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INTRODUCTION

The problem of segmentation of stabilographic
time series occurred upon processing of results of bio!
mechanical measurements which were obtained using
the system of special chairs developed at special design
office “RITM” by the order of the laboratory of exper!
imental economics of the Moscow Institute of Physics
and Technology and Dorodnicyn Computing Center,
Russian Academy of Sciences. Visually each stabilo!
chair does not differ from a common office chair,
which allows participants of the experiment to com!
fortably control the process of making orders at labo!
ratory markets using computers connected into the
network. Data from stabilo!chairs are supplied to the
special server from which the whole measurement
process can be monitored. Highly sensitive sensors
installed on each chair fix the change of position of the
center of gravity of the participant body with a fre!
quency of 50 times per second. Psycho!physiologists
consider this information an important system char!
acteristic of the functional state of the participant [1].

The fragment of the stabilographic time series
obtained for one of the participants of the experiment
is shown in Fig. 1. Conventionally X corresponds to
the left–right motion of the body, Y, to forward–back!
ward, and Z, to up–down which is related with the sit!
ting person leaning on his legs. It can be seen from
Fig. 1 that each time series is naturally partitioned into
rather homogeneous segments. Inside each segment
oscillations about an average value take place. Then

the jump is observed and the signal is stabilized on a
new level. Jumps which separate one fragment from
another one are nonuniform.

This structure of the time series does not allow effi!
cient application of partitioning into equal segments
(for example, 30 s each) and the sliding window for
calculation of aggregated factors. This yields the prob!
lem of construction of an efficient numerical algo!
rithm providing automatic separation of sufficiently
homogeneous fragments convenient for subsequent
processing. This algorithm was created based on the
hidden Markov model.

This approach to segmentation was generalized, as
applied to the group stabilography. It was important to
develop a tool for estimation of the mutual dependence
of functional states of participants in the course of mak!
ing economic decisions on the laboratory market.

Algorithms of segmentation filtering for several
time series and calculation of the factor based on the
specially aggregated canonical correlation coeffi!
cients, which estimate the likelihood of functional
states of participants for segments in the case of group
stabilography, were obtained.

The developed algorithm is applied to analysis of
the dynamics of the functional state of participants in
the course of one particular experiment on the infor!
mation efficiency of markets performed at the labora!
tory of experimental economics. The segmentation
method was used to achieve the proof of the hypothesis
on the connection of segmentation time instants of the
stabilogram of a participant with the time instants of
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signal actions on the laboratory market. Signal actions
on the market with private information correspond to
the idea of signal strategies in dynamic games with
incomplete information [2, 3].

It was possible to analyze the stabilographic time
series of all participants of the laboratory market. This
made it possible to prove the hypothesis of synchroni!
zation of functional states of participants of the labo!
ratory market at the time instant of natural culmina!
tion; in the experiment on information efficiency this
culmination is connected with the time instant of rev!
elation of private information and prices reaching the
equilibrium level with rational expectations [1, 4].

1. TIME SERIES SEGMENTATION 
ALGORITHM

The following time series segmentation problem is
solved: a given time series should be partitioned into
several adjacent segments such that data inside each of
these segments are homogeneous, but data in adjacent
segments, inhomogeneous (homogeneity and inho!
mogeneity are established using the predetermined
criterion).

Segmentation problems occur in many fields of sci!
ence and technology. The main methods for their
solution can be divided into two categories [5]:
sequential (on!line methods) and posterior (off!line
methods). In this paper, the a posteriori approach to
the time series segmentation is developed.

In most posterior methods either the case of two
segments is considered [5], or iterative numerical
algorithms are used in which the time of execution of

one iteration has the order , where  is the
length of the known realization of the time series [6].
It was necessary to develop a posterior method of the
time series segmentation which, on the one hand, pro!
vided the partitioning of the time series into an arbi!
trary number of segments, and on the other hand, had
lower time complexity.

In the proposed method based on the hidden
Markov model [7] the partitioning is obtained due to
the maximization of the likelihood function of the
hidden Markov model. This partitioning is “optimal”,
since from the probabilistic point of view it corre!
sponds to the local maximum of the likelihood func!
tion, and from the numerical point of view this parti!
tioning minimizes the sum of squared deviations of the
values of the time series from its average values calcu!
lated for the corresponding segments of homogeneity.
Note that the application of the hidden Markov model
does not mean the simulation of the time series using
this model. The hidden Markov model is applied as a
tool for obtaining a numerically efficient algorithm for
the time series segmentation.

1.1. Segmentation Based on Maximization of Likelihood 
Function of Hidden Markov Model

Let us reformulate the problem of time series seg!
mentation in terms of the problem of maximization of
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Fig. 1. Time scan of X, Y, and Z coordinates.
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the likelihood function of some hidden Markov
model.

