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Learning with binary loss

Xt ={xq,...,x } — a finite universe set of objects
A={a1,...,ap} — a finite set of classifiers

I(a, x) = [classifier a makes an error on object x| — binary loss

Loss matrix of size Lx D, all columns are distinct:

ai an as as as ae s ap
X 1 1 0 o0 o0 1 1 | X —observable
0o 0o o0 o 1 1 1 | training sample
Xe 0 o0 1 0 0 O 0 | of size £
41|/ 0 0 0 1 1 1 0 | X— hidden
0o o o0 1 o0 O 1 | testing sample
Xt 0 1 1 1 1 1 0 | odsizek=L—/¢
L . e
a (I(a,x;));_, — binary loss vector of classifier a

v(a,X) = ﬁ Z;( I(a,x) — error rate of a on a sample X C Xt
x€
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Example. The loss matrix for a set of linear classifiers

1 vector having no errors

Nno errors
X1
X2
X3
X4
X5
X6
X7
X3
Xg

X10

[elelololelolelolel ]
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Example. The loss matrix for a set of linear classifiers

X1
X2
X3
X4
X5
X6
X7
Xg
X9
X10

no errors 1 error

[elelololelolelolel ]
[elelololelalelela)y
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1 vector having no errors
5 vectors having 1 error
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Example. The loss matrix for a set of linear classifiers

no errors

[elelololelolelolel ]

[elelololelalelela)y

1 error

[elelololelaleola) o]
[elelololelole] Jolo]
[elelololelol dolol]
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1 vector having no errors
5 vectors having 1 error
8 vectors having 2 errors

2 errors
0
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Probability of large overfitting

w: X +— a — learning algorithm

V(,uX, X) — training error rate

v(uX, X) — testing error rate

6(p, X) = v(uX, X) —v(uX, X) — overfitting of pon X and X

Axiom (weaken i.i.d. assumption)

XL is not random, all partitions Xt = X LI X are equiprobable,
X — observable training sample of a fixed size ¢,
X — hidden testing sample of a fixed size k, L=/{+ k

Def. Probability of large overfitting
Qe(i, X5) = P[6(n, X) > €] = 7 > [6(u X) > €]
L cxt
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Bounding problems

@ Probability of large overfitting:
Q(1, Xb) = P[8(u, X) > €] <7
@ Probability of large testing error:
Re(p, X5 = P[v(uX,X) > €] <7
@ Expectation of OverFitting:
EOF (i1, Xb) = Eo(p, X) <2

@ Expectation of testing error (Complete Cross-Validation):

CCV(u,Xh) = Ev(uX,X) <?
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Links to Cross-Validation

Taking expectation is equivalent to averaging over all partitions.
Expected testing error also called Complete Cross-Validation:

Usual cross-validation techniques (e.g. hold-out, t-fold, gxt-fold,
partition sampling, etc.) can be viewed as empirical measurement
of CCV by averaging over a subset of partitions.

Leave-One-Out is equivalent to CCV for the case k = 1.

:) Combinatorial functionals Q., R., CCV, EOF can be easily
measured empirically by generating ~ 103 random partitions.
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Links to Local Rademacher Complexity

Def. Local Rademacher comp/exity of the set A on Xt

1, b. 1
R(A, XL)_E sup—Za, (a,xi), oi = * pro %
acA —1, prob. 5
01,...,0, — independent Rademacher random variables.

Expected overfitting is almost the same thing for the case ¢ = k:

L -
+1 X,'GX

EOF(u, Xt) = Esu —E:a, a, X o = '
(Iu ) aeg ; ) —1, X,‘GX

where p is overfitting maximization (very unnatural learning!):

uX = arg Téax(u(uX,)_() — V(,uX,X))
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Links to usual SLT framework

Usual probabilistic assumptions:
XL is i.i.d. from probability space (2", o, P) on infinite 2"

Transferring of combinatorial generalization bound to i.i.d.
framework first used in (Vapnik and Chervonenkis, 1971):

© Give a combinatorial bound on probability of large overfitting:
PXNXL [6(:“’)() 2 5] = QE(N’aXL) < 77(5,XL)

© Take expectation on XL

Pxngrt xmare [V(nX, X) = v(pX, X) > €] =
= ExL QE(ILL,XL) g ExL 7](€,XL).
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Splitting-Connectivity graph (1-inclusion graph)

Define two binary relations on classifiers:
partial order a < b: 1(a,x) < I(b,x) for all x € X*;
precedence a < b: a < b and Hamming distance ||b — a|| = 1.

