Classification of two-dimensional figures using skeleton-geodesic
histograms of thicknesses, distances and directions
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Shape recognition problem
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We have no information about the color, texture, brightness, etc.

It is more convenient not to work with an object as with a fragment of the
image, but to get an explicit description of its shape.

According to Cambridge Dictionary, shape is the physical form of something
made by the line around its outer edge.

One of the definitions on Dictionary.com states that shape is something seen in
outline, as in silhouette.



Two approaches to shape representation

(a)

(a) The contour one is a description of the boundaries in the form of a closed
curve.

(b) The medial one specifies the skeleton and the radial function.

Both representations give a full description of the shape, but emphasize
different features of it. Contour representation describes better the outlines of
the figure, the medial one — shape bends and its overall structure, as well as
thickness of its parts.

Thus, in the problem of shape recognition to use both the contour and the
skeleton information is reasonable.



Multiscale analysis
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It is necessary to take into account local and global analysis in aggregate to

cover all possible situations.

A possible approach is to consider contour fragments of different length. In
order to determine ends of these fragments we can use the algorithm of
discrete curve evolution (Latecki and Lakdmper, 2000).

el
S



Contour descriptors

1. Tangent Function (Pun and Li, 2009) 3. Shape context
(Belongie and Malik, 2000)
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2. Signature-like descriptor
(Sun and Super, 2005)
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Bag of Contour Fragments

One of the most powerful descriptors extracting contour information proposed
by Wand et at. in 2014.
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a) Representation of a shape contour by a closed polyline

b) Critical points detection using DCE method

c) Contour fragments extraction

d) Shape context calculation to describe each contour fragment

e) Encoding fragments by local linear embedding (Roweis and Saul, 2000)
f) Spatial pyramid matching

g) Getting the final descriptor by max-pooling at each level of the pyramid



Bag of Skeleton Paths
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(a) skeleton (b) skeleton path 1 (c) skeleton path 2 (d) skeleton path 3

Skeletal path reflects the change in the radial function during the transition
from one terminal vertex of the skeleton to another (Bai, Liu and Tu, 2009).

However, the addition of skeletal descriptor, constructed in the similar manner
as the contour one, does not give a significant increase in the classification
quality (Shen et al., 2014): 85.50% against 83.4% on Animal Dataset and
98.35% against 97.16% on MPEGT).

Therefore, the task of building skeleton-based image descriptor efficiently
supplementing the contour part, remains open.



Skeleton-geodesic distances

Geodesic distance dgeod(X)(p, q) is the length of the shortest path between points p
and g, lying inside the shape. Distribution of geodesic distances is informative
descriptor of the shape, insensitive to articulations (Ling and Jacobs, 2007).
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Skeleton-geodesic distance dgeod (Sk(X))(p, q) is the length of the shortest path
between points p, g € Sk(X) anolg the figure skeleton (a). In the general case
dGeod (SK(X))(P, q), p,q € X is the skeleton-geodesic distance between the
projections psk(X), gsk(X) of these points on the skeleton (b):

dGeod(sk(x)) (P> §) = dGeod(sk(x)) (Psk(x)s Ask(X
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Skeleton-geodesic distances (Continued)

Resistant not only to bending fat curves constituting the figure, but also to a
systematic change of their width.
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In the case of discrete figure and skeleton calculation can be performed according to

the formula
Hgs(d) = > S(p)S(a),
P:q€Sk(X),dgeod(sk(x)) (P>a)=d

where S(p) and S(q) are the areas of regions of attraction of the corresponding points:

S(p) = #{q € X : gGeod(sk(x)) = P}



Skeleton-geodesic distances: continuous approach

Discrete method of calculation is computationally inefficient. When transition
to a continuous representation another problem appears: the number of
skeleton points becomes infinite. You must select specific skeleton points and
“distribute” to them all the other points of the figure.

Let us take a point on each edge of the skeleton — let it be the midpoint. As
regions of attraction we take proper regions of the edges (Mestetskiy, 2014),
which form a partition of the figure. We assume that all the points of the
proper region “projected” in the middle of the edge.



Proper regions

To calculate the area of the region of attraction it is sufficient to know only the radii
of the edge end circles and the distance between their centers.