Let  be a known realization of the

time series. We say that  is a realization of the
observed part of  of a hidden Markov
model  if the process 
is the homogeneous Markov chain with  states, i.e.,

. In this case, it is assumed that it is
most probable that the initial state of the Markov
chain . Let  be the matrix of
transition probabilities of the Markov chain for which

 for , . Obviously, 

( ). 

The parameters of the Markov chain  are  and .
The process  is a sequence of conditionally inde!

pendent (for fixed values of the process ) distributed

as  random variables, i.e.,

Thus, the parameters of the process  =
 are the vector of average values

, the variance , and the transition
probability matrix .

Let  be the function equal to the number of
components with different values in the arbitrary vec!
tor . Let us denote by  the unob!
served realization of the values of Markov chain corre!
sponding to the realization of the observed part

 of the hidden Markov model. We
assume that .

The vector  ( , ) of
coordinates of the homogeneity segments of the
time series is a vector for whose coordinates

, the following inequality is satisfied:
. Obviously,  and each inhomogene!

ity segment  corresponds to the state  of the
Markov chain  and the parameter  of the distribu!
tion of values of the process . Thus, estimating the
realization  of the process  using the

realization  of the process , it is possible to obtain
an estimate of the vector  and thus
segment the signal into homogeneous (in the sense of
constant average value) fragments.
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The realization  will be estimated using the
maximization of likelihood of  for fixed .
Denoting the conditional likelihood function as

, we find that

.

The joint likelihood function  

of the quantities  and  is connected with the con!

ditional likelihood function 
according to the Bayes formula

where  is the unconditional density

of the distribution . Therefore, the maximization of

 with respect to  is equivalent

to the maximization of  with

respect to , where

(1.1)

Thus, the segmentation problem is reduced to the
problem of maximization of function (1.1).

1.2. Description of Segmentation Algorithm

Let us assume that for elements of the matrix 
the following equalities are satisfied:  and

 for ,  for a parame!
ter . In what follows, the parameter  will be
indicated in the arguments of the functions instead of
the matrix .

The input data for the segmentation algorithm are:

(1)  is a known realization of the
time series;

(2) upper estimate of the number of segments 
( );

(3) threshold value of .
The output data are the estimates of the parameters

, , , , , and . In this
case, generally speaking, it may turn out that

.
Initialization of the algorithm:
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(2)  is randomly generated from elements of the

set  in such a way that  and the

components of the vector  satisfy the inequalities
, 

,

where .

Condition of algorithm termination. Let  be the
current iteration number of the algorithm. The algo!
rithm is terminated if

At each iteration I of the algorithm the following
steps are executed.

S t e p  1.  is used to determine the vector  and

.

S t e p  2.  is used to calculate , where

(1.2)

S t e p  3. The probability =  is
calculated.

S t e p  4. The value of the likelihood function

 is estimated and the condi!
tion of the algorithm termination is checked. If the

termination condition is true, , ,

, , and , other!
wise, the transition to Step 5 is performed.

S t e p  5. The following quantity is calculated: 

 

using the Viterbi algorithm [7, 8]. The iteration num!
ber increases by unity, i.e., , and the process
is repeated from Step 1.

The proposed algorithm in essence belongs to the
class of the so!called EM algorithms [9]. Note that in
the case of numerical implementation of the algorithm

it is reasonable to consider the logarithm of the initial
value of the likelihood function, rather than the value
of the function.

1.3. Convergence of Segmentation Algorithm

Let us prove that the proposed algorithm con!
verges. From (1.1) we find that

(1.3)

where ,  =

.

Obviously for all , where 

the following is satisfied:  ≥

, where the components  are

calculated using formula (1.2). Similarly for all
 the following relation is satisfied:

 ≥ , where 

 Since the Viterbi algorithm provides the

global maximum,  ≥

 for all 

. Thus, we find that

Therefore, each iteration of the proposed algo!

rithm decreases the function 
which is bounded from below by zero, i.e., the itera!
tion process converges.
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1.4. Properties of Segmentation Algorithm

Let us indicate the main properties of the proposed
segmentation algorithm.

P r o p e r t y  1. The time of execution of one itera!

tion of the algorithm is  [10]. In numerical
experiments the algorithm converged faster than for
10–15 iterations, which is typical for algorithms of
EM type [10].

P r o p e r t y  2. The function  takes

the minimal value equal to  =

 for 

 If , then

 ≈  + 

 and it asymptotically (for ) coincides
with the second term in the Schwarz criterion, which
is applied in statistics for estimation of the number of
parameters of a model [9]. In this case the term

 in (1.3) is responsible for regulariza!

tion, since it increases with increasing  (for

), while the term 
decreases (and vice versa). Therefore, if the Viterbi
algorithm is used for minimization of

 with respect to 

for fixed values of  and  the optimal number of seg!
ments equal to  is also chosen. Gen!

erally speaking, , and

the process of decreasing the value of  beginning
from some iteration I stabilizes, since otherwise the

value of  begins to increase.

