Часть IV

Частично упорядоченные множества

Разделы

- 1 Основные понятия теории ч.у. множеств
- 2 Операции над ч.у. множествами
- 3 Линеаризация
- 4 Задачи с решениями
- Модели Крипке
- 6 Что надо знать

Частично упорядоченные множества: определение и примеры

Определение

Пару $\mathbf{P} = \langle P, \leqslant \rangle$, где P — непустое множество, а \leqslant — рефлексивное, антисимметричное и транзитивное бинарное отношение на нём, называют частично упорядоченным множеством (сокращённо ч.у. множеством).

```
Рефлексивность (R): x \leqslant x;
Антисимметричность (AS): (x \leqslant y) \& (y \leqslant x) \Rightarrow x = y;
Транзитивность (T): (x \leqslant y) \& (y \leqslant z) \Rightarrow x \leqslant z.
```

Примеры

- $\langle \mathcal{P}(M), \subseteq \rangle$ классический пример ч.у. множества (упорядочивание множеств по включению, $M \neq \varnothing$);
- ullet $\langle \, \mathbb{N}, \leqslant \,
 angle \,$ и $\langle \, \mathbb{N}, \, | \,
 angle \,$ два упорядочивания одного множества.

Предпорядки

Вопрос:

Пусть M — множество людей, h(x) — рост, а w(x) — вес человека x.

Определим на отношение ρ на M:

$$x \rho y \Rightarrow (h(x) \leqslant h(y)) \& (w(x) \leqslant w(y)).$$

Является ли ρ отношением частичного порядка на M?

Ответ. Нет. ρ — рефлексивно и транзитивно, но не является антисимметричным отношением: $x\rho y \otimes y\rho x \not\Rightarrow x=y$ (могут найтись два человека с одинаковым ростом и весом).

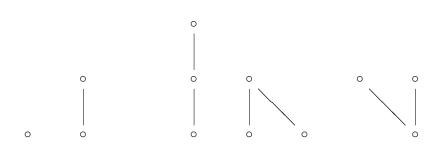
Отношения со свойствами (R) и (T) называют *предпорядками*.

$$a < b \stackrel{\text{def}}{=} (a \leqslant b) \& (a \neq b)$$

Ч.у. множество $\mathbf{P} = \langle P, \leqslant \rangle$ — основные понятия:

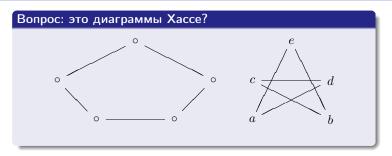
- ullet если $(x\leqslant y)\lor (y\leqslant x)$, то x и y сравнимы $(x\sim y)$, иначе они несравнимы $(x\nsim y)$;
- полный (линейный) порядок, если $\forall x, y \, (x \sim y)$;
- если в Р нет ни одной пары различных сравнимых элементов, то это тривиально упорядоченное множество;
- ullet x непосредственно предшествует y (y непосредственно следует за x), если $x\leqslant z\leqslant y \Rightarrow (z=x)\lor (z=y)$ ($x\leqslant y$);
- $\{x \in P \mid a \leqslant x \leqslant b\}$ интервал [a, b];
- $v_1 < \ldots < v_n \stackrel{\text{def}}{=} [v_1, \ldots, v_n]$ цепь $\mathbf n$, а совокупность попарно несравнимых элементов антицепь в $\mathbf P$;
- цепь максимальная (насыщенная), если при добавлении к ней любого элемента она перестаёт быть цепью;
- ullet \geqslant двойственный к \leqslant порядок: $\leqslant^d \stackrel{\mathrm{def}}{=} \geqslant$.

Диаграммы Хассе

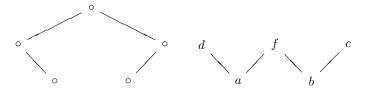


Диаграммы Хассе 4-х нетривиальных непомеченных трёхэлементных ч.у. множеств.

Диаграммы Хассе: да или нет



Ответ. Нет! Правильно:



Ч.у. множества: особые элементы

Определение

Элемент $u \in P$ ч.у. множества $\langle P, \leqslant \rangle$ называют:

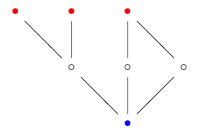
- ullet максимальным, если $u\leqslant x \Rightarrow u=x$,
- ullet минимальным, если $u\geqslant x \Rightarrow u=x$,
- \bullet наибольшим, если $x \leqslant u$,
- ullet наименьшим, если $x\geqslant u$

для любых $x \in P$.

Элемент наибольший, если все другие элементы содержатся в нём.

и он максимальный, если нет элементов, содержащих его (аналогично для наименьшего и минимального элементов).

Особые элементы ч.у. множества: пример

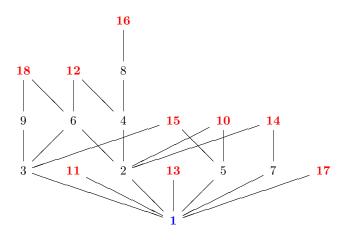


- максимальные элементы;
- — минимальный и наименьший элемент;

Наибольший (1) и наименьший (0) — *граничные элементы*.

В конечном ч.у. множестве имеется как минимум по одному максимальному и минимальному элементу.

Ч.у. множество $\langle \{1, ..., 18\}, | \rangle$



1 — наименьший элемент, • — максимальные.

Ранжированные ч.у. множества

Цепное условие Жордана-Дедекинда

Все максимальные цепи между двумя данными элементами локально конечного ч.у. множества имеют одинаковую длину.