Definition (SC-graph)

Splitting and Connectivity (SC-) graph (A, E):
A — a set of classitiers with distinct binary loss vectors;
E={(a,b): a=< b}.

Properties of the SC-graph:
@ each edge (a, b) is labeled by an object x,, € X! such that
0=1(a,xap) < I(b,xsp) = 1;
@ multipartite graph with layers
An={acAv@@XxXhy=2} m=0,...,L+1;
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Example. Loss matrix and SC-graph for a set of linear classifiers

layer O
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10

[elelolololololelefe]
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Example. Loss matrix and SC-graph for a set of linear classifiers

layer O layer 1
X1 0 1 0 0 0 O
X2 0 0 1 0 0 O
X3 0 0 0 1 0 O
X4 0 0 0 0 1 0
X5 0 0 0 0 0 1
X6 0 0 0 0 0 O
X7 0 0 0 0 0 O
Xg 0 0 0 0 0 O
Xg 0 0 0 0 0 O
X10 0 0O 0 0 0 O
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Example. Loss matrix and SC-graph for a set of linear classifiers

K> 7] layer 2
\‘\W layer 1
— L L — 1 fal
-4 -2 o 2 4 6 8 10 12 |dycl \vJ

layer O layer 1 layer 2
X1 0 1 0 0 0 0|1 0 0 O 0 1 1 O
X2 0 0o 1 0 0 O0Of1 1 0 O O O O O
X3 0 o 0 1 0o 0fO0O 1 1 0 O O O 1
X4 0 o 0o o 1 0of0O O 1 1 O O O O
X5 0 o 0 0 0 1(0 O O 1 1 1 0 O
X6 0 0o 0 0 0o 00O O O O 1 0 1 O
X7 0 0o 0 0 0 0flO O O O O O O0 1
Xg 0 0o 0 0 0 0|0 O O O O O O O
Xo 0 0o 0 0 0 00O O O O O O O O
X10 0 0o 0 0 0 0|O O O O O O O O
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Connectivity and inferiority of a classifier

Def. Connectivity of a classifier a € A:
u(a) = #{Xab eXxtia< b} — up-connectivity,
d(a) = #{xpa € XL: b < a} — down-connectivity.
Def. Inferiority of a classifier a € A
g(a) = #{x»€Xt: Ib c < b< a}

Inferiority:

d@)<q@) <m@x) TN A A A7
Example: mr \< x xz >/
u(a) = #{x3,x4} =2 m- \< 3&’2 >/

d(a) = #{x1,x2} =2 B x2 xl_ A
gla) =#{xI,x2} =2  m-1-
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The Splitting—Connectivity (SC-) bound

Empirical Risk Minimization (ERM) — learning algorithm p:
uX € A(X), A(X) = Arg mi/r41 v(a, X)
ac

Theorem (SC-bound)

For any X, A, ERM p, and ¢ € (0,1)
Cf:Z— l—u, m—
Q<Y TH, % (e),

L L—u—q
acA CL

where m = LI/(a,XL), u=u(a), q=q(a),

[(m—ek)e/L] Cs Cﬁ—s

Hf’ T(e) = Z # — hypergeometric tail function.
s=0 L
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The properties of the SC-bound

Clo g

—u—q —u,m—q

Q: < Z Cct HL*U*q (5)
acA L

© If |[A] =1 then SC-bound gives an exact estimate of testing
error for a single classifier:

Q. ~Plota %)~ vl X) > 2 - H7 ()

—e

@ Substitution u(a) = g(a) = 0 transforms the SC-bound into
Vapnik—Chervonenkis bound:

=k
Q<Y HI"(e) < A3
acA
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Splitting-Connectivity bounds

The properties of the SC-bound

—
< CL Z qHZ u, m—q
Q< Z Cé L—u—q (€)
acA

@ The probability to get a classifier a as a result of learning:

c
PluX = a] < —2—4
[uX = 4] c

© The contribution of a € A decreases exponentially by:
u(a) = connected sets are less subjected to overfitting;
g(a) = only lower layers contribute significantly to Q..

© The SC-bound is exact for some nontrivial sets of classifiers.
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Monotone chain of classifiers

Def. Monotone chain of classifiers: ag < a1 < --- < ap.

