_{\min}$ и T_{\max} . Найти: набор $(n_1,...n_M)\square \Omega_M$ такой, что

$$G(n_1,...,n_M) = \sum_{m=1}^{M} \sum_{k=0}^{q-1} y_{n_m+k}^2 \to \max$$

Рассмотрим случай, когда $U_m = U = (u_0, ..., u_{q-1})$ для каждого m = 1, ..., M.

Задача 2: Дано: числовая последовательность $Y=(y_0,...,y_{N-1})$ натуральные числа q,M,T_{\min} и T_{\max} . Найти: набор $(n_1,...n_M)\square \Omega_M$ такой, что

$$S(n_1,...,n_M) = \sum_{i=1}^{M} \sum_{k=0}^{q-1} u_k \left(u_k - 2y_{n_i+k} \right) \rightarrow \min.$$

Обе задачи 1 и 2 решаются методом динамического программирования, но с использованием различных рекуррентных формул. Задача 1 решается за время O(MN), а задача 2 — за время $O(N^2)$.

Задача 3: Дано: числовая последовательность $Y=(y_0,...,y_{N-1})$ натуральные числа q,M,T_{\min} и T_{\max} . Найти: набор $(n_1,...n_M)\square \Omega_M$ такой, что

$$G(n_1, ..., n_M) = \sum_{m=1}^{M} \sum_{i=1}^{M} \sum_{k=0}^{q-1} y_{n_m+k} y_{n_j+k} \rightarrow \max$$

Идея алгоритма состоит в следующем. Сначала находится решение задачи 1 при M=1 для начального участка последовательности Y, содержащего $T_{\max}-q+1$ элементов. Далее, используя этот набор, решаем задачу 2, положив $U=(y_{\hat{n}_1},\dots,y_{\hat{n}_i+q-1})$

Задача 1. Случай разных волновых форм

Логарифмическая функция максимального правдоподобия:

$$L(U, n_1, ..., n_M \mid Y, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left(y_n - \sum_{i=1}^M u_{n-n_i} \right)^2,$$

Экстремальная задача максимизации функции

$$G(n_1,...,n_M) = \sum_{m=1}^{M} \sum_{k=0}^{q-1} y_{n_m+k}^2 \longrightarrow \max_{\Psi_M}$$

Начальные ограничения

$$\Psi_M = \{ (n_1, ..., n_M) : a \le n_1 \le a^+;$$

$$T \le n \quad n \le T \quad \le m - 2 \quad M : a^+ \in [a, b], b^- \in [a, b]$$

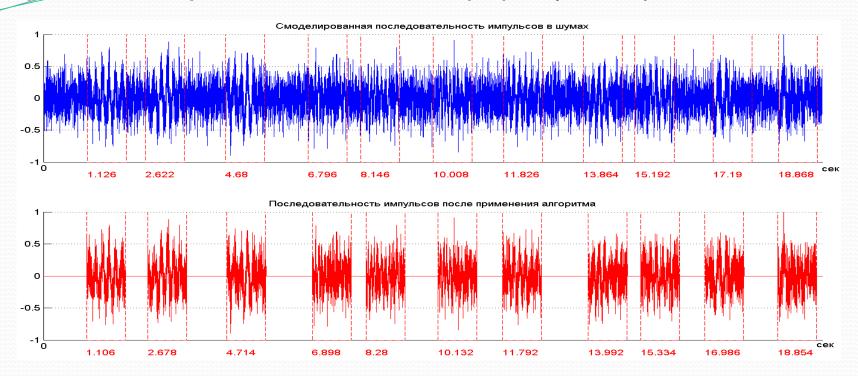
$$T_{\min} \le n_m - n_{m-1} \le T_{\max} < \infty, m = 2, ..., M; a^+ \in [a, b], b^- \in [a, b],$$

где a, a^+ , b^- , b – целые, а T_{\min} и T_{\max} – натуральные числа.

Оптимальный набор моментов времени вступления волновых форм находится по правилу:

$$\hat{\eta} = (\hat{n}_1, ..., \hat{n}_M) = Arg \max_{\eta} \sum_{m=1}^{M} \sum_{k=0}^{q-1} y_{n_m+k}^2,$$

Результаты численного моделирования апостериорного алгоритма для разных волновых форм (σ=0.7)



Среднеквадратическая погрешность = 9.2*10-3

Задача 2. Случай одинаковых волновых форм

Логарифмическая функция максимального правдоподобия:

$$L(U, n_1, ..., n_M \mid Y, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left(y_n - \sum_{i=1}^M u_{n-n_i} \right)^2,$$

$$\frac{\partial L}{\partial u_k} = 0, k = 0, ..., q-1 \implies \hat{u}_k = \frac{1}{M} \sum_{i=1}^M y_{n_i+k}, \ k = 0, ..., q-1$$
 - Оценка максимального правдоподобия для компонент волновой формы U

Целевая функция:
$$S = \sum_{i=1}^{M} \sum_{k=0}^{q-1} \tilde{u}_k \left(\tilde{u}_k - 2y_{n_i+k} \right) \rightarrow \min_{\Omega_M}$$
.

