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Shape recognition problem

We have no information about the color, texture, brightness, etc.

It is more convenient not to work with an object as with a fragment of the
image, but to get an explicit description of its shape.

According to Cambridge Dictionary, shape is the physical form of something
made by the line around its outer edge.
One of the definitions on Dictionary.com states that shape is something seen in
outline, as in silhouette.



Two approaches to shape representation

(a) (b)

(a) The contour one is a description of the boundaries in the form of a closed
curve.
(b) The medial one specifies the skeleton and the radial function.

Both representations give a full description of the shape, but emphasize
different features of it. Contour representation describes better the outlines of
the figure, the medial one — shape bends and its overall structure, as well as
thickness of its parts.

Thus, in the problem of shape recognition to use both the contour and the
skeleton information is reasonable.
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Abstract

Shape analysis has been a long standing problem in the
literature. In this paper, we address the shape classifica-
tion problem and make the following contributions: (1) We
combine both contour and skeleton (also local and global)
information for shape analysis, and we derive an effective
classifier. (2) We collect a challenging shape database in
which there are 20 categories of animals, with each hav-
ing 100 shapes. All these shapes are obtained from real
images with a large variation in pose, viewing angle, ar-
ticulation, and self-occlusion. (3) We emphasize the im-
portance of having good representation for shape classifi-
cation to address the unique characteristics of shape. A
thorough experimental study is conducted showing signifi-
cant improvement by the proposed algorithm over many of
the state-of-the-art shape matching and classification algo-
rithms, on both our dataset and the well-known MPEG-7
dataset [19]. In addition, we applied our algorithm for rec-
ognizing and classifying objects from natural images and
obtained very encouraging results.

1. Introduction
One major task in shape analysis is to study the underly-

ing statistics of shape population and use the information to
extract, recognize, and understand physical structures and
biological objects. Though being elegant in theory, the gen-
eral shape statistics [16, 30] learned are yet to be verified to
produce compelling results on modern shape database such
as the MPEG-7 [19]. In this paper, we focus on 2D shapes
of closed contour, which can be represented by continuous
points or parameterized by arc length.

One intrinsic difficulty in analyzing shape, unlike image
patch, is its lack of a common space. For example, one
can define the origin anywhere on the contour, and a certain
part may appear or not appear on a particular instance of a
shape. One solution is to roughly register all the shapes to
the same template and represent them using the same num-
ber of aligned points [10]. However, this approach will only
work on very focused shapes with small variation. This is

horse dog
similar global shapes

different local shapes

cat dog
different global shapes

similar local shapes

(a) (b)

(c) (d) (e) (f)
Figure 1. Illustration of the complementariness of using local v.s. global
shape, and contour v.s. skeleton. The first row ((a) and (b)) shows that
different objects may have different local/global contour segments. The
second row ((c), (d), (e), and (f))displays two non-rigid shapes which have
the same radius sequence on the skeleton paths.

due to two reasons: (1) any registration process will intro-
duce artifacts, (2) it is extremely hard to define a common
shape to which all shapes can map.

The area of shape analysis, on one hand, has been re-
cently driven by designing smart features for shape match-
ing, such as shape context [4]. This line of the work
has produced increasingly encouraging results on matching
[9, 1, 2, 4, 14, 19, 21]. On the other hand, these matching-
based algorithms have their own limitations. One major
task in shape analysis is to recognize a given shape, and
tell which type of object it is. This is a classification prob-
lem. Matching-based algorithms perform classification es-
sentially through exemplar-based or nearest neighborhood
approach by matching the query shape against all those in
the database. On few training samples, these algorithms
have difficulty capturing the large intra-class variation. On
large training samples, it is extremely time consuming to
perform shape matching one-by-one.