P r o p e r t y  3. As soon as the value of

 stabilizes,  decreases

due to the “tuning” of the partitioning  (and there!
fore, “tuning” of the values of ). Therefore, the pro!
posed algorithm, in essence, seeks such partitioning
for which the approximation of the time series by its
average values for the corresponding segments is opti!
mal in the sense of the mean square deviation.

P r o p e r t y  4. Numerical experiments have dem!
onstrated that the results of operation of the algorithm

are weakly dependent on the initial values of  and

, but they depend on . It turned out that if

, with high probability 

otherwise , and for some value of 

the optimum corresponds to , and the other
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value of  corresponds to  which,

generally speaking, is not equal to . This is
related with the fact that the minimized function is
multi!extremal.

1.5. Segmentation of a Multidimensional Time Series

The proposed segmentation algorithm can easily be
generalized to the case of the multidimensional time
series. Let  be a known realization of
the !dimensional time series with the length ,

where  is the value of the !dimensional
component at the th time instant. It will be assumed
that  is a realization of the observed part of

 of the hidden Markov model 
, where the process  is the

homogeneous Markov chain with  states deter!
mined in Sections 1.1 and 1.2.

Let us also assume that for the fixed realization
 of the Markov chain the values of the

process  are independent; in this case, the distribu!
tion of the value of the process  at the th time instant
is the multidimensional normal , ,

where  and  

  (the set of all possible values of
the mathematical expectation ). For these assump!
tions, the segmentation of the multidimensional time
series can be performed using an algorithm similar to
the algorithm of segmentation of one!dimensional
time series described in Section 1.2. In this case the
following function is used as the likelihood function:

2. ESTIMATE OF DEGREE 
OF SYNCHRONIZATION OF COMPONENTS 

OF MULTIDIMENSIONAL PROCESS 
FOR FILTERED SEGMENTATION

Let us solve the problem of estimation of the degree
of synchronization of components of the multidimen!
sional time series. The degree of synchronization is
estimated in three steps.
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described in Section 2.1, we estimate using the realiza!
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of the Markov chain  and obtain an estimate of the
vector  of coordinates of segments.

S t e p  2. We filter the obtained segmentation
 (see Section 2.2 for description of

the algorithm) in order to save only those segments
that correspond to the time instants of the simulta!
neous significant changes of the average values of all
components of the process .

S t e p  3. We calculate the synchronization coeffi!
cients (based on the canonical correlation coefficient)
of the multidimensional process for filtered segmenta!
tion (see Section 1.2 for description of the algorithm).

2.1. Segmentation Filtering 
for a Multidimensional Process

It is obvious that in the vector of coordinates of seg!
ments  the coordinate of the th seg!
ment  corresponds to such time instant that the aver!
age value of at least one of the components of the pro!
cess  at the th time instant changes by a sufficiently
large magnitude. In this case it may turn out that the
average values of other components are unchanged.
Therefore, in order to estimate the degree of synchro!
nization of components of the multidimensional pro!
cess , it is necessary, first of all, to “filter” the
obtained segmentation  of the multi!
dimensional process , i.e., to include into the filtered
segmentation only the time instants  that correspond
to the time instants of simultaneous significant change
of average values of all components of the process .

The input data for the filtering algorithm are:

 is a known realization of the time
series,

 and  are the parame!

ters of the filtering algorithm.
The output data of the segmentation filtering are
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Initialization of the algorithm: the following val!

ues are estimated: ,

where  , .

During the th iteration of the algorithm
( ) the following steps are performed.

S t e p  1. The following is calculated:  =

, .

S

( )= …0 1, , ,
ss Mn n nn

( )= …0 1, , ,
ss Mn n nn

X

( )= …0 1, , ,
ss Mn n nn i

in

X in

X
( )= …0 1, , ,

ss Mn n nn
X

in

X

( )= …1, ,N
NX x x

α > 0 ( )
−

=

≤ δ ≤ −

…

1
1, ,

1 min
s

i i
i M

n n

( )= !! ! ! !…0 1, , ,
ss Mn n nn ≤!

s sM M = =!0 0 1n n
= =!! ss MMn n N

( )( ) ( )
=

σ = − −∑
2

1

1 1
N

j j j
i

i

N x x

=

jx ( )

=

∑
1

1
N

j
i

i

N x = …1, ,j d

I
= −…1, , 1sI M

∆
I
j

[ ]∈ −δ +δ

−

, ,
max

I I

j j
i k

i k n n
x x = …1, ,j d

S t e p  2. If  for all , the coordi!
nate of the segment  is included into the filtered par!
titioning .