Начальные
$$\Omega_{M} = \{\left(n_{1},...,n_{M}\right) \,\middle|\, 0 \leq n_{1} \leq T_{\max} - q - 1, N - T_{\max} - q \leq n_{M} \leq N - q - 1,$$
 ограничения
$$q \leq T_{\min} \leq n_{i} - n_{i-1} \leq T_{\max}, i = \overline{2,M}\}$$

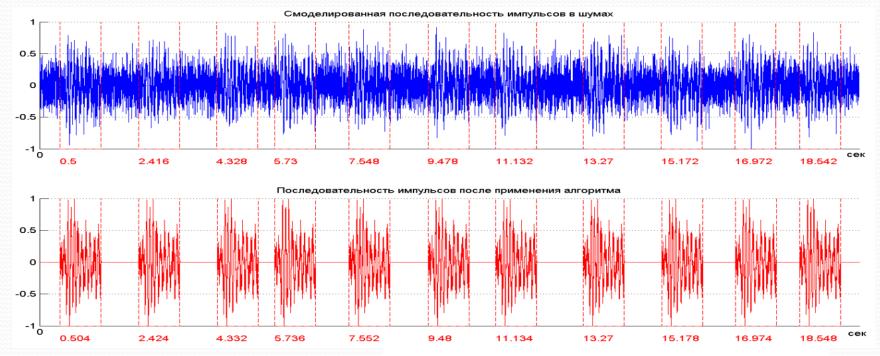
Времена вступления волн и их число в последовательности:

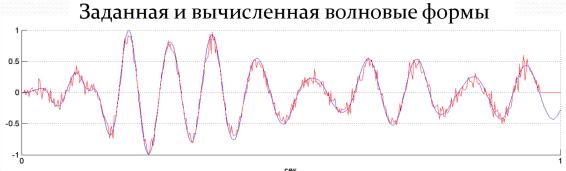
$$\begin{cases} \tilde{n}_0 = \underset{N-q \le n \le N-q+T_{\min}-1}{Arg \min} \left(S(n) + G(n) \right) \\ \tilde{n}_i = \operatorname{Ind}(\tilde{n}_{i-1}), i = 1, 2, ..., \end{cases}$$

Оптимальный набор моментов времени вступления волновых форм находится по правилу: $_{_{1}\quad \tilde{M}}$

$$(\tilde{n}_1, ..., \tilde{n}_{\tilde{M}}, \tilde{M}) = Arg \min_{\Omega} \tilde{S}_1(n_1, ..., n_M) \implies \hat{u}_k = \frac{1}{\tilde{M}} \sum_{i=1}^M y_{\tilde{n}_i + k}, k = \overline{0, q - 1}$$

Результаты численного моделирования апостериорного алгоритма для одинаковых волновых форм (σ=0.7)



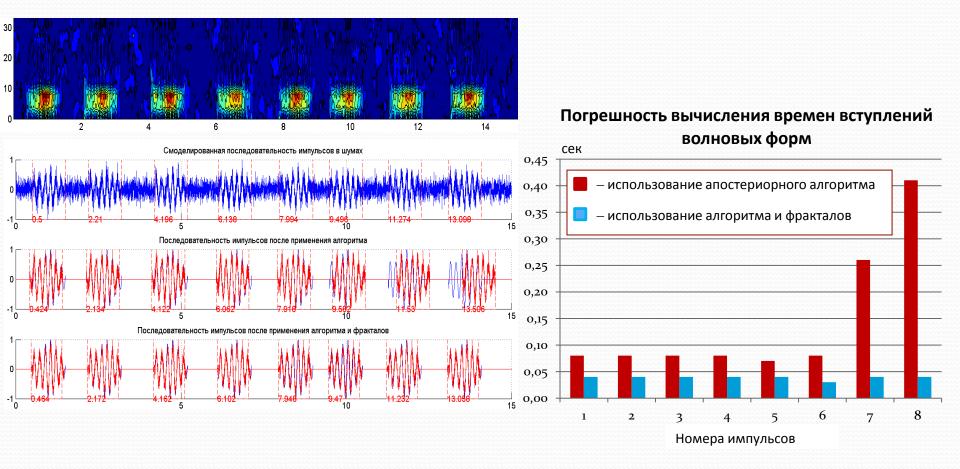


Среднеквадратическая погрешность $=1.5*10^{-3}$ Среднеквадратическое уклонение $=1.5*10^{-2}$