It is not yet clear how the biological vision systems per-
form shape understanding. Nevertheless, two sets of con-
cepts have been popular in the shape domain, contour v.s.
skeleton (medial axis) and local v.s. global. Contour-based
approaches [4, 14, 19, 21] are often good at representing
detailed shape information and somewhat robust against oc-
clusion, but they are sensitive to articulation and non-rigid

It is necessary to take into account local and global analysis in aggregate to
cover all possible situations.
A possible approach is to consider contour fragments of different length. In
order to determine ends of these fragments we can use the algorithm of
discrete curve evolution (Latecki and Lakämper, 2000).



Contour descriptors

1. Tangent Function (Pun and Li, 2009)

2. Signature-like descriptor

(Sun and Super, 2005)

3. Shape context

(Belongie and Malik, 2000)



Bag of Contour Fragments

One of the most powerful descriptors extracting contour information proposed
by Wand et at. in 2014.

a) Representation of a shape contour by a closed polyline
b) Critical points detection using DCE method
c) Contour fragments extraction
d) Shape context calculation to describe each contour fragment
e) Encoding fragments by local linear embedding (Roweis and Saul, 2000)
f) Spatial pyramid matching
g) Getting the final descriptor by max-pooling at each level of the pyramid



Bag of Skeleton Paths

Skeletal path reflects the change in the radial function during the transition
from one terminal vertex of the skeleton to another (Bai, Liu and Tu, 2009).

However, the addition of skeletal descriptor, constructed in the similar manner
as the contour one, does not give a significant increase in the classification
quality (Shen et al., 2014): 85.50% against 83.4% on Animal Dataset and
98.35% against 97.16% on MPEG7).

Therefore, the task of building skeleton-based image descriptor efficiently
supplementing the contour part, remains open.



Skeleton-geodesic distances

Geodesic distance dGeod (X )(p, q) is the length of the shortest path between points p
and q, lying inside the shape. Distribution of geodesic distances is informative
descriptor of the shape, insensitive to articulations (Ling and Jacobs, 2007).

Skeleton-geodesic distance dGeod (Sk(X ))(p, q) is the length of the shortest path
between points p, q ∈ Sk(X ) anolg the figure skeleton (a). In the general case
dGeod (Sk(X ))(p, q), p, q ∈ X is the skeleton-geodesic distance between the
projections pSk (X ), qSk(X ) of these points on the skeleton (b):

dGeod(Sk(X ))(p, q) = dGeod(Sk(X ))(pSk(X ), qSk(X ))

p

q

(a)

p

q

(b)



Skeleton-geodesic distances (Continued)

Resistant not only to bending fat curves constituting the figure, but also to a
systematic change of their width.
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In the case of discrete figure and skeleton calculation can be performed according to
the formula

HGS (d) =
∑

p,q∈Sk(X ),dGeod(Sk(X ))(p,q)=d

S(p)S(q),

where S(p) and S(q) are the areas of regions of attraction of the corresponding points:

S(p) = #{q ∈ X : qGeod(Sk(X )) = p}.



Skeleton-geodesic distances: continuous approach

Discrete method of calculation is computationally inefficient. When transition
to a continuous representation another problem appears: the number of
skeleton points becomes infinite. You must select specific skeleton points and
“distribute” to them all the other points of the figure.

Let us take a point on each edge of the skeleton — let it be the midpoint. As
regions of attraction we take proper regions of the edges (Mestetskiy, 2014),
which form a partition of the figure. We assume that all the points of the
proper region “projected” in the middle of the edge.



Proper regions

To calculate the area of the region of attraction it is sufficient to know only the radii
of the edge end circles and the distance between their centers.
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Skeleton dual graph

Let us build a dual skeleton graph in which the edges corresponding to the
vertices in the skeleton are adjacent ⇐⇒ the edges in the original skeleton are
adjacent. The weights of the edges in the new graph is half the sum of lengths
of the edge-generators. The shortest way in the dual graph defines the shortest
path between the edge midpoints in the original one, and these paths are of the
same length.

l1

l2

l3

l5
l4

l1+l2
2

l2+l3
2

l1+l4
2

l4+l5
2l2+l4

2

Now all shortest paths in the dual graph can be found by Johnson’s algorithm.



