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Tensor decomposition syllabus

@ Least squares

@ Singular value decomposition! and principal component analysis?
@ Tensor rank decomposition or canonical polyadic decomposition®
@ Alternating least squares®
® Tucker decomposition®

® Higher-order singular value decomposition®

!George E. Forsythe and Cleve B. Moler (1967) Computer solution of linear algebraic
systems

2]. T. Jolliffe (1986) Principal Component Analysis

3Tamara G. Kolda (2009) Tensor Decompositions and Applications // SIAM Review

“Trevor Hastie et al. (2015) Matrix Completion and Low-Rank SVD via Fast
Alternating Least Squares// JMLR

L. R. Tucker (1966) Some mathematical notes on three-mode factor analysis //
Psychometrika

®A. Cichocki et al. (2014) Tensor Decompositions for Signal Processing Applications
From Two-way to Multiway Component Analysis // ArXiv



Tamara G. Kolda: Tensor Decomposition

Sandia
National
Laboratories

CP Independently Reinvented (twice) in 1970 B

CANDECOMP: Canonical Decomposition PARAFAC: Parallel Factors

Pl o
J. Douglas Carroll Jih-Jie Chang Richard A. Harshman

Bell Labs Bell Labs Univ. Ontario
(1939-2011)  (1927-2007) (1943-2008)
CP: CANDECOMP/PARAFAC

Tamara G. Kolda (2009) Tensor Decompositions and Applications // SIAM Review



Tucker Decomposition

Matrix
SVD

Three-way
Tucker

Ny X Ny X Ny

NyX R,

@ N3yX R, °
? -
5]

Ry X Ry X Ry

Hitchcock (1927), Tucker (1966)

Decompose tensor =
= Core tensor (g)

= Factor matrices (U,V,W)

Tucker Compression: Extends the Matrix SVD to Multiway Arrays. Retrieved from Sandia National Laboratories



Penrose tensor diagram notation
@ Roger Penrose (1971) Applications of negative dimensional tensors //
Combinatorial Mathematics and its Application

@ Tai-Danae Bradley (2020) At the Interface of Algebra and
Statistics // ArXiv
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simply write (@)= as representing the linear map itself. More gen-
erally, we have the following diagrams.

scalar c Q@

vector o i@
matrix My i =@
3-tensor

In this graphical nofation, familiar notions have elegant pictures.

Here is a brief showcase.

1. Composition is tensor contraction. Tensors can be composed
along dimensions of matching indices, and tensor contraction
corresponds to summing along this common index. Graphically,
this corresponds to joining the corresponding edges between
diagrams. For example, the product of two matrices

M Nie

is illustrated by “gluing” the two edges labeled j and then fusing
the two nodes into a single node.

L M;Nj (MN)x

‘The resulting diagram has two free indices, i and k, which indeed

specify a new matrix. As another example, the product of a matrix

M with a vector [0} results in another vector Mo}, which is a
node with one free edge.

M |o) Mlv)
-0 -0

To keep the picture clean, we've now dropped the indices. More
generally, the composition of two or more tensors is represented
by a cluster of nodes and edges where the contractions oceur
along edges with matching indices.

‘Though these pictures might be new
to some, I suspect the idea is familiar
toall. When teaching students about
function, for instance,one often says,

A function is like a machine. You feed
it an input, the machine docs ts ob,
and then if spits out the output.” The
accompanying picture i something like
this:

5 function is a machine.
This is an example of a tensor diagram,
g e o nkerestd nfrr
functions. Think of the nod

Tineat mapping anl think of . tdges

v th
mu'\m‘. though it doesn't matter

-0

amatrix is a node:
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‘The diagram here illustrates another important point. There is
great flexibility in how one chooses to orient the diagrams spa-
tially: A vector, for instance, is characterized by the fact that it is
one node with one edge. We will not imbue additional meaning to
whether the edge is horizontal or vertical or otherwise. For exam-
ple we take both Q) and , to represent the same vector.

The shape of a node may convey additional meaning. There is
flexibility in the shapes used for nodes, as convention varies across
the literature. This allows for creativity in how information can be
conveyed through a diagram. When working with 2-tensors, for
instance, we may wish to use a symmetric shape for symmetric
‘matrices only. Then the dual mapping can be represented by
reflecting its diagram,

symmetric not symmetric

dual

S0 that the symmetry is preserved in the notation
M M

= - &

Another useful choice is to represent isometric embeddings as

triangles:

An isometric embedding U is a linear map from a space V to
space W of larger dimension that preserves the lengths of vectors.
Such a map satisfies UTU = idy but UU" # idyy. In words,
projection of the large space W onto the embedded image UV C
W won't distort the vectors in V. This operation is the identity on
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V. On the other hand, compressing W onto V necessarily loses.
information, 5o to speak. The asymmetry of the triangle serves as
a visual reminder of this: the base (W) is larger than its tip (V).

man  large

When W = V and when U satisfies both equalities ULI" = U'U =
idy, then it is called a unitary operator. This illustrates another
useful convention: the identity mapping is often represented as an
edge with no node. Indeed, contraction with an identity leaves a
tensor and its corresponding diagram unchanged.