Фрактальный подход для выделения волновых форм

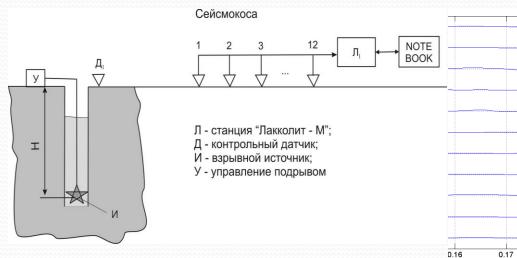
Фрактальное представление волновых форм, связано с представлением их в виде двумерного изображения на плоскости "частота-время" с применением

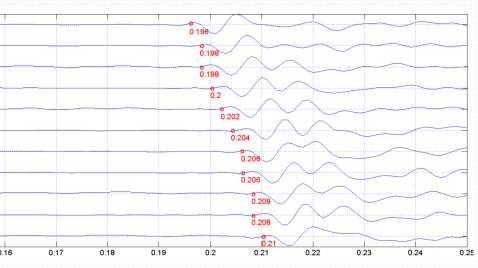
двумерного преобразования Фурье. $F\left(k_1,k_2\right) = \frac{1}{\sqrt{N_1N_2}} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x\left(n_1,n_2\right) e^{-j\frac{2\pi k_1n_1}{N_1}} \cdot e^{-j\frac{2\pi k_2n_2}{N_2}}$



Задачи геофизического мониторинга

1. Мониторинг положения перемещающегося источника в скважине





• Скваж1				
→ III m → II a m → II b m → I m		4 9 3		
Az =	39g 6m 9s 1 9 7 8 9 9 1			
111 12 \$	9 110 M			
Az = 39g 4m 9s	1 11	\$ 4 3 4 0 0 M	A 8	114g 16m 7s
97.4 M AZ 62g 8m	58	AZ = 150g 3	50 M 5 6	10 11 12
9 10 11	12 13 1	4 15 16	5 17 1	8 19 2
9 10	11	11 12 13 1 E 83:14		

No	Координ	наты исто	Скорости	
полож.	x y z		сейсмических волн V (м/с)	
br1	-0.02	0.49	1.47	1597
br5	0.52	-1.75	8.116	1600
br10	-0.71	1.12	13.783	1754
br25	-0.4	0.08	23.22	2032
br100	0.34	3.18	101.54	3220
br120	1.577	2.163	121.01	3343

13

Решение обратной задачи

$$\hat{\eta} = \eta(\gamma, \chi) + \varepsilon.$$

Исходными параметрами для решения системы является вектор времен вступлений волн $\hat{\eta} = (\hat{n}_1,...,\hat{n}_N)^T$ на сейсмоприемниках. Задача оценивания параметров вектора $\chi = (x,y,z,v,t)^T$ является частью регрессионного анализа, а ее решением служат оценки метода наименьших квадратов

$$\chi = \arg\min Q(\chi), \quad Q(\chi) = \sum_{i=1}^{N} \sigma_i^{-2} (\hat{n}_i - \eta(\gamma_i, \chi))^2$$

Для отыскания минимума функционала $Q(\chi)$ применяют итерационный метод Гаусса-Ньютона или его модификации, основанные на линейной аппроксимации функции регрессии в окрестности точки χ^k :

$$J(\gamma, \chi^k) \Delta \chi^k + \hat{\eta}(\gamma, \chi^k) - \eta + \varepsilon = 0,$$

где

$$J(\gamma, \chi) = \left(\frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_1}, \frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_2}, \dots, \frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_m}\right), \quad i = 1, \dots, n$$

Решение обратной задачи восстановления источника

Вычислительная схема сингулярного разложения (*SVD*-разложении) состоит в разложении матрицы (4) на каждом шаге итерационного процесса в произведение трех матриц $J(X,\vec{\theta}^k) = U_k \Sigma_k V_k^T$, где U_k – ортогональная n х n матрица, V_k – ортогональная m х m матрица, Σ_k – диагональная m х m матрица, имеющая структуру $\Sigma_k = \left(\frac{S_k}{0}\right)$, где S_k = diag(ρ_1 , ρ_2 , ..., ρ_m) –

диагональная матрица сингулярных чисел, упорядоченных по невозрастанию $\rho_{i} \geq \rho_{i+1}$. Метод предусматривает также проведение сингулярного анализа, состоящего в исключении нулевых сингулярных чисел и соответствующих им столбцов матриц U и V. Итерационный процесс в этом случае имеет вид:

$$\vec{\theta}^{k+1} = \vec{\theta}^k + V_k S_k^{-1} \vec{d}^k, \qquad k = 0,1,2,...,$$

где \vec{d}^k – вектор, состоящий из первых m компонент вектора $U_k^T \vec{y}(X, \vec{\theta}^k)$.