2.2. Estimate of Synchronization Based on Aggregated 
Canonical Correlation

Let  be the filtered partitioning of

the realization  of the d!dimensional
time series. It is necessary to estimate the degree of
synchronization of variation of the values of compo!
nents of the process  on the time intervals ,

. We use the canonical correlation coeffi!
cient [11] for this purpose.

First of all, let us give the definition of the canoni!
cal correlation coefficient. Let  and  be
two multidimensional random variables, and 
and  are arbitrary vectors. Then the canonical
correlation coefficient is

, (2.1)

where  is the correlation operator,  is the
variance operator, and  and  are the scalar
products.

We denote by  a chosen canonical correlation
coefficient (in (2.1) the variance and correlation oper!
ators are replaced by the corresponding chosen ana!
logues) between the th and all other components of
the process  calculated for the part of the realization

, . We estimate the degree
of synchronization of variation of the values of compo!
nents of the process  on the time intervals ,

 using the synchronization coefficients

 and . 

Obviously, if on some time interval ,

, the coefficients  and  take values
close to 1 and all values of the correlation coefficients

, , are significant, then on this time inter!
val considerable synchronization of components of
the process  is observed.

3. INDIVIDUAL FUNCTIONAL STATE 
IN DECISION MAKING

On laboratory markets, the decision making pro!
cess consists of the sequence of trading actions of par!
ticipants. Each action corresponds to the order which
should be input at a computer using the mouse and the
keyboard, and then via the network sent to the server
that supports trading for a certain variety of the auc!
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tion. In this paper, we consider an open continuous
double auction which is the basis of operation of most

stock exchanges.
1 The main trading actions of the par!

ticipant are the request for buying or selling for the
given trading position (type of security or commodity).
Let us consider the simplest experiment RE0 of the
series of information efficiency of markets in which
there is the only trading position, namely, some ven!
ture asset. It is known to all participants that at the end
of the auction the value of this asset will be 30, 70, and
110 with equal probability. It can be assumed for sim!
plicity that the participants buy and sell to each other
lottery tickets whose drawing will take place at the end
of the auction.

The specific feature of experiments of RE (Ratio!
nal Expectations) series is that along with the common
information any participant receives reliable private
information. In RE0 each participant knows which of
the three scenarios cannot take place in a particular
case. For example, if the organizers know that the sce!
nario with a value of 70 is realized, some participants
are told that the asset will not cost 30, and other par!
ticipants are told that it will not cost 110. See [4] for
detailed analysis of experiment of RE series.

For establishing the connection of the records of
trading actions of the participants fixed in the course
of the experiment each second with the chronology of
the functional state expressed by the stabilogram with
a frequency of 50 times per second, it is necessary to
introduce the significance of the action for the partic!
ipant. For RE0 experiment this is rather simple, since
there are three separate price levels. If the price of the
request for buying is smaller than 30, it can be consid!
ered as the desire of the participant to play using some!
one’s evident mistake or just as a beginning of the auc!
tion. As the request for buying becomes higher than
30, this is the signal to other participants. What does it
mean? Three variants of answers are possible: (1) the
author of the request possesses information that a
value of 30 will not be realized; (2) this author made a
mistake or did not think well enough; (3) this author is
sly and tries to confuse others. The answer to this ques!
tion is sought by everyone individually.

Thus, in RE0 the signal actions are assumed to be
the first (with respect to time) requests for buying at a
price higher than 30, 70, and 110 (the last request for
buying at a price higher than 110 is the evident mis!
take). The signal actions are also the sharp change of
the request price (larger than by some threshold
value). Our hypothesis is that the special reflection in
the stabilogram of the participant should be sought in
the neighborhood of those time instants when the par!
ticipant performs the signal action or observes the
manifestation of the signal action of some other par!
ticipant.

1 The functional state of participants of laboratory English and
Dutch single!side auctions using the analysis of the heart
rhythm was studied in an interesting paper [12].

Let us consider the RE0 experiment performed at
the Laboratory of Experimental Economics of the
Moscow Institute of Physics and Technology on
December 12, 2006. Figure 2 shows the prices of all
buying and selling requests. Time in seconds is shown
along the horizontal axis. The true value of the asset
which was told to the participants after the end of the
auction that lasted for 240 s in this case was 30.

At the 21st second, the first signal action took
place: the request for selling 10 items at a price of
109.9 appeared. This request was made by participant 5
who possessed the information against a value of 110.
This signal was true, but not everyone believed it at
once.