Если ч.у. множество удовлетворяет условию Жордана-Дедекинда и имеет наименьший элемент 0, то оно ранжируемо, т.е. на нём можно определить функцию ранга ρ :

$$\rho(0) = 0;$$

$$a \lessdot b \Rightarrow \rho(b) = \rho(a) + 1$$

и такое множество имеет *слои*.

Если множество ранжируемо, то любой \circ — $\rho=0$ его слой (но не только!) является антицепью.

Порядковые гомоморфизмы

Определение

Отображение $\,\varphi\colon P\to P^{\,\prime}\,$ носителей ч.у. множеств называется соответственно

- изотонным (монотонным, порядковым гомоморфизмом), если $x \leqslant y \Rightarrow \varphi(x) \leqslant \varphi(y)$;
- ullet обратно изотонным, если $\varphi(x)\leqslant \varphi(y) \Rightarrow x\leqslant y;$
- ullet антиизотонным, если $x\leqslant y \Rightarrow \varphi(x)\geqslant \varphi(y)$.

Если φ изотонно, обратно изотонно и инъективно, то это вложение или (порядковый) мономорфизм (символически $P \stackrel{\varphi}{\hookrightarrow} P'$).

Сюръективный мономорфизм — (порядковый) изоморфизм (символически $P\cong P'$ или $P\stackrel{\varphi}{\cong} P'$). Изоморфизм ч.у. множества в себя — (порядковый) автоморфизм.

Идеалы и фильтры ч.у. множеств

Определение

Подмножество J элементов ч.у. множества $\langle P, \leqslant \rangle$ называется его (порядковым) идеалом, если

$$(x \in J) \otimes (y \leqslant x) \Rightarrow y \in J.$$

Подмножество F элементов P называется его (порядковым) фильтром, если

$$(x \in F) \& (x \leqslant y) \implies y \in F.$$

arnothing и всё ч.у. множество P — порядковые идеалы.

Важное свойство: объединение и пересечение порядковых идеалов есть порядковый идеал.

Обозначение: J(P) — множество всех порядковых идеалов ч.у. множества P.

Конусы

Определение

Пусть $\langle\,P,\leqslant\,
angle$ — ч.у. множество и $\,A\subseteq P.$ Множества $\,A^\vartriangle\,$ и $\,A^\bigtriangledown\,$

$$A^{\vartriangle} \; = \; \big\{ x \in P \; \mid \; \forall a \; (\; a \leqslant x) \; \big\} \quad \text{if} \quad A^{\triangledown} \; = \; \big\{ x \in P \; \mid \; \; \forall a \; (\; x \leqslant a) \; \big\}$$

называются верхним и нижним *конусами* множества A, а их элементы — верхними и нижними *гранями* множества A соответственно.

Для одноэлементного множества $A=\{a\}$ — a^{\vartriangle} и a^{\triangledown} .

Понятно, что если $a\leqslant b$, то $a^{\vartriangle}\cap b^{\triangledown}=[a,b].$ $x^{\triangledown}=\langle x\rangle=J(x)$ — идеал, а x^{\vartriangle} — фильтр P; такие идеалы и фильтры называют *главными*.

Конечнопорождённый идеал:
$$\langle a_1, \ldots, a_k \rangle \stackrel{\mathrm{def}}{=} \bigcup_{i=1}^k a_i {}^{\triangledown}.$$

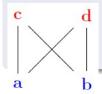
Точные грани

Определение

Пусть $\langle P, \leqslant \rangle$ — ч.у. множество и $A \subseteq P$.

- Наименьший элемент в A^{\triangle} называется точной верхней гранью множества A (символически $\sup A$).
- Наибольший элемент в A^{∇} называется точной нижней гранью множества A (символически $\inf A$).

Пример ($\sup A$ и/или $\inf A$ могут и не существовать)



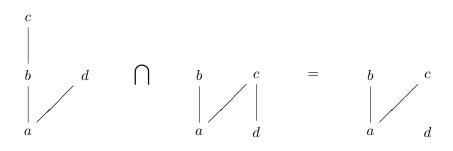
 $\{a,b\}^{\vartriangle}=\{c,d\}\text{, но множество }\{c,d\}$ не имеет инфимума $\Rightarrow \sup\{a,b\}$ отсутствует. Аналогично, отсутствует $\inf\{c,d\}$.

Разделы

- 1 Основные понятия теории ч.у. множеств
- 2 Операции над ч.у. множествами
- 3 Линеаризация
- 4 Задачи с решениями
- Модели Крипке
- 6 Что надо знать

Пересечение

$$\langle P, \leqslant_1 \rangle \cap \langle P, \leqslant_2 \rangle = \langle P, \leqslant_1 \cap \leqslant_2 \rangle.$$



Свойства ч.у. множеств могут не сохраняются при пересечении. Например, «быть цепью»: если P — цепь, тогда P^d — также цепь, а $P \cap P^d$ — тривиально упорядоченное множество.

18 / 76

Прямая сумма

$${f P}=\langle\,P,\leqslant_P\,
angle$$
 и ${f Q}=\langle\,Q,\leqslant_Q\,
angle$ — два ч.у. множества, причём $P\cap Q=\varnothing$.

$$\mathbf{P} + \mathbf{Q} = \langle P \cup Q, \leqslant_P \vee \leqslant_Q \rangle.$$

Справедливы соотношения

$$P+Q\cong P+R \Rightarrow Q\cong R$$
 u $(P+Q)^d\cong P^d+R^d$.

n**P** — прямая сумма n экземпляров **P**, n**1** — n-элементная антицепь.