Взрывные сейсмограммы

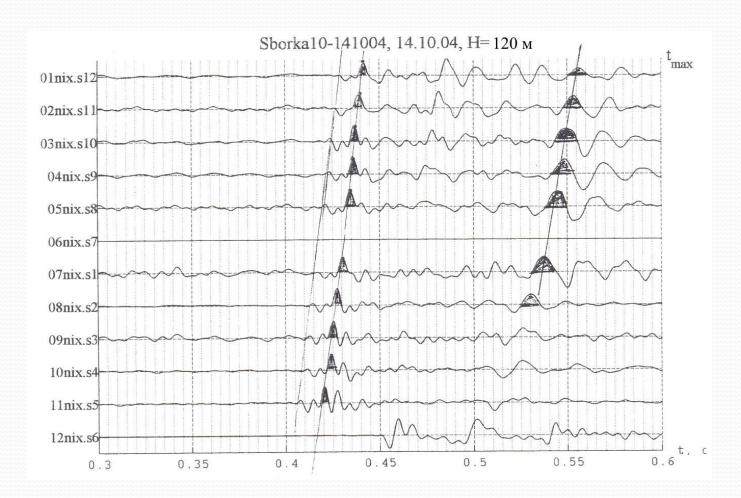
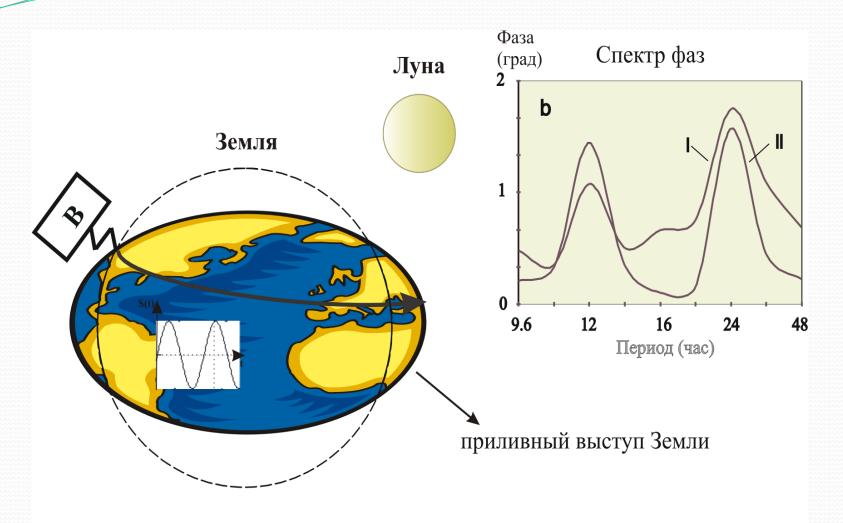


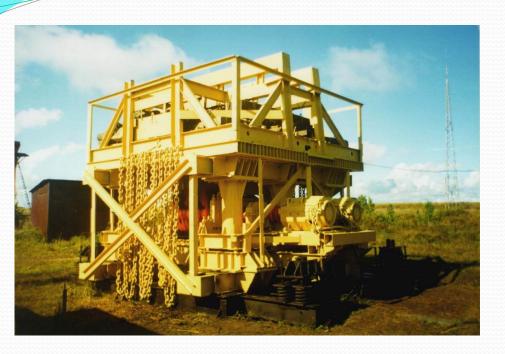
Рис.15. Запись взрыва на глубине 120 м., расстановка III

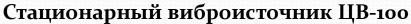
Взаимодействие Гравитационных и сейсмических волновых полей-Выделение лунносолнечных приливов методом ВПЗ



Схематически представлена методика выделения 24-х и 12-ти часовых периодичностей лунно солнечных приливов на основе вычисления спектра фаз сейсмического волнового поля (график I), порождаемого мощным низкочастотным вибратором ЦВ-100 (В) в гармоническом