Example: 1-dimensional threshold classifiers aj(x) = [x — 6;];

2 classes {e, 0} X¢ X5 X X1 X2 X3 X
6 objects * * o } } I
! b 61 6, 03
SC-graph Loss matrix:
3 @) %
X3
X1 0 1 1 1
e @ wlo o 1 1
X2 X3 0 0 0 1
=] e @ Xa 0 0 0 0
X1 X5 0 0 0 0
m=0 - @ X6 0 0 0 0
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Two-dimensional monotone lattice of classifiers

Example: X5 X3, 0xq
. ° o O
2-dimensional linear classifiers, TN
2 classes {e, 0}, a01 ° ° °
. X2 X4 X6
6 objects aio

402 ail a0

SC-graph: Loss matrix:

doo 401 410 402 d11 420 403 412 421 430
x[/0 1 0 1 1 0 1 1 1 O
/0 0 1 0 1 1 0 1 1 1
x30 0 0 1 0 0 1 1 0 O
x[0 0 0 0 0 1 0 0 1 1
xx[0 0 0 0 0 01 0 0 O
xx|0 0 0 0 0 0 0 0 0 1
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Sets of classifiers with known combinatorial bounds

Model sets of classifiers with exact SC-bound:
@ monotone and unimodal n-dimensional lattices (Botov, 2010)
@ pencils of monotone chains (Frey, 2011)
@ intervals in boolean cube and their slices (Vorontsov, 2009)
@ Hamming balls in boolean cube and their slices (Frey, 2010)
@ sparse subsets of lattices and Hamming balls (Frey, 2011)
Real sets of classifiers with tight computable SC-bound:
@ conjunction rules (lvahnenko, 2010)
@ linear classifiers (Sokolov, 2012)
@ decision stumps or arbitrary chains (Ishkina, 2013)
Real sets of classifiers with exact computable not-SC bound:
@ k nearest neighbor classification (Vorontsov, 2004; lvanov, 2009)
@ isotonic separation (Vorontsov and Makhina, 2011; Guz, 2011)
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Some theoretical and practical results for model sets

© Necessary and sufficient conditions for the SC-bound exactness:
1) a graph must have unique source and unique sink
2) for any a € A with n outgoing edges a set A must contain
an n-dimensional cube induced by these edges
(Zhivotovskiy, 2012)

© Low-dimensional unimodal lattice can be used to approximate
a set of rules in decision tree nodes.
This helps to find less overfitted node splits
(Botov, 2011)

© Covering a set of classifiers A by slices of Hamming balls helps

to obtain tighter generalization bound
(Frey, 2013)
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Splitting gives an idea of effective SC-bound computation

All classifiers A

from lower layers
—of the set A

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of overfitting
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SC-bound computation via Random Walks

1. Learn a good classifier
2. Run a large number of short walks to get a subset B C A

3. Compute a partial sum Q- ~ > contribution(a)
aeB

Special kind of Random Walks for multipartite graph:
1) based on Frontier sampling algorithm

2) do not permit to walk in higher layers of a graph
3) estimate contributions of layers separately

Simple random walk: Random walk with gravitation:

320 265

200 260
255
280
250

260 245

240
0 500 1000 1500 2000 0 500 1000 1500 2000
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Open problem: making bounds observable

Seems to be a big problem: B
SC-bound depends of a full loss matrix including a hidden sample X

Really EOF (1, X) is well concentrated near to EOF (1, X1):
Experiments on model data, L = 60, testing sample size K = 60

L=K=60
L
0 ol
EOF(u, X )02 oo oo’,.w'
065 .
0560
055 0 o® o°

0.50 d

045 M ¢
040 >
035 @‘9 L

0.30
025
0.20
0.15
0.10
0.05

005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 EOF([,L X)
)
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Ensembles of low-dimensional Linear Classifiers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

Ensemble learning

2-class classification problem:
(xi,yi)b, — training set, x; € R", y; € {—1,+1}

Ensemble — weighted voting of base weak classifiers b;(x):
T
a(x) = sign Z wy by (x)
t=1

The main idea:
to apply generalization bounds for a family of base classifiers

Our goals:
1) to reduce overfitting of base classifiers
2) to reduce T — the complexity of composition
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Learning ensembles of Conjunction Rules

Conjunction rule is a simple well interpretable 1-class classifier:

500 = NG S5 6],
jed
where f;(x) — features
J C{1,...,n} — a small subset of features
6; — thresholds
S — one of the signs < or >
y — the class of the rule

Weighted voting of rule sets R, y € Y-

a(x) = arg max E w,r(x)
vey
rery

We use SC-bounds to reduce overfitting of rule learning
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Classes of equivalent rules: one point per rule

Example: separable 2-dimensional task, L = 10, two classes.
rules: r(x) = [A(x) < 61] A [f(x) < 62].

