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Tensor decomposition syllabus

1 Least squares

2 Singular value decomposition
1

and principal component analysis
2

3 Tensor rank decomposition or canonical polyadic decomposition
3

4 Alternating least squares
4

5 Tucker decomposition
5

6 Higher-order singular value decomposition
6

1George E. Forsythe and Cleve B. Moler (1967) Computer solution of linear algebraic
systems

2I. T. Jolliffe (1986) Principal Component Analysis
3Tamara G. Kolda (2009) Tensor Decompositions and Applications // SIAM Review
4Trevor Hastie et al. (2015) Matrix Completion and Low-Rank SVD via Fast

Alternating Least Squares// JMLR
5L. R. Tucker (1966) Some mathematical notes on three-mode factor analysis //

Psychometrika
6A. Cichocki et al. (2014) Tensor Decompositions for Signal Processing Applications

From Two-way to Multiway Component Analysis // ArXiv



Tamara G. Kolda: Tensor Decomposition

Tamara G. Kolda (2009) Tensor Decompositions and Applications // SIAM Review





Penrose tensor diagram notation
1 Roger Penrose (1971) Applications of negative dimensional tensors //

Combinatorial Mathematics and its Application

2 Tai-Danae Bradley (2020) At the Interface of Algebra and

Statistics // ArXiv
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simply write as representing the linear map itself. More gen-
erally, we have the following diagrams. Though these pictures might be new

to some, I suspect the idea is familiar
to all. When teaching students about
functions, for instance, one often says,
“A function is like a machine. You feed
it an input, the machine does its job,
and then it spits out the output.” The
accompanying picture is something like
this:

in out

a function is a machine

This is an example of a tensor diagram,
though we’re now interested in linear
functions. Think of the node as the
linear mapping and think of the edges
as the input (domain) and output
(codomain) vector spaces. I prefer to
draw the nodes as circles, rather than
squares, though it doesn’t matter.

a matrix is a node

c

vi

Mij

Tijk

scalar

vector

matrix

3-tensor

i

i j

i j

k

In this graphical notation, familiar notions have elegant pictures.
Here is a brief showcase.

1. Composition is tensor contraction. Tensors can be composed
along dimensions of matching indices, and tensor contraction
corresponds to summing along this common index. Graphically,
this corresponds to joining the corresponding edges between
diagrams. For example, the product of two matrices

i j j k

Mij Njk

is illustrated by “gluing” the two edges labeled j and then fusing
the two nodes into a single node.

i k i k

(MN)ik�j MijNjk

=

The resulting diagram has two free indices, i and k, which indeed
specify a new matrix. As another example, the product of a matrix
M with a vector |v� results in another vector M|v�, which is a
node with one free edge.

M |v�

=

M|v�

To keep the picture clean, we’ve now dropped the indices. More
generally, the composition of two or more tensors is represented
by a cluster of nodes and edges where the contractions occur
along edges with matching indices.
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The diagram here illustrates another important point. There is
great flexibility in how one chooses to orient the diagrams spa-
tially. A vector, for instance, is characterized by the fact that it is
one node with one edge. We will not imbue additional meaning to
whether the edge is horizontal or vertical or otherwise. For exam-
ple we take both and to represent the same vector.

2. The shape of a node may convey additional meaning. There is
flexibility in the shapes used for nodes, as convention varies across
the literature. This allows for creativity in how information can be
conveyed through a diagram. When working with 2-tensors, for
instance, we may wish to use a symmetric shape for symmetric
matrices only. Then the dual mapping can be represented by
reflecting its diagram,

symmetric not symmetric

dual

so that the symmetry is preserved in the notation.

M

=

M†

Another useful choice is to represent isometric embeddings as
triangles:

An isometric embedding U is a linear map from a space V to a
space W of larger dimension that preserves the lengths of vectors.
Such a map satisfies U†U = idV but UU† �= idW . In words,
projection of the large space W onto the embedded image UV �
W won’t distort the vectors in V. This operation is the identity on
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V. On the other hand, compressing W onto V necessarily loses
information, so to speak. The asymmetry of the triangle serves as
a visual reminder of this: the base (W) is larger than its tip (V).

small large small

large small large

=

�=

When W = V and when U satisfies both equalities UU† = U†U =

idV , then it is called a unitary operator. This illustrates another
useful convention: the identity mapping is often represented as an
edge with no node. Indeed, contraction with an identity leaves a
tensor and its corresponding diagram unchanged.

=

3. Tensor decomposition is node decomposition. The flexibility in
choosing different node shapes provides useful pictures for tensor
decomposition. For example, the singular value decomposition of
a matrix M = VDU† (see Section 2.5) can be illustrated as:

=

Here, U and V are unitary operators, hence isometries and hence
triangles, while D is a diagonal operator drawn as a circle. More
generally, tensor decomposition is the decomposition of one node
into multiple nodes, while tensor composition is the fusion of
multiple nodes into a single node.

decompose

compose





Alternating least squares to fit CP



Outer and Kronecker product
(Cartesian, Tensor, Hadamard)

The outer product and Kronecker product are closely related; in fact the same symbol is
commonly used to denote both operations.
If u =

⇥
1 2 3

⇤T and v =
⇥
4 5

⇤T, we have:

u ⌦Kron v =

2
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, u ⌦outer v =

2

4
4 5
8 10
12 15

3

5 .

In the case of column vectors, the Kronecker product can be viewed as a form of
vectorization of the outer product. In particular, for two column vector u and v, we can
write:

u ⌦Kron v = vec(v ⌦outer u)
Note that the order of the vectors is reversed in the right side of the equation.
Another similar identity that further highlights the similarity between the operations is

u ⌦Kron vT = uvT = u ⌦outer v

where the order of vectors needs not be flipped. The middle expression uses matrix
multiplication, where the vectors are considered as column-row matrices.

Wikipedia.org Outer product



Alternating least squares, optimization problem



Least squares problem, solution





Least squares problem, randomized convergence
estimation













Tucker decomposition example 1/2

X. Du and L. Groening (2018) Compression and noise reduction of field maps
Physical Review Accelerators and Beams



Tucker decomposition example 2/2

X. Du and L. Groening (2018) Compression and noise reduction of field maps
Physical Review Accelerators and Beams



HOSVD downdating

Dan Schonfeld (2009). Dynamic updating and downdating matrix SVD and tensor
HOSVD for adaptive indexing and retrieval of motion trajectories
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Code

1 hottbox.github.io Higher Order Tensors ToolBOX
2 tensorly.org Fast and Simple Tensor Learning In Python
3 tensortoolbox.org Tensor Toolbox for MATLAB

Youtube

1 Higher-Order Knowledge
2 Tamara G. Kolda: "Tensor Decomposition"



Cartesian product as an object in category theory