At the 24th second, another signal action took
place: the request for buying 1 item at a price of 30.1
Participant 2 who performed this signal action pos!
sessed the information that a value of 70 was impossi!
ble; therefore, his actions can be considered as the
reconnaissance. If anyone would sell 1 item at a price
of 30.1 to him, his loss at the end of the auction would
make just 0.1.

The next signal action was observed at the 47th sec!
ond, when participant 2 sharply increased the price of
buying from 32.3 to 50. This means that either partic!
ipant 2 came to believe that a value of 30 will not be
realized, or risked (a loss of 20 for each bought item)
in order to “carry” someone together with him.

At that time the flow of requests for prices below
110 and then below 105 and 100 increased, and partic!
ipant 2 made the final choice in favor of the true sce!
nario that assumed a value of 30. He removed all his
requests for buying and beginning from the 84th sec!
ond started to sell at a price of 50 and higher according
to requests for buying of other participants.

As a result, at the 45th second the request for buy!
ing vanished from the market. Requests for selling
smoothly decreased to a price level of 95 until the same
participant dropped the selling price to 80 at the
127th second. After another 15 seconds of decrease,
participant 4, who possessed information against a
value of 70 and at that time did not believe in a value of
110, decreased the price to 70. After another 15 sec!
onds of decrease of the selling price, the trade stopped:
no more requests were made. Buying requests
appeared, but on a price level below 30.

After 10 seconds of global reflection participant 2
submitted the selling request at a price of 40 at the
174th second, and the price on the market began to
fall. It became clear to everybody that the true scenario
in this case was a value of 30.

At the end of the experiment participant 5 lost ori!
entation and began to sell actively beginning from the
199th second at prices lower than 30; other partici!
pants made use of it.

The culmination of the auction in the narrow sense
is the slack period from the 160th to the 173th seconds
which ended by the powerful signal action. Special
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Fig. 2. Request price during the auction.
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Fig. 3. Y coordinate of the stabilogram and signal actions of the participant.
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attention should be paid to the signal action at the
140th second connected with selling at a critical price
of 70.

Thus, we separated a total of eight signal actions
performed at different time instants 

.
Let us consider the dynamics of the functional state

of participants. We begin with participant 2 who played
the most active role in this experiment having per!
formed several signal actions.

Figure 3 shows the pronounced jumps along the
Ycoordinate of the stabilogram before each signal
action. Here, vertical lines corresponding to the found
signal actions of the participant are drawn manually
based on the detailed analysis of the chronology of
trading actions. Note that the last signal near the
200th second corresponded to the first mistake of par!
ticipant 5 at the final stage of the auction when he
began to sell at a price lower than 30. The jump at the
first 20 s of the auction is connected with the external
signal: the market is opened. It is interesting that the
action at the 21st second did not impress participant 2.
The jump before the action at the 24th second is hardly
visible on the background of the violent initial period
when the participant receives private information and
is at the stage of formation of the plan of actions.

The task is to perform segmentation of the func!
tional state automatically independently of trading
actions, and then correlate the found time instants of
segment joining with the time instants of signal trading
actions.

In our algorithm, the number of fragments is the
external parameter. Figure 3 shows that it is impossible
to interpret each jump of the stabilogram by some
trading action. Such jumps, although with lower
amplitude, are observed when participants of the
experiment are asked to sit still (doing nothing) before
and after the auction for one half of the minute with
opened and one half of the minute with closed eyes.

Since we separated eight signal time instants, this
corresponds to nine segments. Let us increase by a fac!
tor of 2 the number of segments, assuming that just
half of all jumps of the stabilogram are connected with
signal actions of the participants.

=AM
21,24,47,84,127,140,174,199{ }

We use the segmentation algorithm described above
for the Y coordinate of the stabilogram of participant 2
(Fig. 4).

All critical time instants mentioned above were
successfully separated by the segmentation algorithm
directly based on the analysis of the Y coordinate of
participant 2, except for those corresponding to time
instants of the 21st and 24th seconds. This gives hope
that the stabilogram reflects the functional state of the
participant of the laboratory market in the process of
making decisions.

Let us introduce the formal measure of revelation
of the critical time instant  for the set of seg!
mentation time instants ,

.

In our case, the set  obtained by the segmenta!
tion algorithm is conveniently represented in Table 1.

Table 2 gives the measure of revelation time instants
 corresponding to signal trading actions of the par!

ticipants.
It can be seen that the time instants of the 21st and

24th seconds were not found, but all other delays cor!
respond to the psycho–physiologic norm. Note that
the segmentation algorithm automatically separated
the time instant of the first request (9th second) and
the time instant of the end of the auction (241st sec!
ond). The time instant of the 36th second looks as the
reasonable alternative to the time instant of the
21st second. At the 36th, 37th, and 38th seconds par!
ticipant 5 began to gradually reduce the selling price
which supported his single action at the 21st second.