02 10k @ .4 .8 . 8 4 s
ol @02 .% .*
I A O I P B P P PR
7k % 2 L2
6 la_l [2— P e
51 4 3 2 T
al ot .°
Al bs | o
2t I°N
il : L [ |
ok 5

. .
0 1 2 3 4 5 6

\‘4
ol
©
>

'5"5

[ O Class0(5) * Class1(5)]
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Classes of equivalent rules: one point per class

Example: the same classification task. One point per class.
rules: r(x) = [A(x) < 61] A [f(x) < 62].

0> o 5 4 3 2 3 4 5
ol 2 3 4
ol 6 5 /4 s | 2 |3
L 1 0 1 2
ol 3 1 2 |3
sl 3 2 3 4
il L4 |5
ol 4
J 5
i
ol V5

o 1z s 4 s & 1 8 s 0 @

[ O cussos # Classi(5)]
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Classes of equivalent rules: SC-graph

Example: SC-graph isomorphic to the graph at previous slide.

5 ////i;;j%f%u A
4
3
2 @
1
0
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Experiment on UCI real data sets. Results

‘ | tasks ‘
Algorithm austr | echo | heart | hepa | labor | liver
RIPPER-opt 155 | 297 | 19.7 | 20.7 | 18.0 | 32.7
RIPPER+opt 152 | 553 | 20.1 | 23.2 | 18.0 | 31.3
C4.5(Tree) 142 | 551 | 208 | 188 | 147 | 37.7
C45(Rules) || 1565 | 6.87 | 20.0 | 188 | 14.7 | 37.5
C5.0 140 | 430 | 21.8 | 20.1 | 184 | 31.9
SLIPPER 157 | 434 | 194 | 174 | 12.3 | 32.2
LR 148 | 430 | 199 | 188 | 14.2 | 32.0

| our WV | 149 [ 437 [20.1 | 19.0 [ 14.0 | 32.3 |

| our W + CS [ 14.1 [32 [193 [18.1 [13.4 [30.2]

Two top results are highlighted for each task.

Vorontsov K. V., Ivahnenko A. A. Tight Combinatorial Generalization Bounds
for Threshold Conjunction Rules // LNCS. PReMI'11, 2011. Pp. 66-73.
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Liner classifiers and ensembles

Linear classifier: a(x) = sign(w, x)
Ensemble of low-dimensional linear classifiers

T
a(x) = sign Z th(ws, x)

Random Walks for SC-bound computation
1) find all neighbor classifiers in the dual space:

2) lookup along random rays
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Experiment 1: ensemble of liner classifiers

| | statlog | waveform | wine | faults |

ERM + MCCV 85,35 87,56 71,63 | 73,62
ERM + SC-bound 85,08 87,66 71,08 | 71,65
LR + MCCV 84,04 88,13 71,52 | 70,86
LR 80,77 87,34 71,49 | 71,09
PacBayes DD 82,13 87,17 64,68 | 67,67

The percentage of correct predictions on testing set (averaged
over 5 partitions). Two top results for every task are shown in bold.

Feature selection criteria:
@ ERM — learning by minimizing error rate from subset

of classifiers sampled from random walks
@ LR — learning by Logistic Regression
@ MCCV — Monte-Carlo cross-validation
@ DD — PAC-Bayes Dimension-Dependent bound (Jin, 2012)
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Experiment 2: comparing bounds for Logistic Regression

All bounds are calculated from subset generated by random walk
@ MC — Monte-Carlo bound (very slow)
@ VC — Vapnik—Chervonenkis bound
@ SC — Splitting-Connectivity bound
@ DD — Dimension-Dependent PAC-Bayes bound (Jin, 2012)

UCI Task Overfitting MC VC SC PAC DD
glass 0.029 0.078 | 0.211 | 0.140 0.738
liver 0.015 0.060 | 0.261 | 0.209 1.067
ionosphere 0.077 0.052 | 0.150 | 0.112 1.153
wdbc 0.055 0.032 | 0.071 | 0.043 0.705
australian 0.013 0.030 | 0.137 | 0.110 0.678
pima 0.007 0.028 | 0.159 | 0.127 0.749

Conclusions:
1) combinatorial bounds are much tighter than PAC-Bayes bounds
2) SC-bound initially proved for ERM fit well for Logistic Regression
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Conclusions

Combinatorial framework
@ gives tight (in some cases exact) generalization bounds
@ that can be computed approximately from Random Walks

@ bypass significantly state-of-art PAC-Bayesian bounds

Restrictions:
@ binary loss
@ computational costs

@ low sample sizes, low dimensions

Further work:
@ more effective approximations
@ bigger sample sizes, bigger dimensions

@ more applications
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