Диаграмма прямой суммы состоит из двух диаграмм соответствующих ч.у. множеств, рассматриваемых как единая диаграмма.

Ч.у. множество, не являющееся прямой суммой некоторых двух других ч.у. множеств, называется *связным*.

Прямое произведение: определение

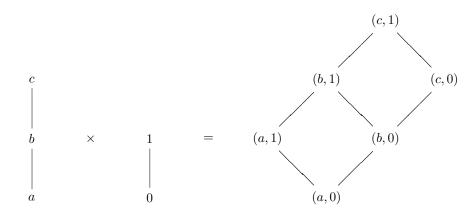
Прямым или декартовым произведением ч.у. множеств $\mathbf{P}=\langle\,P,\leqslant_P\,
angle\,$ и $\mathbf{Q}=\langle\,Q,\leqslant_Q\,
angle\,$ называется множество

$$\mathbf{P} imes \mathbf{Q} = \langle \, P imes Q, \leqslant \,
angle,$$
 где $(p,\,q) \leqslant (p',\,q') \Leftrightarrow (p \leqslant_P p') \& (q \leqslant_Q q').$

 ${f P}^n$ — прямое произведение n экземпляров ${f P}$: $B^n={f 2}^n$. Если P, Q ранжированы и их ранговые функции суть ρ_P и ρ_Q , то $P\times Q$ также ранжировано и $\rho(x_1,\,x_2)=\rho_P(x_1)+\rho_Q(x_2)$; Справедливы соотношения $P\times Q\cong Q\times P$

$$P \times R \cong Q \times R \Rightarrow P \cong Q, \quad P^n \cong Q^n \Rightarrow P \cong Q.$$

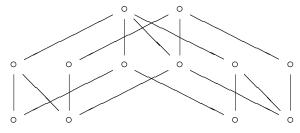
Прямое произведение: пример 1



Прямое произведение цепей 3 и 2

Прямое произведение: пример 2

Зигзаги (или заборы) ${f Z}_3$ и ${f Z}_4$



Прямое произведение $\,{f Z}_3 imes {f Z}_4 \,$

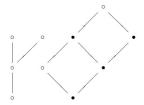
Теорема Оре

Теорема

Каждый частичный порядок изоморфен некоторому подмножеству декартова произведения цепей.

Определение

Mультипликативной размерностью ч.у. множества ${f P}$ называется наименьшее число k линейных порядков ${f L}_i$ таких, существует вложение ${f P}\hookrightarrow {f L}_1\times\ldots\times{f L}_k$.



Разделы

- 1 Основные понятия теории ч.у. множеств
- 2 Операции над ч.у. множествами
- Пинеаризация
- 4 Задачи с решениями
- Модели Крипке
- 6 Что надо знать

Представление $\mathbf{P} = \langle P, \leqslant \rangle$ в виде пересечения цепей

Теорема (Шпильрайна, принцип продолжения порядка)

- Любой частичный порядок

 может быть продолжен до линейного на том же множестве.
- Каждый порядок есть пересечение всех своих линейных продолжений (линеаризаций).

$$\mathbf{P} \to \mathbf{L}, \qquad \mathbf{P} = \mathbf{L}_1 \cap \ldots \cap \mathbf{L}_{e(\mathbf{P})},$$

где $e(\mathbf{P})$ — множество всех линеаризаций ч.у. множества $\mathbf{P}.$

Доказательство (для конечного случая, |P|=n)

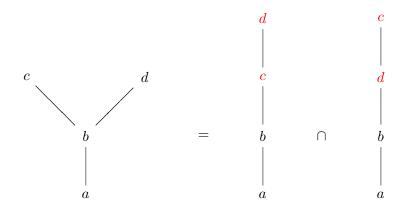
О Если Р — не цепь, то в Р найдутся несравнимые элементы; произвольно определим порядок на них и продолжим его по транзитивности. Если получившиеся ч.у. множество ещё не цепь, то выберем новую пару несравнимых элементов и поступаем, как указано выше. Через конечное число шагов получаем линейный порядок.

Топологическая сортировка

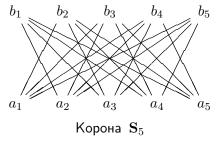
- (продолжение). Т.к. возможен различный выбор пар несравнимых элементов и при каждом выборе можно полагать любой их порядок, то можно получить все возможные линейные продолжения исходного частичного порядка.
- ② Пересечение всех таких цепей даст исходное ч.у. множество: если $x \leqslant y$, то аналогичное следование будет и во всех полученных линейных порядках, а при $x \nsim y$ всегда найдётся пара цепей с противоположным их следованием, что в пересечении цепей и даст несравнимость этих элементов.

Для конечных ч.у. множеств заданных парами вида $a \lessdot b$, поиск такого линейного продолжения в теоретическом программировании называют топологической сортировкой. Задача решается за линейное время.