Thus, in this case for participant 2 the segmenta!
tion algorithm for the Y coordinate reliably found six
out of eight instants (75%). It is important to note that
the time instant of the 174th second from the culmina!
tion interval was among the revealed signal time
instants. Note also that the stabilogram of participant 2
fixed the jump 3 seconds before he performed the deci!
sive action, namely the selling request at a price of 40
at the 174th second. At a time instant of the 171st sec!
ond (found by the segmentation algorithm) and during
6 s before it nothing took place on the market. It can
be assumed that this jump is connected with the cog!

∈A Am M

SM

∈

ρ = −( , ) min | |
S S

A S A S
m M

m M m m

SM

AM

Table 1.  Segmentation time instants

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time, s 9 36 47 63 84 85 121 123 135 151 171 197 199 208 241

Table 2.  Revelation of signal time instants

Number of time instant 1 2 3 4 5 6 7 8

Time, s 21 24 47 84 127 140 174 199

Measure of revelation 12 15 0.18 0.38 3.86 5 3.04 2.26
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nitive load of participant 2 upon making an important
decision.

In most cases the Y coordinate (forward–backward
movement) is more informative in segmentation than
X (left–right) and Z (up–down) coordinates. How!
ever, taking into account these coordinates may con!
siderably improve the segmentation. Here, two seg!
mentation methods are possible with account of all

three coordinates of the stabilogram: the logical and
the physiological ones. The logical method is con!
nected with the introduction of the likelihood func!
tion equal to the product of these functions of coordi!
nates. Actually, this approach takes into account sig!
nificant jumps along any coordinate. The physical
method is based on the idea of stabilogram energy [1]:
the linear velocity is calculated for two neighboring
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Fig. 4. Request price and automatic segmentation.

Table 3.  Degree of revelation of signal time instants using stabilography

Participant 1 2 3 4 5

Revelation, 
%

Profit –0.58 0.62 1.16 –1.19 0

Method V F V F V F V F V F

Time
instant, s Signal author

21 4 –1.06 10

24 2 3.88 4.35 4.68 –0.10 40

47 2 2.68 0.63 –0.08 –1.62 –1.66 –5.16 1.62 70

84 2 –4.58 –1.30 0.94 3.02 3.24 –1.66 –1.44 70

127 2 –3.70 –0.08 –1.48 –1.50 0.32 2.58 60

140 5 –2.16 0.14 –0.34 1.16 –6.54 –4.00 40

174 2 0.75 –9.13 0.74 1.24 3.02 3.50 0.12 0.24 –0.80 90

199 4 –3.22 –0.28 –0.26 7.72 –0.98 –0.78 0.76 0.68 –3.00 90

Revelation, % 62.5 62.5 75 75 87.5 75 37.5 37.5 62.5 37.5
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(with respect to time) points of the three!dimensional
space. The squared velocity in the logarithmic scale is
called the energy. The energy plot is characterized by
the short!term jumps which are rather well separated
from two sides using the segmentation algorithm.

Let us approximate the signal time instants for all
five participants of the experiment in two ways: using
the logical convolution for X, Y, Z, and energy.

Table 3 gives the results of finding each of eight
time instants for all five participants. Thus, the num!
ber –0.08 in column V for participant 2 and in row
47 means that for a time instant of the 47th second the
best approximation for the segmentation based on
energy makes 0.08 s, and the segment boundary is sit!
uated earlier than this signal time instant. The similar
approximation equal to –1.62 obtained based on the
logical convolution is given in column F.

Table 3 (right) gives the total revelation for each sig!
nal time instant. It can be seen that the culmination
time instant (174th second) and the subsequent
199th second when participant 4 made a mistake were
detected on the stabilographic level by all participants.
The following time instants are given in the order of
revelation: the 47th and 84th seconds when participant
2 first raised the buying price to 50 and then began sell!
ing at these prices to supporting partners.

Below the total degree of revelation for participants
is given. The largest degree of revelation was demon!
strated by participants 2 and 3. It is interesting that
these participants have the maximal profits (0.62 and

1.16, respectively). Participant 4 has the minimal
profit, and he possesses the lowest level of revelation of
signal time instants. In essence, he reacted to a culmi!
nation time instant of the 174th second only and gave
the erroneous decision at the 199th second. Probably
the degree of revelation on the level of the functional
state of signal time instants speaks of the adequacy of
the process understanding by the participants, which
contributes to receiving higher profit.