Мощные сейсмические виброисточники



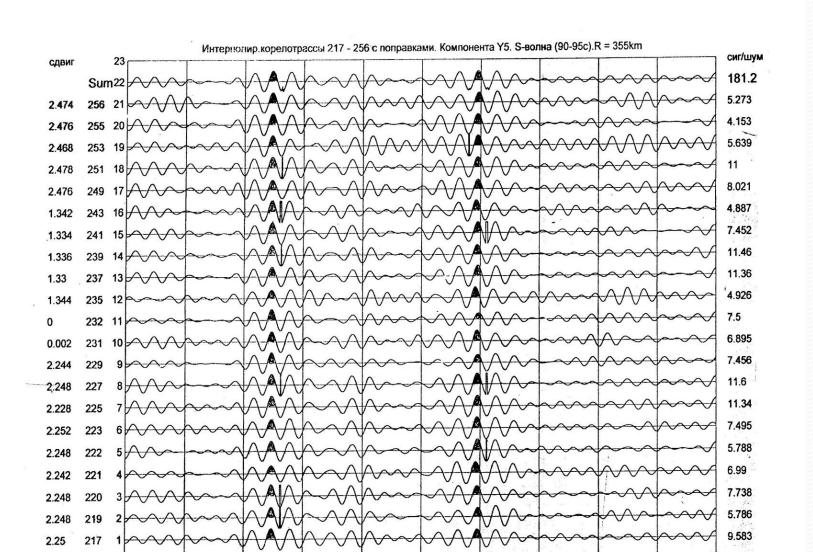


Центробежный виброисточник ЦВ-100 дебалансного типа создает возмущающую силу амплитудой 100 тонн. Эффективный диапазон частот 5.5-8.5 Гц.

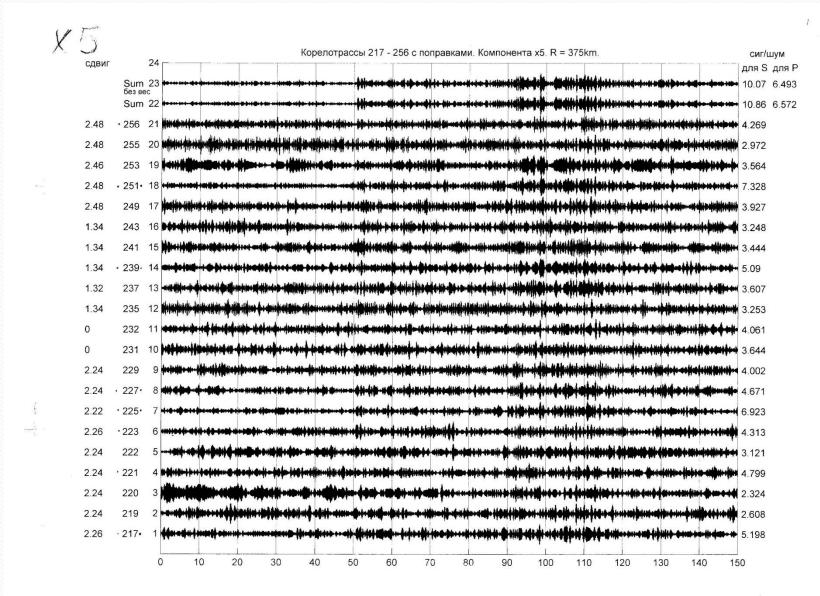
Передвижной виброисточник ЦВ-40

Передвижной центробежный виброисточник с амплитудой возмущающей силы 40 тонн, диапазон частот 6.25-11.23 Гц

Мониторинговые кореллотрассы и невязки времен вступлений сейсмических волн. Дальность 356 км.



Мониторинг лунно-солнечных приливов- кореллотрассы. R=355 км



Блок-схема основных этапов функционирования апостериорных

алгоритмов.

Загрузка входных данных из файла регистрации сейсмограммы.

Загрузка данных производится с помощью функции LoadPCfile, которая загружает данные из файла сейсмограммы в PC-формате.

Выделение из сейсмограммы сигналов с необходимыми волновыми формами.

Выделение данных соответствующих волновым формам, являющихся фрагментами реальных сейсмограмы, которые зарегистрированы от взрывных и вибрационных источников $U=(u_0,...,u_{q-l})$.

Подготовка набора времен вступлений для численного моделирования

Генерация детерминированных времен вступпений с равномерным распределением $(n_1, ..., n_M)$ формируется по квазипериодическому закону:

$$\begin{cases} n_i = r(0, T_{\max} - q - I) \\ n_i = n_{i-1} + r(T_{\max} - T_{\min}), i = 2, ..., M \end{cases}$$

Формирование данных на основе сейсмограммы для численного моделирования

Одинаковые волновые формы

Формирование модельных данных на основе вырезания одной волновой формы и стенерированных времен вступпения. Формируется поспедовательность длиной N с повториющейся волновой формой по квазипериодическому закону.