Представление ч.у. множества пересечением цепей



Некоторые ч.у. множества



•

•

$\ll e(\mathbf{P}) = ? \gg - \mathsf{NP}$ -полная задача, но:

•
$$e(\mathbf{P} + \mathbf{Q}) = {n+m \choose n} e(\mathbf{P})e(\mathbf{Q}), \quad n = |\mathbf{P}|, m = |\mathbf{Q}|;$$

$$\bullet$$
 $e(\mathbf{2} \times \mathbf{n}) = \frac{1}{n+1} \binom{2n}{n}$ — числа Каталана;

$$\sum_{n \in \mathbb{Z}} \frac{e(\mathbf{Z}_n) x^n}{n!} = \operatorname{tg} x + \operatorname{sec} x,$$

значения \mathbf{Z}_n при чётных n- числа секанса, а при нечётных - числа тангенса;

$$\bullet \ e(\mathbf{S}_n) = (n+1)!(n-1)!;$$

$$\sum_{n\geq 1} \frac{e(\mathbf{s}_n)}{n!} \, x^n \, = \, \frac{x}{\cos^2 x} \, ;$$

$$\frac{\log(e(B^n))}{2^n} = \log\binom{n}{\lfloor n/2 \rfloor} - \frac{3}{2}\log e + o(1).$$

Вероятностное пространство на линеарезациях

При дискретных задач часто рассматривают связанное с ч.у. множеством P вероятностное пространство на множестве всех e(P) его линеаризаций, в котором каждая линеаризация равновероятна.

В этом пространстве для элементов $x,\,y,\,z,\,\dots$ ч.у. множества P рассматривают события E вида $x\leqslant y$, $(x\leqslant y)\otimes (x\leqslant z)$ и т.д.

Вероятность $\Pr\left[E\right]$ такого события:

$$\Pr\left[E
ight] = rac{$$
число линеаризаций, в которых имеет место $E \over e(\mathbf{P})$.

Теорема (XYZ-теорема)

Пусть
$$\langle P,\leqslant \rangle$$
 — ч.у. множество и $x,\,y,\,z\in P$. Тогда

$$\Pr[x \leqslant y] \cdot \Pr[x \leqslant z] \leqslant \Pr[(x \leqslant y) \otimes (x \leqslant z)].$$

Проблема сортировки и «1/3 – 2/3 предположение»

— определить линейный порядк ${f L}$ с помощью минимального количества вопросов «*верно ли, что х* < y ${f B}$ ${f L}$?».

<u>Обобщение:</u> L — зафиксированная, но неизвестная линеаризация ч.у. множества P.

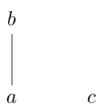
Оптимальная процедура поиска ${f L}$ включает в себя нахождение элементов x и y, для которых $\Pr\left[\,x < y\,
ight] pprox \frac{1}{2}.$

С.С. Кислицын (1968) высказал «1/3-2/3 предположение»: "любое не являющееся цепью ч.у. множество содержит пару несравнимых элементов x и y, для которых

$$\frac{1}{3} \leqslant \Pr\left[x \leqslant y\right] \leqslant \frac{2}{3}$$
".

Позднее это утверждение независимо выдвинули американские исследователи М. Фредман и Н. Линал.

1/3 - 2/3 предположение



Пример $\mathbf{2}+\mathbf{1}$ показывает, что указанные границы несужаемы (имеется и пример десятиэлементного ч.у. множества со связанной диаграммой Хассе).

Данное предположение до сих пор успешно противостоит всем попыткам его доказать и *представляет собой одну из наиболее интригующих проблем комбинаторной теории ч.у. множеств* (С. Фелснер и У.Т. Троттер).

На сегодняшний день наиболее сильный результат:

$$0,2764 \approx \frac{5-\sqrt{5}}{10} \leqslant \Pr[x \leqslant y] \leqslant \frac{5+\sqrt{5}}{10} \approx 0,7236.$$

Ч.у. множества: спектр

Определение:

$$Spec(\mathbf{P}) = \{ Pr[a \leq b] \mid a, b \in P, a \neq b \}$$

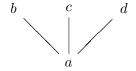
Ясно, что

- ullet поскольку $\Pr\left[\,a\leqslant b\,
 ight]\,=\,1-\Pr\left[\,b\leqslant a\,
 ight]$, спектр симметричен относительно $rac{1}{2}$;
- для всех неодноэлементных тривиально упорядоченных множеств $Spec = \left\{ \ \frac{1}{2} \ \right\};$
- ullet $\{0, \frac{1}{2}, 1\}$ единственный трёхэлементный спектр;
- все четырёхэлементные спектры должны иметь вид $\{\,0,\,\alpha,\,1-\alpha,\,1\,\}$, где $0<\alpha<\frac{1}{2}$; Гипотеза (2002): $\alpha=\frac{1}{3}$.

Ч.у. множества: размерность

По теореме Шпильрайна ч.у. множество ${f P}$ совпадает с пересечением всех $e({f P})$ своих линеаризаций, но тот же результат можно получить, взяв значительно меньшее число линейных продолжений.

Например, ч.у. множество ${f P}$



имеет 6 линеаризаций, но $\mathbf{P} = [a, b, c, d] \cap [a, d, c, b]$. Пусть \mathbf{P} — ч.у. множество и $\mathcal{R} = \{\mathbf{L}_1, \dots, \mathbf{L}_k\}$ — совокупность цепей такая, что $\mathbf{P} = \mathbf{L}_1 \cap \dots \cap \mathbf{L}_k$, то говорят, что \mathcal{R} реализует \mathbf{P} .

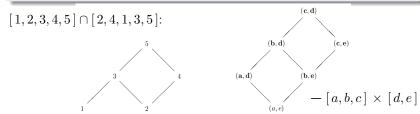
Ч.у. множества: размерность...

Определение

Наименьшее число линейных порядков, дающих в пересечении данное ч.у. множество ${\bf P}$ называется его *(порядковой) размерностью* (символически $\dim(P)$).

Теорема (Оре)

Порядковая и мультипликативная размерности ч.у. множества совпадают.