It can be seen from Table 3 that the author of the
signal action in five cases out of eight was participant 2. In
most cases, the negative values can be observed in
Table 3, which means that the stabilographic jump
precedes the decision making. The exception is the
174th second, but both methods (V and F) proved the
high jump for participant 2 which lasted from the 167–
168th to the 174th second, i.e., probably from the time
instant of occurrence of the idea to decrease the selling
price from 64 to 40 to the realization of this idea in the
particular decision.

Negative numbers can be observed in rows for the
21th and 199th seconds (F) for participant 4. Making
the erroneous decision was preceded by the high jump
on the stabilogram of participant 4. Negative numbers
in the row corresponding to the 140th second can be
found in the column corresponding to the author of
the signal action (participant 5).

Thus, we arrive at the following model of interac!
tion of the functional state dynamics and the decision
making process. The stabilogram registers the cogni!
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Fig. 5. Total energy of stabilograms and request price.
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tive load of the author of the signal action before the
time instant of its implementation. The other partici!
pants react after the signal action is detected on the
monitors. Of course, this is not a complete determi!
nacy. For example, some participant might have
decided to make the signal action, but was outstripped.
One can speak of the tendency only. Another impor!
tant conclusion is that the participant effectiveness
depends on the degree of revelation of signal time
instants. Participant 3 is of interest; he was not the
author of any signal action, but he noticed all of them
and successfully used corresponding information.

Since signal time instants are important for most
participants, it can be assumed that the functional
state dynamics expressed by individual stabilograms is
not independent. Signal time instants given in Table 3
for most participants should serve for synchronization
of the functional state of all participants of the group.

The simple method for detecting the synchroniza!
tion of stabilograms is to calculate the total energy of
the group and application the segmentation algorithm
to it. Figure 5 shows the segmentation into nine parts
of the group energy with the average energy values for
each segment (logarithmic scale). Trading actions of
the participants are indicated on this plot. Energy
jumps show the time instants of the active beginning of
the auction, the culmination time instant of revelation
of information, and the final activity against the back!
ground of the rough mistake of one of the participants.

If the number of segments is doubled (Fig. 6), no
considerable increase in the number of segments with
important jumps of the total energy is observed.

Another method is based on the calculation of the
canonical correlation of stabilograms of the partici!
pants. More precisely, one stabilographic time series is
separated for each participant. Usually either the
Ycoordinate or the energy is taken. Then based on the
logical convolution the joint segmentation is found.
The obtained segmentation is filtered: only those time
instants are left for which the considerable jump is
observed for most (given fraction) of participants. For
each of the remaining segments the average canonical
correlation which measures the degree of synchroni!
zation of stabilograms of the group is calculated.

Figure 7 shows the estimate of the synchronization
of stabilograms of participants with respect to the
Ycoordinate. From the initial 36 segments ten were
filtered based on the condition that the jumps should
be not less than 0.1 of the standard deviation for not
less than three participants. It can be seen that the syn!
chronization of stabilograms of the participants is
most pronounced at the culmination of the auction.
For the energy with 36 segments and filtering for three
participants and the jump value not smaller than three
standard deviations (energy varies stronger than Y)
16 segments were obtained.

Figure 8 shows the culmination most clearly. Some
other signal time instants can also be noticed.
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Fig. 6. Segmentation with respect to the total energy and request price.
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Fig. 7. Canonical correlation for filtered segmentation.
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Thus, the following model of interdependence of
actions and functional state of participants of the labo!
ratory market can be formulated from the analysis of
the results of this experiment. This model is based on
the properties of experiment RE0 on information effi!
ciency of markets; from the point of view of the game
theory this experiment represents the dynamic game
with incomplete information [2, 3]. In games of this
class the player strategy determines his actions
depending on the information available to him only. In
this regard, the action of the player has the signal
meaning. It is important to note that in our case signals
are not free from charge, i.e., the trading actions of the
participant determine his profit. This restrains him
from attempts to confuse the market by false signals.

Not all actions of players in RE0 bear the similar
signal load. The time instants of passing levels of
defined values and sharp (above some threshold) vari!
ations of the request prices can be separated. Thus, the
set of signal time instants  is formed. Then stabilo!
grams for each participant are segmented, and the
matrices  and  with a size of , where 
is the number of participants are formed. The matrices
correspond to the segmentation methods: with respect
to energy and using the logical coordinate convolu!
tion. For the basic experiment both matrices are given
in Table 3. They show the difference between the time
instants of segmentation and signal time instants, and
for each signal time instant the closest segmentation

A

VR FR ×| | | |A N N

time instant is taken. Columns correspond to different
participants. Empty cells point to the fact that in the
given neighborhood of the signal time instant the cer!
tain participant does not possess the segmentation
time instant.

The matrices  and  characterize the degree of
revelation of signal time instants by all participants.
The largest value should correspond to the culmina!
tion when all participants come to understand the true
scenario. At the same time, the degree of revelation of
signal time instants by a certain participant reflects the
adequacy of his perception of the events taking place
on the market.