Tensor decomposition is node decomposition. The flexibility in
choosing different node shapes provides useful pictures for tensor
decomposition. For example, the singular value decomposition of
amatrix M = VDU (see Section 2.5) can be illustrated as:

Here, U and V are unitary operators, hence isometries and hence
triangles, while D is a diagonal operator drawn as a circle. More
generally, tensor decomposition is the decomposition of one node
into multiple nodes, while tensor composition is the fusion of
multiple nodes into a single node.

decompose

T
-O- -0
N

compose



The mode-# product is the multiplication of a tensor by a matrix along the ;# mode of a tensor. This essentially means that each mode- fiber should be multiplied by this
matrix. Mathematically, this is expressed as:
Xx, A=Y & Y, =AX,

0
< Time

I w

o | . _—

= Xrime 9 _—

o 17y

Q 3

(¥
-+ Clusters

Time
Important properties of the mode-7 product:
1. For distinct modes in a series of multiplications, the order of the multiplication is irrelevent:
XX AXuB=XXuBX, A (m#n)

« However, it does not hold if the modes are the same :

X X, A%, B=X x,(BA)



Alternating least squares to fit CP

min 5 (.r 7k E air bjs (’;‘,)
A

ijk [



Outer and Kronecker product
(Cartesian, Tensor, Hadamard)

The outer product and Kronecker product are closely related; in fact the same symbol is
commonly used to denote both operations.

Ifu:[l 2 3}1— andv:[4 S]T,wehave:

4

: 4 s
u ®Kron vV = 5 u ®outer VvV = 8 10

10 12 15

12

15

In the case of column vectors, the Kronecker product can be viewed as a form of
vectorization of the outer product. In particular, for two column vector u and v, we can
write:
U ®Kron V = vec(V Qouter U)
Note that the order of the vectors is reversed in the right side of the equation.
Another similar identity that further highlights the similarity between the operations is
U @kron V! = UV = U Qouter V

where the order of vectors needs not be flipped. The middle expression uses matrix

onsidered as column-row matrices.
Wikipedia.org Outer product



Alternating least squares, optimization problem

c; Ca &
b, b b
7 ~ + i
Repeat until convergence:
a, a = 2
Step 1: m\m Z(.r,’k Z air bijg r’L,)
T £ B
min_||X — M|? s.t. M = [A,B,C] Step 2: min E (J‘,,A - E aip big r;‘,)
A.B.C N B B X
igk £ >
i A Step 3: m(i‘n g (.r,J;, Zu,, l:_],z-.x,)
v ijk ¢

min E Tijk — Z””['”'"‘"
A.B.C

iik 7 Nonconvex problem with convex subproblems.



Least squares problem, solution

ui\iuZ(r,jk = aibe m) ) min|Xu-ACOBY|}

ijk ¢

“right hand sides” “matrix”

c by

X (b

Khatri-Rao Product

Matrix Unfolding coOB)

3-way case n X n? nxr r X n?
d-way case nx nd-1 nxr rxnd-1

Short & Very Wide Matrix



In mathematics, the Khatri-Rao product is defined as!'ll?]

ij

in which the i#th block is the mjp; x njq; sized Kronecker product of the corresponding blocks of
A and B, assuming the number of row and column partitions of both matrices is equal. The size
of the product is then (& ; mip) x (Z; n,q)).

For example, if A and B both are 2 x 2 partitioned matrices e.g.:

1 2|3 114 7
A:[i; iz]: 56|, B:[g; Ez]: 2755 |,
7 89 36 9
we obtain:
1 2 12 21
A«B_ | Au®Bu A ®Byp 4 5 24 42

Ay By | Ay @ By 14 16 | 45 72

21 24 |54 81

This is a submatrix of the Tracy—Singh product of the two matrices (each partition in this
example is a partition in a corner of the Tracy—Singh product) and also may be called the block
Kronecker product.