$\dim(\mathbf{P})$ — более тонкая оценка ч.у. множества, чем $e(\mathbf{P})$

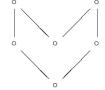
Размерность ... имеют:

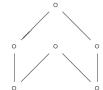
- только цепи;
- 2 тривиально упорядоченные множества

(т.е. размерность не может интерпретироваться как мера отличия данного ч.у. множества от линейного);

- $-\mathbf{Z}_n$;
- все отличные от цепей ч.у. множеств, при $|P| \leqslant 6$, кроме
- $3 s_3$, sh и sh^d (см. диаграммы) :

$$\mathbf{n} - \mathbf{S}_n$$





O размерности ч.у. множества $\mathbf{P} = \langle P, \leqslant \rangle$

- ullet $arnothing arphi
 eq Q \subseteq P \Rightarrow \dim(\mathbf{Q}) \leqslant \dim(\mathbf{P})$, при удалении 1-го элемента его размерность уменьшается не более, чем на 1;
- $\dim(\mathbf{P} + \mathbf{Q}) = \max \{ \dim(\mathbf{P}), \dim(\mathbf{Q}) \}$, если хотя бы одно из множеств не является цепью и $\dim(\mathbf{P} + \mathbf{Q}) = 2$;
- $\dim(\mathbf{P} \times \mathbf{Q}) \leqslant \dim(\mathbf{P}) + \dim(\mathbf{Q});$
- ullet $\dim(\mathbf{P})\leqslant |\mathbf{P}|/2$ при $|\mathbf{P}|\geqslant 4$ (теорема Хирагучи).

Теорема («компактности»)

Пусть ${f P}-$ такое ч.у. множество, что любое его конечное ч.у. подмножество имеет размерность, не превосходящую d. Тогда $\dim({f P})\leqslant d.$

$$wp1: \frac{n}{4}\left(1-\frac{c_1}{\log n}\right) \leqslant \dim(\mathbf{P}) \leqslant \frac{n}{4}\left(1-\frac{c_2}{\log n}\right), n=|\mathbf{P}|.$$

d-несводимые ч.у. множества

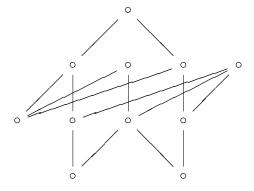
Определение

Ч.у. множество ${\bf P}$ называется d-несводимым для некоторого $d\geqslant 2$, если $\dim({\bf P})=d$ и $\dim({\bf P}')< d$ для любого собственного ч.у. подмножества $P'\subset P$.

... несводимые множества:

- 2 двухэлементная антицепь (единственное);
- ${f 3}-{f s}_3,{f sh},{f sh}^d+...-$ описаны, регулярны и хорошо изучены;
- 4 достаточно часто встречаются и весьма причудливы;
- $\mathbf{t} \mathbf{S}_t$ (единственное 2t-элементное) + ...;
 - каждое t-несводимое ч.у. множество является ч.у. подмножеством некоторого (t+1)-несводимого.

4-несводимое ч.у. множество



Проблема Ногина

Каково наибольшее значение $\pi(d,\,n)$ мощности множества максимальных элементов d-несводимого n-элементного ч.у. множества при $d\geqslant 4$?

Данная проблема до сих пор остаётся открытой.

Утверждение

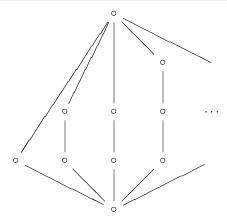
$$\pi(d,n) \leqslant n-d$$
.

- Основные понятия теории ч.у. множеств
- Операции над ч.у. множествами
- 4 Задачи с решениями
- Модели Крипке

Вопрос ЧУМ-1: Есть ли разница между утверждениями

- Ч.у. множество содержит (а) бесконечную цепь и
- (6) цепь, длина которой больше наперёд заданного числа"?

Ответ:



Приведите пример ч.у.м., имеющего в точности один максимальный элемент и не имеющего наибольшего.

Решение.

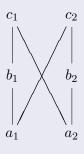
B ч.у. множестве $\langle \, \mathbb{N}, \, | \, \rangle$ для подмножества $A = \{12, \, 18\}$ найти

- \bullet A^{\triangle} :
- $\mathbf{Q} \quad A^{\nabla}$;
- \odot sup A;
- \bullet inf A.

Решение.

- \bullet $A^{\triangle} = \{36n \mid n = 1, 2, \dots\};$
- $A^{\nabla} = \{1, 2, 3, 6\};$
- \bullet sup A = HOK (12, 18) = 36;
- \bullet inf A = HOД(12, 18) = 6.

Разложить в пересечение минимального количества цепей ч.у. множество **P**



Решение.

$$\mathbf{P} = [a_1, b_1, a_2, c_1, b_2, c_2] \cap [a_2, b_2, a_1, c_2, b_1, c_1].$$

Задачи с решениями

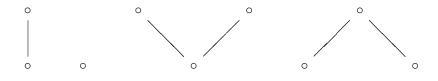
Задача ЧУМ-5

- Сколько существует частичных порядков на множестве $\{a, b, c\}$?
- Околько среди них неизоморфных?
- Околько среди них линейных порядков?

Задача ЧУМ-5...

Решение.

Неизоморфных трёхэлементных порядков 5: тривиальный, **3** и следующие



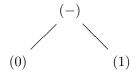
Они порождают порядки на
$$\{a,b,c\}$$
: тривиальный -1 , цепь $\mathbf{3}$ — $\mathbf{6}$, $\mathbf{2}+\mathbf{1}$ — $\mathbf{6}$, \mathbf{Z}_3 и двойственный к нему — по $\mathbf{3}$ Всего — $\mathbf{19}$

Постройте ч.у. множества I(1) и I(2) всех интервалов булевых единичных кубов размерностей 1 и 2.