Linear edge
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Skeleton dual graph

Let us build a dual skeleton graph in which the edges corresponding to the

vertices in the skeleton are adjacent <= the edges in the original skeleton are
adjacent. The weights of the edges in the new graph is half the sum of lengths
of the edge-generators. The shortest way in the dual graph defines the shortest
path between the edge midpoints in the original one, and these paths are of the

same length.

Now all shortest paths in the dual graph can be found by Johnson's algorithm.



Thickness and direction of the edge

Let us define the other characteristics of the edge e:
@ «f(e) is the angle to the abscissa determined by the tangent at the midpoint.

@ Let T(q) is the thickness of the figure at the point, defined as the radius of the
maximum inscribed circle covering the figure (a). Then T(e) is thickness,
averaged on the proper region.

(b)

The fully continuous method of calculating the average thickness is possible, but too
difficult to implement. Instead, we calculate T(q) in the desired subset of grid points
and average the results (b).



Calculation of the thickness at the point

We need to determine the radius of the maximum circle covering the point. We will
seek this circle separately in each edge, which silhouette includes the point. According
to the theorem, the maximum covering circle in a skeleton line with monotonic radial
function either the largest end circle, or such that the point lies on its boundary.

Solve equation r(t) = d(p, ¢(t))
and take the maximum root
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We solve the equation: the radius of the circle is equal to the distance to the given
point. For linear and parabolic edges the equation is reduced to the square one, for
hyperbolic — to the linear one. For the purposes of computational efficiency, in the

main loop we should look over the edges and consider all points covered by its
silhouette.



Feature distributions

To ensure invariance to rotation, we consider the distributions of features between
edge pairs.
@ t; is the difference between average thicknesses of the edges e; and e;, which is
equal to t; = [t; — t;].
@ dj; is the skeletal geodesic distance between the edges e; and e; (more precise,
the distance between their midpoints);
@ ¢ is the rotation angle between the edges e; and ¢;, calculated as
max(|aj — aj|, 7 — o — ol);
The features are normalized to ensure invariance to scaling:
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Skeleton-geodesic histogram of thicknesses-distances-direction is defined as

Hgs(a, b,c) = Z si-sj [ Zsi-

L Lket] | =a,
Lkad |=b,
Lka‘ZS,)';J =c

and includes kikgk, cells.
We can consider thickness as an independent feature and build a thickness spectrum
with n cells:

PS(a) =#{pecZnX: LnMJ = a}.
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Combine them all together

The final descriptor is called CST (contour-skeleton-thickness) and consists of
the following components:

o Bag of contour fragments descriptor containing m features and responsible
for contour information

@ Skeleton geodesic histograms:

histogram
histogram
histogram
histogram
histogram
histogram
histogram

of pairwise thicknesses (k: features)

of pairwise distances (ky features)

of pairwise directions (k, features)

of thicknesses-distances (k:ky features)

of thicknesses-directions (k:k, features)

of distances-directions (kyk, features)

of thicknesses-distances-directions (k¢kyka features)

@ Thickness spectrum containing n features

In total, there is m+ (ks +1)(ka +1)(kea+ 1) — 1+ n features in the descriptor.
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Determining the number of bins in histograms

Quality estimation is the result obtained by support vector machine classification with
a tenfold partition the sample in half, and averaging the results. In some cases, we use
a leave-one-out cross-validation for the SVM too.

Dataset 3 4 6 8 10 15 25 50

Animal 88.59 | 88.83 | 88.92 | 88.84 | 88.53 | 88.50 | 88.29 | 87.87
MPEG7 98.01 | 98.07 | 98.13 | 98.06 | 97.94 | 97.83 | 97.69 | 97.50
Swedish leaf | 98.08 | 98.15 | 98.09 | 98.04 | 97.96 | 97.84 | 97.68 | 97.41

Varying the number of bins in pairwise thicknesses histogram along with BCF.

Dataset 3 4 6 8 10 15 25 50

Animal 90.38 | 90.47 | 90.98 | 90.99 | 91.11 | 91.04 | 90.92 | 90.42
MPEG7 97.90 | 98.23 | 98.30 | 98.27 | 98.26 | 98.13 | 98.11 | 97.99
Swedish leaf | 97.55 | 97.67 | 97.84 | 98.17 | 98.48 | 98.60 | 98.72 | 98.72

Varying the number of bins in pairwise distances histogram along with BCF.