Least squares problem, randomized convergence
estimation

a 16000 samples < 1% of full data

F(A,B,C) Z(J',,L Zu,;h,u'w) |F—F
=

_10-3
ijk £ < 10

Estimate convergence of
function values using small
*e a random subset of elements
. in function evaluation
(use Chernoff-Hoeffding to

bound accuracy)

Sampled ‘

10" |

)

Speedup versus Exact Fit

/:’(A.B.C) =w Z (.l'l,;\. Zu,,h},r“) n L
20

jhke) /

40 60
5th-Order Tensor Size



Canonical Polyadic Decomposi

cl
) LT o
< A
5] | _— ] i
= b, +- = B
Al 1A
a, a, br'
(IxJxK) (IxR)  (RxRxR)  (RxJ)

Theoretical background
The C: i Polyadic D ition (CPD) (also referred to as PARAFAC or CANDECOMP) is an algorithms that factorizes an 3-rd order tensor X € &/ X/ * K into

alinear combination of terms X, = a,eb, e ¢,, which are rank-]1 tensors. In other words the tensor X is decomposed as

X =YF_ dasebec,
AXIAX:Bx3C 1)
=[A:A, B, C]
where

« A is an 3-rd order core tensor having 1, as entries in positions A[i, Js k], where i = j = k, and zeroes elsewhere
« A, B, C are factor matrix obtained as the concatenation of the corresponding factor vectors, i.e A = [a;a,--ag]

Assuming the kruskal rank is fixed, there are many algorithms to compute a CPD. The most popular aproach is via the alternating least squares (ALS) method. The goal is
to find such CP represenation [A; A, B, C] which provides the best approximation of the original tensor X:

min || X —[A: A. B, C] |2

The alternating least squares approach fixes B and C to solve for A, then fixes A and C to solve for B, then fixes A and B to solve for C, and continues to repeat the
entire procedure until some convergence criterion is satisfied.



n (HOSVD)
Consider an 3-rd order tensor X € R ¥/ X K decomposed in the Tucker format as

X=GxiAxaBx3C

Higher Order Singular Value Decomposi

The HOSVD is a special case of the Tucker decomposition, in which all the factor matrices are constrained to be orthogonal. They are computed as truncated version of
the left singular matrices of all possible mode-n unfoldings of tensor X:

Xp=UZEV{ - A=U[l:R]

Xy =U,5,V] - B=UJI:R,]

X =UZV) - C=Usl: R

For a general order-N tensor, the N-tuple (R, ..., Ry) is called the multi-linear rank and provides flexibility in compression and approximation of the original tensor. For
our order-3 tensor in the multilinear rank is therefore (R;, R,, R5). After factor matrices are obtained, the core tensor G is computed as

G = X x1 A x2 BT x3 C7



Tucker Decomposition

7 L)

(IxJxK) (IxQ) (OxRxP) (RxJ)

Tucker Decomposition represents a given tensor X € R/ X/ x K if the form of a dense core tensor G with multi-linear rank (Q. R, P) and a set of factor matrices
AeR!' X2 Be R/xRand C € RK x ¥ as illustrated above. In other words, the tensor X can represented in tucker form as

X=X Y5 g anbiec,
G x1Ax2Bx;C [©)
=[G;A, B, C]

On practice, there exist several algorithms to represent a given tensor in the Tucker format. The two most used ones are Higher Order Singular Value Decomposition
(HOSVD), and Higher Order Orthogonal Iteration (HOOI), which are implemented through the BHOSVD and HOOZI classes respectively.



Tensor Train Decomposition via SVD

A

—I (1 B
([ xR) (RxI,xR)) (R,xI;xRy) (Ryx I xR,) (Ryx1y)

Theoretical background

Tensor train decomposition represents a given tensor a set of sparsely interconnected lower-order tensors and factor matrices. Mathematically speaking, the obtained TT
representation of an V-th order tensor X € R/ * /2% * !~ can be expressed as a TT as
X =[A G, 6P, -, 6V, B]
=AxE G G X GV B

Each element of a TT is generally referred to as tt-core with sizesof its dimensions: A ¢ 't * F1, B & @R~ -1 % v, G @ " * T+ 1 Ru s

The TTSVD algorithm involves iteratively performing a series of foldings and unfoldings on an original tensor X € R ¥ 12X X Iy in conjunction with SVD. At every
iteration a core G (") g @ * Tn+ 1% Ru 1 1is computed, where the TT-rank (Ry, R,, ..., Ry) has been specified a priori.



Numerical Data

methods rearrangement

Unfolded
form
Raw data
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N-dimensional form
array
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Tucker decomposition example 1/2

0
Uim

new core tensor

ost important
~ singular vectors

FIG. 3. Tlustration of trimming a 3rd-order tensor through
SVD. Light green blocks represent the sets of bases U™ and the
blue block represents the initial core tensor S, i.e., the projections
of the original data including noise onto these bases. Brown
blocks represent the reduced bases u() € R, u® e R/>",
u®) € R**P. The core tensor § € R™™ is reduced to s €
Rk (i < m, j < n, p <k) (orange block).