Решение.

Булев единичный кубов размерности n содержит 3^n различных интервалов, при этом имеется $C_n^k 2^k$ интервалов размерности $k,\ k=0,\ 1,\ \dots,\ n.$

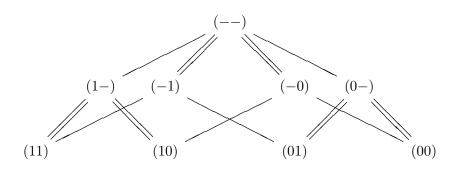
I(1):



Задача ЧУМ-6...

$$I(2) = I(1) \times I(1)$$

(двойными линиями показаны экземпляры I(1)):



- Основные понятия теории ч.у. множеств
- Операции над ч.у. множествами

- Модели Крипке

Интуиционистское исчисление высказываний ИИВ: формулы

Применение ч.у. множеств в математической логике модели Крипке как общего способа установления истинности формул логических исчислений.

Зафиксируем множества

- $Var = \{x, y, ...\}$ логических переменных символов атомарных высказываний;
- $\Phi = \{\neg, \&, \lor, \supset\}$ логических связок.

Определение

Формулой над множеством Φ логических связок называется либо некоторая логическая переменная (атомарная формула), либо одно из знакосочетаний вида $(\neg A), \ (A \otimes B), \ (A \vee B)$ или $(A \supset B)$ (молекулярная формула), где A и B — формулы.

 \mathcal{A} — множество всех логических формул.

ИВВ: экономия скобок и истинностные значения

Для сокращения записи формул принимают соглашения — правила экономии скобок и приоритета связок: внешние скобки у формул опускаются и сила связок убывает в порядке, указанном при их введении выше (> - «сильнее»)

$$\neg > \& > \lor > \supset$$

Каждая логическая переменная может принимать, вообще говоря, счётное множество *истинностных значений* $\{0,1,\ldots,\}$. Первое значение 0 назовём *выделенным*. Неформально выделенное значение символизирует «истину» (N) , а остальные — различные ситуации отсутствия истинности: неопределённость высказывания, различные формы его «ложности» (J) и т.д. В классической логике множество истинностных значений сужается до двух: $\{\mathsf{N},\mathsf{J}\}$ и выделенное — N .

ИИВ: аксиомы

Следующие формулы назовём схемами аксиом ИИВ:

- $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C));$

- **⑤** A ⊃ (B ⊃ (A ⊗ B));
- $\bullet A \supset A \vee B;$

Аксиомы ИВВ получаются при подстановке в схемы конкретных формул вместо метасимволов A, B и C.

ИИВ: правило вывода и выводимые формулы

В ИИВ имеется единственное правило вывода, обозначаемое MP (лат. $modus\ ponens$, правило отделения), позволяющее из формул A и $A \supset B$ получить формулу B:

$$A, A \supset B \vdash B$$

Формула A называется выводимой, если найдётся конечная последовательность формул $A_1,\,\dots,\,A_l$ такая, что $A_l=A$ и каждый элемент последовательности

- либо является аксиомой,
- либо получен по правилу *MP* из каких-то двух предыдущих формул.

Выводимость формулы A записывается как $\vdash A$, в случае отсутствия вывода пишут $\not\vdash A$.

ииб: пример вывода формулы

Приведём вывод формулы $x \lor y \supset y \lor x$.

Для удобства формулы вывода будем писать друг под другом, нумеруя их и давая краткие комментарии по их получению.

- (1) $x \supset y \lor x$ подстановка в схему 7
- (2) $y\supset y\vee x$ подстановка в схему 6
- $(3) \quad (x \supset y \lor x) \supset ((y \supset y \lor x) \supset (x \lor y \supset y \lor x)) \qquad -$ подстановка в аксиому $8: \ A \mapsto x, \ B \mapsto y, \ C \mapsto y \lor x$
- $(4) \quad (y \supset y \lor x) \supset (x \lor y \supset y \lor x) \qquad \text{ no MP us } (1) \text{ u} \ (3)$
- (5) $x \lor y \supset y \lor x$ по MP из (2) и (4)

Напоминание:

- $\bullet A \supset A \vee B; \qquad \bullet B \supset A \vee B;$

ИИВ: выводимость из множества формул

Пусть Γ — конечное множество формул.

Формула B называется выводимой из множества формул Γ (символически $\Gamma \vdash B$), если найдётся конечная последовательность формул B_1, \ldots, B_l такая, что $B_l = B$ и каждый элемент этой последовательности

- либо является аксиомой,
- либо принадлежит Γ ,
- либо получен по правилу МР из каких-то двух предыдущих формул.

Факт выводимости $\Gamma \vdash B$ не изменится, если вместо множества Γ взять конъюнкцию составляющих его формул, так что можно рассматривать только одноэлементные множества Γ и опуская фигурные скобки, писать $A \vdash B$. Знак \vdash является символом отношения предпорядка на множестве A.

Проблема выводимости —

- одна из важнейших проблем любого логического исчисления L: «выводима ли в L данная формула?».
- $\vdash A$ можно либо предъявить соответствующий вывод, либо доказать его существование;

Метатеория — теория, изучающая язык, структуру и свойства некоторой другой (*предметной*, или *объектной*) теории:

- корректность,
- непротиворечивость,
- различные виды полноты,
- проблема разрешимости,
- независимость систем аксиом и правил вывода

Если к схемам аксиом добавить ещё одну:

$$A \lor \neg A$$
 — логический закон TND (лат. $tertium\ non\ datur$, «третьего не дано»),

то получим классическое исчисление высказываний КИВ.