Разные волновые формы

Формирование модельных данных на основе вырезании вескольких волновых форм из развых сейхнограми и стенерированных времен вступления. Формируется последовательность длиной N с развыми волновыми формами по квазипериодическому закону.

Формирование шума с заданным уровнем и наложение его на сформированный сигнал.

Последовательность волновых форм искажается гауссовской помехой с заданным уровнем шума σ по правилу Y=X+S. Уровень шума σ задается пользователем.

Расчет начальных параметров численного моделирования

Использование спектрально-временных функций

Расчет двумерных спектрально-временных функций для определения Т_{max}, Т_{mix}, д в условиях априорной неопределенности для апостериорного алгоритма определения времен вступления волновых форм.

Прямоє заданиє начальных параметров

Задание T_{min} , T_{min} , q для апторитма расчета времен вступлений, идентичным параметрам используемых для генерации дегерманированных времен вступления при формированых данных данных.

Расчет времен вступления и волновых форм

Определение времен вступления волновых форм с использованием функций, содержащие рекуррентные соотношения динамического программирования. С учегом вычисленных времен вступления, компоненты волновой формы определяются по формуле:

$$\vec{u}_k = \frac{1}{M} \sum_{i=1}^{M} y_{i,j+k}, k = 0,..., q-1.$$

Оценка эффективности алгоритма, сохранение результатов расчета и отображение выходных данных в графическом виле

Для проверки эффективности и точности апторитма обнаружения и оценивания используется среднеквадратическая ошибка $\delta_{ij}(\sigma) = E \|\eta - \hat{\eta}\|^2 IM$ определения времен вступления в зависимости от уровня шума σ , а

There operating the constant of the property of the property

Заключение. Основные результаты работы

- 1. Предложены и исследованы более точные по сравнению с известными апостериорные алгоритмы, основанные на методах дискретной оптимизации и фрактальном подходе, для совместного помехоустойчивого обнаружения и оценивания моментов времен вступления квазипериодических волновых форм в задачах геофизического мониторинга.
- 2. Разработана и внедрена новая методика решения актуальных проблем геофизического мониторинга с применением предложенных алгоритмов, включая задачи локации скважинного источника при нефтеразведочном бурении, оценивания геоэкологических рисков для окружающей социальной среды от массовых мощных взрывов с учетом воздействия метеофакторов.
- 3. Получены закономерности направленного распространения акустических колебаний инфранизкого диапазона частот в зависимости от метеоусловий, расстояния "источник-приемник" с помощью численного моделирования и анализа данных экспериментальных исследований.
- 4. Создано программное обеспечение для проведения численного моделирования и обработки экспериментальных данных.

Спасибо за внимание!

Параметры расстановки и результаты вычислений

СКВА	АНИЖ	N=1	00									
УСТ	'ЬΕ:	Χ=	.00	Υ=	.00							
ЗАБ	кой:	Χ=	34	Y=	3.18	Z=	101.54	V=	3.220) FM=	.190	
		EX=	1.047	EY=	1.821	ΕZ	= 1.649	EV:	= .000	00 3 СИГМЬ	I= .46	
УДА	ЛЕНИ	Е ЗАБ	= RO	3.20	ГЕОДЕ:	3ИЧ:	ЕСКИЙ АЗ	3MMS	YT = 96.	.02 ЧИСЛО	итераций=	5
ΙT	'ОЧКА	Ι	Χ	I	Y	Ι	ВРЕМЯ	Ι	PACCT	I ASMMYT	І НЕВЯЗКА	Ι
I	11		97.404		51.507		46.0390)	148.995	27.87	231	I
I	10		106.237		56.200		48.386)	156.461	27.88	202	I
I	9		115.069		60.892		51.080)	164.195	27.89	.090	Ι
I	8		123.901		65.585		53.3690)	172.163	27.89	095	I
I	7		132.733		70.278		56.0570)	180.334	27.90	.055	Ι
I	1		141.566		74.978		58.4550)	188.685	27.91	140	I
I	2		146.477		66.254		58.9040	C	189.323	24.34	.111	I
I	3		151.388		57.531		59.0420)	190.487	20.81	113	I
I	4		156.299		48.807		59.780)	192.165	17.34	.104	Ι
I	5		161.210		40.084		60.4080)	194.345	13.96	.055	Ι
I	6		166.122		31.361		61.0480)	197.011	10.69	133	Ι

Автоматизированная локация сейсмического источника

Аннотация. Предложена автоматизированная технология локации разного типа сейсмических источников - промышленных взрывов, вибраторов и др. — на фоне сейсмических шумов. Эффективность предложенного подхода иллюстрируется на ряде примеров.