Dataset 2 3 4 5 6 8 12

Animal 87.64 | 87.71 | 87.85 | 87.80 | 87.72 | 87.68 | 87.70
MPEG7 97.54 | 97.59 | 97.80 | 97.89 | 97.90 | 97.84 | 97.69
Swedish leaf | 97.35 | 97.35 | 97.43 | 97.47 | 97.44 | 97.36 | 97.31

Varying the number of bins in pairwise directions histogram along with BCF.



Contribution of descriptor components

Dataset 1D 2D 3D | 1D+2D | 1D+3D | 2D+3D | 1D+2D+3D
Animal 92.40 | 92.96 | 90.59 | 93.29 92.79 93.19 93.50
MPEG7 97.61 | 98.53 | 97.49 | 99.03 98.70 98.64 99.06
Swedish leaf | 99.03 | 98.95 | 98.03 | 99.21 99.12 99.05 99.25
Using histograms of various dimensions and BCF descriptor together.
Dataset 4 5 7 10 15 20 30 50 100
Animal 93.47 | 93.61 | 93.87 | 93.75 | 93.57 | 93.88 | 93.95 | 93.87 | 93.68
MPEG7 99.27 | 99.31 | 99.27 | 99.36 | 99.31 | 99.30 | 99.37 | 99.31 | 99.30
Swedish leaf | 99.08 | 99.11 | 99.15 | 99.17 | 99.17 | 99.17 | 99.19 | 99.16 | 99.15

Varying the number of bins of thickness spectrum along with the previous parts.




Animal (20 classes of 100 instances)
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Method Accuracy
Class Segment Sets 69.7%
Inner-Distance Shape Context 73.6%
Contour Segments 71.7%
Skeleton Paths 67.9%
Contour Segments & Skeleton Paths 78.4%
Bag of Contour Fragments 83.4%
Shape Tree 80.0%
Local and Global Features 80.4%
Shape Vocabulary 84.3%
Bag of Contour Fragments + Bag of Skeleton Paths | 85.5%
Multi Component-2 85.9%
Contour-Skeleton-Thickness 93.9%




Results for each class of Animal
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Method Bird Butterfly Cat Cow | Crocodile | Deer Dog
BCF 87.6% 92.2% 73.8% | 77.4% 76.8% 90.4% | 82.6%
CST 95.2% 99.6% 91.0% | 88.8% 83.8% 94.4% | 98.4%

Method | Dolphin Duck Elephant | Fish | Flyingbird Hen Horse
BCF 89.0% 87.0% 95.2% | 79.8% 72.0% 94.2% | 95.4%
CST 97.6% 97.2% 96.6% | 90.4% 89.0% 96.0% | 99.4%

Method | Leopard | Monkey | Rabbit Rat Spider | Tortoise
BCF 66.4% 58.4% 85.8% | 70.6% 99.2% 93.6%
CST 85.2% 92.6% 96.4% | 90.4% 99.8% 97.2%




MPEG?7 (70 classes of 20 instances)
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Accuracy Accuracy

Method (half testing) | (leave one out)

CSS 90.9% 97.93%

CS 91.1% -

SP 86.7%

ICS 96.6% -

PMR - 97.57%

SoS - 97.36%

RS - 98.57%

KD - 98.93%

BCF 97.03% 98.86%

BCF+BSP 98.35% -

CST 99.27% 99.71%




Swedish leaf (15 classes of 75 instances)
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Method Accuracy
MAC 82.00%
Fourier 89.60%
CS + DP 88.12%
IDSC + DP | 94.13%

MDM 93.60%
IDSC + MS | 94.80%
RS 95.47%
Shape Tree | 96.28%
BCF 97.52%

CST 99.25%




Conclusion

@ Skeleton-geodesic histograms are informative characteristic of the shape
that is resistant to changes in a flexible shape and thickness changes.
@ They complement contour description better than other known features

extracted from the skeleton, allowing to achieve results that outperform all
existing counterparts.

@ Growth in the classification quality is achieved by adding a relatively small
number of features (some hundreds against tens of thousands).

o Efficient computation of histograms is made possible by the continuous
mathematical morphology methods.

@ The main drawback of the method is instability of the skeleton to accident
holes occurring in the figure.



Thank you for attention!