Тогда каждой логической переменной можно приписать одно из двух истинностных значений ${\bf 1}$ или ${\bf 0}$, понимаемых как «истина» и «ложь» соответственно, и по правилам

$$|\neg A| = \mathbf{1} \Leftrightarrow |A| = \mathbf{0};$$
 $|A \otimes B| = \mathbf{1} \Leftrightarrow |A| = |B| = \mathbf{1};$
 $|A \vee B| = \mathbf{0} \Leftrightarrow |A| = |B| = \mathbf{0};$
 $|A \supset B| = \mathbf{1} \Leftrightarrow |B| = \mathbf{1}$ или $|A| = \mathbf{0}.$

получить оценку $|F| \in \{1, 0\}$ любой формулы F.

КИВ: тавтологии

Формулы, истинные при любых интерпретациях — возможных вариантах приписываний логическим переменным значений (1 или 0) — называются тавтологиями.

Примеры: все аксиомы 1–11, $\neg \neg x \supset x$, $\neg (x \lor y) \supset \neg x \& \neg y$, ...

В КИВ выводимыми оказываются все тавтологии и только они \Rightarrow проблема выводимости сводится к проверке формулы на тавтологичность.

В ИИВ задача радикально усложняется: это исчисление не имеет конечнозначной интерпретации, т.е. если в любом конечном наборе $Tr=\{\,{\bf 0},\,1,\,\ldots,\,k-1\}\,$ объявив значение $\,{\bf 0}\,$ выделенным и задав правила оценки формул так, чтобы при всех интерпретациях переменным из Var значений из Tr все аксиомы всегда принимали бы только значение $\,{\bf 0}\,$, найдётся невыводимая формула ИИВ такая, что её оценка тоже всегда будет принимать выделенное значение.

ИИВ: проблема разрешимости

- Любая выводимая в ИИВ формула выводима и в КИВ.
- Обратное неверно: например, формулы, получаемые из схемы TND и $\neg \neg x \supset x$, $\neg (x \lor y) \supset \neg x \& \neg y$, ... невыводимы в ИИВ.

Для разрешения проблемы выводимости в ИИВ применим метод, основанный на построении *шкал Крипке*.

Сол Крипке (Saul Aaron Kripke, 1940)

- американский философ и логик, один из десяти выдающихся философов последних 200 лет.
- Ещё юношей внёс значительный вклад в математическую логику, философию математики и теорию множеств.

Шкалы Крипке: построение

Чтобы задать такую шкалу нужно:

- ullet указать ч.у. множество $\langle W,\leqslant
 angle$, элементы носителя которого называют *мирами*;
- для каждого мира указать, какие из логических переменных в нём являются истинными (остальные переменные в этом мире ложны).

Факт истинности переменной x в мире w записывают символически $w \Vdash x$, ложности — $w \not\Vdash x$. При формировании шкалы Крипке требуется, чтобы

$$u \leqslant v \text{ in } u \Vdash x \Rightarrow v \Vdash x$$

т.е., как говорят, «область истинности переменной наследуется вверх» или «сохраняется в больших мирах».

Шкалы Крипке: интерпретация порядка и формальное определение

Неформально порядок $u\leqslant v$ между мирами интерпретируется как то, что мир v есть состояние мира u в следующий момент времени, понимая время не в физическом, а в логическом смысле: каждый мир описывается состоянием знаний в данный момент и однажды установленная истинность или доказанный факт остаётся таковым и впоследствии.

Логическое время не обязательно обладает линейным порядком.

Определение

Шкала Крипке есть тройка $\langle W, \leqslant, \Vdash \rangle$, где редукт $\langle W, \leqslant \rangle$ — ч.у. множество, а $\Vdash \subseteq W \times Var$ — соответствие «один ко многим», ставящее каждому миру совокупность истинных в нём логических переменных и удовлетворяющее условию наследования истинности.

Шкалы Крипке: истинность формулы в мирах

Для построенной шкалы Крипке определим истинность данной формулы A в любом мире w:

$$\begin{array}{l} w \Vdash A \otimes B \ \Leftrightarrow \ w \Vdash A \ \text{и} \ w \Vdash B; \\ w \Vdash A \lor B \ \Leftrightarrow \ w \Vdash A \ \text{или} \ w \Vdash B; \\ w \Vdash A \supset B \ \Leftrightarrow \ \forall (u \geqslant w) \ u \Vdash B \ \text{или} \ u \not\Vdash A; \\ w \Vdash \neg A \ \Leftrightarrow \ \forall (u \geqslant w) \ u \not\Vdash A. \end{array}$$

Данные правила обеспечивают условие наследования истинности.

Введённые шкалы Крипке задают *семантику* ИИВ, придавая смысл формулам — разделяя их на истинные и ложные в данном мире.

Шкалы Крипке: теорема корректности

Теорема (корректности ИИВ относительно шкал Крипке)

Формула, выводимая в ИИВ, истина во всех мирах всех шкал Крипке.

Доказательство

Покажем, что все аксиомы истины во всех мирах, а правило MP сохраняет истинность.

Второе очевидно: если и A, и $A \supset B$ истины во всех мирах, то B будет также истина во всех мирах.

Чтобы в мире w проверить

- истинность импликации $A \supset B$ надо удостовериться, что $w \Vdash A \Rightarrow w \Vdash B \ (w \not\Vdash A \text{ эта импликация подавно истина});$
- ullet ложность импликации $A\supset B$ надо удостовериться, что $w\Vdash A\Rightarrow w\not\Vdash B.$

Шкалы Крипке: теорема корректности...