$$\begin{split} g_{N} &= \left(g_{N-1} + \Delta g\right)^{+}, \\ g_{0} &= 0; \\ \Delta g_{N} &= \left[\frac{\left(1 - \sum_{i=1}^{p} \Phi_{i}\right)}{\sigma_{\epsilon}^{2}} \left(1 - \sum_{i=1}^{q} \phi_{i}\right)\right] \cdot \overline{\epsilon}_{N}\left(m_{0}\right), \\ \Delta g_{N} &= F\left(\Phi_{1}, ..., \Phi_{p}; \sigma_{\epsilon}^{2}\right) \\ x_{t} &= \Phi_{1}^{(i)} x_{t-1} + ... + \Phi_{p}^{(i)} x_{t-p} + \epsilon_{t} \end{split}$$

Здесь:
$$(g)^+ = \max(0,g)$$
;

 $\Phi_{_{1}},...,\Phi_{_{p}}$ – коэффициенты авторегрессии порядка р;

 $\phi_1,...,\phi_q^-$ – коэффициенты скользящего среднего;

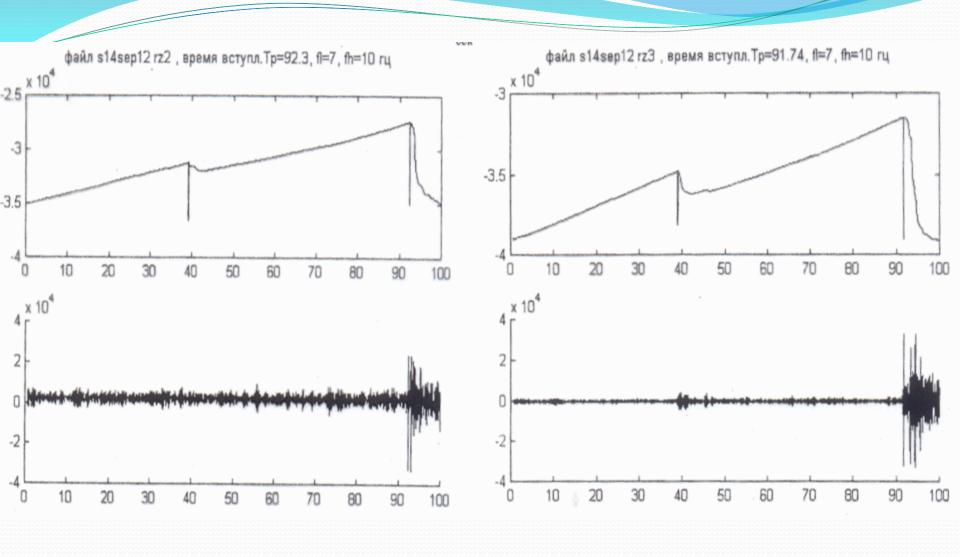
 ϵ_{N} – независимая гауссовская случайная последовательность;

 σ_{ϵ}^2 – дисперсия случайных значений ряда x_i ;

При этом правило подачи сигнала о разладке:

$$t_p = \inf\{t: g_N > h\}$$
, где h – пороговый уровень.

Измерение времен вступлений волн алгоритмом АРПСС



Сравнительный анализ вычисления времен вступления волн с помощью апостериорного алгоритма и алгоритма вейвлет-фильтрации

Сигнал / шум	Среднеквадратическая погрешность времен вступления $\delta_{M}(\sigma)({ m cek})$				
	Апостериорный алгоритм	Алгоритм вейвлет-фильтрации			
		с пороговым обнаружителем.			
10	2.2*10 ⁻⁴	1.1*10 ⁻²			
5	5.5 [*] 10 ⁻⁴	1.2*10 ⁻²			
3	1.5*10 ⁻³	1.6*10-2			
2.5	3.3*10 ⁻³	1.8*10-2			
2	5.7*10 ⁻³	2.3*10-2			
1.7	7.9 [*] 10 ⁻³	2.4*10 ⁻²			
1.4	9.2*10 ⁻³	2.6*10-2			
1.25	1.6*10-2	2.8*10-2			
1.1	3.1*10 ⁻²	3.6*10 ⁻²			
1	5.2*10 ⁻²	5.3*10-2			

Решение обратной задачи

$$\hat{\eta} = \eta(\gamma, \chi) + \varepsilon.$$

Исходными параметрами для решения системы является вектор времен вступлений волн $\hat{\eta} = (\hat{n}_1,...,\hat{n}_N)^T$ на сейсмоприемниках. Задача оценивания параметров вектора $\chi = (x,y,z,v,t)^T$ является частью регрессионного анализа, а ее решением служат оценки метода наименьших квадратов

$$\chi = \arg\min Q(\chi), \quad Q(\chi) = \sum_{i=1}^{N} \sigma_i^{-2} (\hat{n}_i - \eta(\gamma_i, \chi))^2$$