The degree of synchronization of functional states
of participants at the culmination time instant is mea!
sured using the total energy and the canonical correla!
tion method.

This model of interaction of the decision!making
processes and functional states of participants was
used for an experiment in 2008 which will be called the
reference experiment for brevity. The experiment RE0
with the same parameters as in the basic experiment
including the variant of a true value of 30 was chosen.
It is natural that the participants of the experiment
were different and manifested other qualities. For
example, the participants of the basic experiment in
2006 performed 10 times as much trading actions as
participants of the reference experiment in 2008.
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Fig. 9. Typical stabilogram of participant of reference experiment.
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However, it turned out that the reference experiment
also fits our interaction model.

Let us begin with the typical form of stabilogram of
a participant shown in Fig. 9.

It can be seen that the property of local constancy
of the average value preserves, which allows one to
apply our segmentation algorithm (Fig. 10).

It can be seen that on the whole the segmentation
is successful. Probably segmentation time instants
near 180–210 seconds can be filtered, since here the
jumps are much lower than at other time instants;
however, one should not hurry to do it before consid!
ering the significance of this period in the auction his!
tory shown in Fig. 11.
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Fig. 10. Segmentation of stabilogram of participant of reference experiment.
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Fig. 11. Requested prices during the auction of reference experiment.
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Similar to the previous consideration, the signal
actions are:

(1) first (with respect to time) requests for buying at
prices higher than 30, 70, and 110 (requests for prices
higher than 110 are evident mistakes);

(2) first requests for selling at prices lower than 110,
70, and 30 (the latter request is the evident mistake);

(3) sharp change of the request price (larger than by
some threshold value).

These actions correspond to the following signal
time instants (in seconds):

34th—player 2 submits the request for selling at a
price of 109 (information against 110);

Table 4.  Revelation of signal time instants using segmentation

Participant 1 2 3 4 5

Revelation, 
%

Profit 2.30 3.22 2.40 3.20 3.28

Method V F V F V F V F V F

Time
instant, s Signal author

34 2 3.42 –1.16 –3.92 2.06 –2.18 4.40 3.76 –1.64 2.70 90

46 2 –0.40 3.14 6.16 –3.24 –2.34 –1.60 –0.02 0.64 80

84 2 –2.94 2.62 5.3 2.34 –0.56 –1.38 –1.76 2.60 –0.80 90

103 2 3.70 4.2 1.62 0.24 0.18 0.44 –3.98 –0.10 –0.52 0.82 100

104 0 2.70 3.2 0.62 –0.76 –0.82 –0.56 2.98 –1.10 –1.52 0.10 100

111 1 4.98 3.24 4.58 2.02 –4.02 –2.76 –6.90 70

134 2 –6.34 5.12 –0.06 0.28 4.70 5.26 5.56 –2.12 0.06 –1.80 100

160 3 0.64 –0.08 –5.36 –1.42 –0.42 5.60 0.06 0.06 80

–4.78 3.64 0.96 2.36 1.12 5.12 2.64 0.52 –2.06 90

Revelation, % 77.8 88.90 88.90 77.8 88.9 100 100 77.8 100 88.9
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Fig. 12. Segmentation and signal time instants for one of the participants.
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Fig. 13. Segmentation for total energy.
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Fig. 14. Average canonical correlation for filtered segmentation. 
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46th—player 2 submits the request for buying at a
price of 30 (the jump is observed);

84th—player 1 (possesses the information against a
value of 70) changes the price of the buying request in
a jump!like way from 105.9 to 89.9;

103th—player 2 reduces the selling price to 80 in a
jump!like way;

104th—player 0 (possesses the information against
a value of 110) submits the request for buying at a price
of 40;

111th—player 1 sells to player 0 10 items at a price
of 40;

134th—player 2 reduces the selling price to 71;
160th—player 3 submits a selling price of 40;
204th—player 3 performs the first deal at a price

of 30.
Figure 12 shows the signal time instants and the

segmentation time instants for one of the participants.
It can be seen that for each signal time instant the close
segmentation time instant can be found.

Table 4 gives the matrices  and  as one table.
A much higher degree of revelation by participants of
the reference experiment of signal time instants should
be noted. Some participants (for example, participant 3)
performed few trading actions, but their functional
state was quite sensitive to the information received
from the market at signal time instants.

The synchronization at the culmination at the
111–130th seconds is quite well manifested both for
the total energy (Fig. 13) and especially for the average
canonical correlation (Fig. 14).

Thus, the reference experiment proves the ade!
quacy of the proposed model of the functional state of
participants of the laboratory markets which represent
the dynamic game with incomplete information with
signal strategies.
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