X. Du and L. Groening (2018) Compression and noise reduction of field maps
Physical Review Accelerators and Beams



Tucker decomposition example 2/2

A. Comparisons to analytical solution

The analytic expressions for the electric field compo-
nents inside a cubic cavity are

X

FIG.7. Simulated electric field map of the TM, ;;-mode inside a
cubic cavity. Colors correspond to absolute field values.

error(good mesh)
> 0.

L
= 0 Yy
<-8.0%

<-0.3%
E; analytical RC error(good mesh) RC error(poor mesh)
T > 0.02% > 0.4

o!i
0 25

FIG. 8. Upper left: definition of the cutting plane within the
cubic cavity. Lower left: analytic E, at the cutting plane. Upper
center: relative difference of E, from analytical solution and from
simulations with fine mesh. Upper right: relative difference of E,
from analytical solution and from simulations with rough mesh.
Lower center: relative difference of E, from analytical solution
and from HOSVD starting from fine mesh simulation. Lower
right: relative difference of E, from analytical solution and from
HOSVD starting from rough mesh simulations.

error(poor mesh)
3% >

8.0%

%

<-0.02% <-0.4%

X. Du and L. Groening (2018) Compression and noise reduction of field maps

Physical Review Accelerators and Beams



HOSVD downdating

=

| ﬁ'l‘t 0

Fig. 2. Tensor HOSVD Downdating: (a) Tensor A of size
20 x 15 x 10 (b) Core tensor S of A. (c) Basis Matrix U; (d)
Basis Matrix U, (e) Basis Matrix Us (f) Tensor A* extracted
from A, of size 7 x 10 x 5. (g) Core tensor S* of A* (h) Basis
Matrix U7 (i) Basis Matrix Uy (j) Basis Matrix U3
Dan Schonfeld (2009). Dynamic updating and downdating matrix SVD and tensor
HOSVD for adaptive indexing and retrieval of motion trajectories
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Papers
@ A. Cichocki et al. (2014) Tensor Decompositions for Signal Processing
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Code

@ hottbox.github.io Higher Order Tensors ToolBOX
(@ tensorly.org Fast and Simple Tensor Learning In Python
(@ tensortoolbox.org Tensor Toolbox for MATLAB



Cartesian product as an object in category theory

Paccmorpum gekapro-
BO npoussejieHne X X Y JIBYX MHOXKECTB, COCTOsIIEe, KAK OOBIYHO, U3 BCEX
yIOpsiiodeHHbIx nap (z,y) suementoB ¢ € X u y € Y. Ilpoekuuu npous-
Bezenust (x,y) — x,(x,y) — y Ha ero ocu X u Y mpexacrasisior coboit
byukmun p: X xY = X, ¢: X xY —= Y. Jliobas dynkuus h: W — X x
XY u3 rperbero muoxkectsa W 0IHO3HAYHO ONPEAEISAETCS KOMIO3UIHSIMEI
pohu goh. Obparhno, eciin gano muokecrso W u byukunu f u g, rakue,
KaK Ha [OC/IE/LyIOIIel 1HarpaMme, TO CyIeCcTBYeT eJINHCTBeHHAs (DY HKI[H
h, KOTOpast Je/IaeT AMarpaMMy KOMMYTATHBHOI; a nvMenno, hw = (fw, gw)
st Kazkgioro w € W

w

S

X=5—XxY—>V

Taxum obpasoM, juist Jauubix X u'Y dyukuns (p, q) yHuBepcaibHa cpeu

Beex nap (yHKUUil, 0TOOpazKalomuX HEKOTOPOe MHOXKeCTBO B X u B Y, 4d (3,20)
HOCKOJIbKY Jitobasi Apyrasi Takas napa (f,g) OZHO3HAYHO MPOITYCKAETCsI
(mocpeacrsom h) depes napy (p, ¢). DT0 CBOHCTBO ONpeEIseT 1eKapTOBO
OPOU3BECHIE €INHCTBEHHBIM 00Pa30M (C TOYHOCTHIO JO OHEKIHN): )0 30

MakneinH Tae-Danae Bradley



An element of the form v ® w is called the tensor product of v and w. An element of V' ® W is a tensor, and the tensor
product of two vectors is sometimes called an elementary tensor or a decomposable tensor. The elementary tensors span
V ® W in the sense that every element of V' ® W is a sum of elementary tensors. If bases are given for ¥ and W, a basis
of V' ® W is formed by all tensor products of a basis element of ¥ and a basis element of .

The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from
V' x W into another vector space Z factors uniquely through a linear map V. ® W — Z (see Universal property).

VxW 4 -V ® w Universal property of tensor &
}_ product: if 4 is bilinear, there is a
h h unique linear map h that makes the
2 diagram commutative (that is,

h=hoy).