Для отыскания минимума функционала $Q(\chi)$ применяют итерационный метод Гаусса-Ньютона или его модификации, основанные на линейной аппроксимации функции регрессии в окрестности точки χ^k :

$$J(\gamma, \chi^k) \Delta \chi^k + \hat{\eta}(\gamma, \chi^k) - \eta + \varepsilon = 0,$$

где

$$J(\gamma, \chi) = \left(\frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_1}, \frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_2}, \dots, \frac{\partial \eta(\gamma_i, \chi)}{\partial \chi_m}\right), \quad i = 1, \dots, n$$

Метод Качмажа

$$\begin{split} \theta_j^{(k+1)} &= \theta_j^k + a_{ij} \frac{\left(\sigma_{ij}^2\right)^k}{\sigma_{ui}^2 + \sum\limits_{k=1}^m a_{ij}^2 \left(\sigma_{ij}^2\right)^k} \varDelta t_i^k \ , \ a_{ij} = \frac{\partial \eta_i (\vec{\theta}, v, X)}{\partial \theta_j} \\ \Delta t_i^k &= t_i - \eta_i (\vec{\theta}^k, v, X) \end{split}$$

 $\binom{\sigma_{\theta^j}^2}{\theta^j}^k$ - дисперсия оценки неизвестного параметра θ_j на шаге k

 $\sigma_{\underline{w}}^2$ - дисперсия оценок известных параметров (t)

$$\left(\sigma_{\theta j}^{2}\right)^{(k+1)} = \left(\sigma_{\theta j}^{2}\right)^{k} \left(1 - \frac{\left(\sigma_{\theta j}^{2}\right)^{k}}{\sigma_{u i}^{2} + \sum_{k=1}^{m} a_{i j}^{2} \left(\sigma_{\theta j}^{2}\right)^{k}}\right)$$

Расстановка IIa-IIb

СКВАЖИНА N= 100 УСТЬЕ: X= .00 Y= .00

ЗАБОЙ: X=-.34, Y=3.18, Z=101.54, V=3.22, FM=.190, EX=1.047, EY=1.821 EZ = 1.649 EV =.0000 геодезический азимут = 96.02 число итераций = 5

Точка	Х (град)	Ү (град)	Время (мсек)	Расстояние (м)	Азимут (град)	Невязка (мсек)
11	97.404	51.507	46.039	148.995	27.87	0.231
10	106.237	56.200	48.386	156.461	27.88	0.202
9	115.069	60.892	51.080	164.195	27.89	0.090
8	123.901	65.585	53.369	172.163	27.89	0.095
7	132.733	70.278	56.057	180.334	27.90	0.055
1	141.566	74.978	58.455	188.685	27.91	0.140
2	146.477	66.254	58.904	189.323	24.34	0.111
3	151.388	57.531	59.042	190.487	20.81	0.113
4	156.299	48.807	59.780	192.165	17.34	0.104
5	161.210	40.084	60.408	194.345	13.96	0.055
6	166.122	31.361	61.048	197.011	10.69	0.133

Фрактальная размерность

Понятие фрактальной размерности (ФР) выведено из результатов эмпирических исследований Ричардсона,

$$L(\delta) = \delta^{D}$$
, или $D = \log \delta / \log L(\delta)$

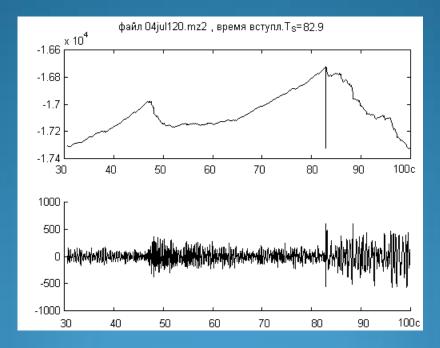
где

L – геометрическая длина

δ – масштаб измерения (детальность объекта)

D – фрактальная размерность.

Алгоритм авторегрессии проинтегрированного скользящего среднего (АРПСС)



Пример вычисления времен вступлений волн от двух последовательных взрывов: вверху — вид решающей функции, внизу — искомая запись шума и двух волновых импульсов на его фоне.

Сейсмоакустические эффекты землетрясения в Кузбассе 19.06.2013 г.

Запись землетрясения в г. Белово, Кемеровская обл. Точка регистрации: пос. Ключи, г. Новосибирск. Дата регистрации: 19.06.2013, время GMT.