Доказательство (продолжение)

Проверим 1-ю аксиому $A \supset (B \supset A)$.

Если в некотором мире u имеет место $u \Vdash A$, то во всех мирах $v \geqslant u$ (в том числе и в u) справедливо $v \Vdash B \supset A$.

Проверим 2-ю аксиому $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$. Пусть существует мир u, где она ложна и тогда в нём должны быть истины формулы $A \supset (B \supset C)$, $A \supset B$ и A, а C — ложна. Но из $u \Vdash A$ и $u \Vdash A \supset B$ следует $v \vDash B$ во всех мирах $v \geqslant u$. При $u \vDash A \supset (B \supset C)$ это означает справедливость $w \vDash C$ во всех мирах $w \geqslant v$.

Отсюда следует справедливость $u \models C$ — противоречие.

Остальные аксиомы проверяются аналогично и ещё проще.

Шкалы Крипке: теорема корректности — важное ...

Следствие

Для доказательства невыводимости формулы в ИИВ достаточно указать шкалу Крипке, в одном из миров которой она ложна.

Такая шкала называется контрмоделью для данной формулы.

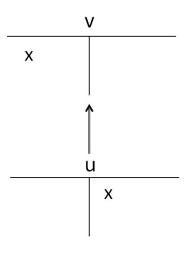
Существует контрмодель, являющаяся корневым деревом, в которой мир с ложной формулой — его корнем.

Пример

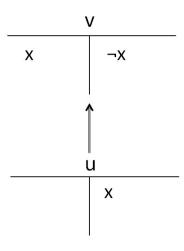
Постоим шкалу Крипке, содержащую мир, в котором формула $x \vee \neg x$ ложна.

Возьмём два мира u и v такие, что $u\leqslant v$, $u\not\Vdash x$ и $v\Vdash x$. Тогда $v\not\Vdash \neg x$, откуда $u\not\Vdash \neg x$, что, в свою очередь даёт $u\not\Vdash x\vee \neg x$ (но $v\Vdash x\vee \neg x$).

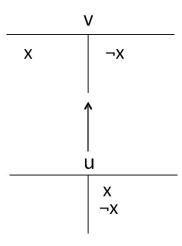
Контрмодель для $x \vee \neg x$ (1)



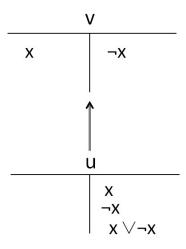
Контрмодель для $x \vee \neg x$ (2)



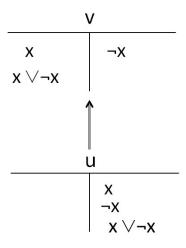
Визуализация контрмодели для $x \vee \neg x$ (3)



Контрмодель для $x \vee \neg x$ (4)



Контрмодель для $x \vee \neg x$ (5)



Контрмодель для $\neg x \lor \neg \neg x$

Пусть в некотором мире u данная формула ложна, т.е.

$$u \not\Vdash \neg x \vee \neg \neg x$$
.

Тогда
$$u \not \Vdash \neg x$$
 и $u \not \Vdash \neg \neg x$.

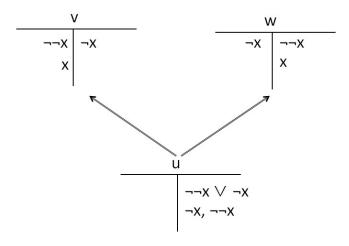
Построим два несравнимых между собой мира v и w, большие u, в которых:

- $v \not\Vdash \neg x \text{ in } v \vdash \neg \neg x$;
- \bullet $w \not\Vdash \neg \neg x \quad w \Vdash \neg \neg x.$

Искомая контрмодель получена:

- правила истинности и ложности формул в модели соблюдены;
- ullet формула x будет истинна только в мире v.

Контрмодель для $\neg x \lor \neg \neg x$...



Шкалы Крипке: применение

- Метод автоматической верификации параллельных вычислительных систем (англ. model checking), позволяет проверить, удовлетворяет ли заданная модель системы формальным спецификациям. В качестве модели обычно используют шкалы Крипке, а для спецификации аппаратного и программного обеспечения — темпоральную (временную) логику.
- Модальные логики формализуют сильные и слабые модальные выражения вида «необходимо/возможно», «всегда/иногда», «здесь/где-то» и т.д. Заменив в определении шкалы Крипке частичный порядок на
 - отношение толерантности получим семантику для брауэровой логики B;
 - аморфное отношение семантику для логики *S5*;
 - диагональное модель для модальной логики М.

Разделы

- 1 Основные понятия теории ч.у. множеств
- 2 Операции над ч.у. множествами
- Пинеаризация
- 4 Задачи с решениями
- Модели Крипке
- 6 Что надо знать

- Частично упорядоченные (ч.у.) множества: определение, примеры, основные понятия. Диаграммы Хассе и особые элементы ч.у. множеств.
- Ранжированные ч.у. множества. Цепное условие Жордана-Дедекинда. Порядковые гомоморфизмы
- Идеалы и фильтры ч.у. множеств. Конусы. Точные грани.
- Операции над ч.у. множествами.
- Теорема Шпильрайна. Линейное продолжение ч.у. множества и топологическая сортировка.
- Линеаризации и вероятностное пространство над ними. XYZ-теорема. Проблема сортировки и $\ll 1/3 - 2/3$ предположение».
- Спектр и размерность ч.у. множеств. Свойства размерности, *d*-несводимые множества и проблема Ногина.

• Модели Крипке для интуиционистской логики высказываний.