Thickness and direction of the edge

Let us define the other characteristics of the edge e:

α(e) is the angle to the abscissa determined by the tangent at the midpoint.

Let T (q) is the thickness of the figure at the point, defined as the radius of the
maximum inscribed circle covering the figure (a). Then T (e) is thickness,
averaged on the proper region.
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The fully continuous method of calculating the average thickness is possible, but too
difficult to implement. Instead, we calculate T (q) in the desired subset of grid points
and average the results (b).



Calculation of the thickness at the point

We need to determine the radius of the maximum circle covering the point. We will
seek this circle separately in each edge, which silhouette includes the point. According
to the theorem, the maximum covering circle in a skeleton line with monotonic radial
function either the largest end circle, or such that the point lies on its boundary.

Ti(q) = r(1)

Solve equation r(t) = d(p, q(t))
and take the maximum root
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We solve the equation: the radius of the circle is equal to the distance to the given
point. For linear and parabolic edges the equation is reduced to the square one, for
hyperbolic — to the linear one. For the purposes of computational efficiency, in the
main loop we should look over the edges and consider all points covered by its
silhouette.



Feature distributions

To ensure invariance to rotation, we consider the distributions of features between
edge pairs.

tij is the difference between average thicknesses of the edges ei and ej , which is
equal to tij = |ti − tj |.
dij is the skeletal geodesic distance between the edges ei and ej (more precise,
the distance between their midpoints);

φij is the rotation angle between the edges ei and ej , calculated as
max(|αi − αj |, π − |αi − αj |);

The features are normalized to ensure invariance to scaling:

d∗ij =
dij

maxi,j dij
, φ∗ij =

φij
π
2

, t∗ij =
tij

rmax
.

Skeleton-geodesic histogram of thicknesses-distances-direction is defined as

HGS (a, b, c) =
∑

i,j :bkt t∗ij c=a,

bkdd∗ij c=b,

bkaφ∗
ij c=c

si · sj /
∑
i

si .

and includes ktkdka cells.
We can consider thickness as an independent feature and build a thickness spectrum
with n cells:

PS(a) = #{p ∈ Z ∩ X : bn
T (p)

rmax
c = a}.

Choosing a subset of these three features, we obtain a histograms of smaller
dimensions.



Combine them all together

The final descriptor is called CST (contour-skeleton-thickness) and consists of
the following components:

Bag of contour fragments descriptor containing m features and responsible
for contour information

Skeleton geodesic histograms:
histogram of pairwise thicknesses (kt features)
histogram of pairwise distances (kd features)
histogram of pairwise directions (ka features)
histogram of thicknesses-distances (ktkd features)
histogram of thicknesses-directions (ktka features)
histogram of distances-directions (kdka features)
histogram of thicknesses-distances-directions (ktkdka features)

Thickness spectrum containing n features

In total, there is m+ (kt + 1)(kd + 1)(kta+ 1)− 1 + n features in the descriptor.



How histograms look like
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How histograms look like (Continued)
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Determining the number of bins in histograms

Quality estimation is the result obtained by support vector machine classification with
a tenfold partition the sample in half, and averaging the results. In some cases, we use
a leave-one-out cross-validation for the SVM too.

Dataset 3 4 6 8 10 15 25 50
Animal 88.59 88.83 88.92 88.84 88.53 88.50 88.29 87.87
MPEG7 98.01 98.07 98.13 98.06 97.94 97.83 97.69 97.50
Swedish leaf 98.08 98.15 98.09 98.04 97.96 97.84 97.68 97.41

Varying the number of bins in pairwise thicknesses histogram along with BCF.

Dataset 3 4 6 8 10 15 25 50
Animal 90.38 90.47 90.98 90.99 91.11 91.04 90.92 90.42
MPEG7 97.90 98.23 98.30 98.27 98.26 98.13 98.11 97.99
Swedish leaf 97.55 97.67 97.84 98.17 98.48 98.60 98.72 98.72

Varying the number of bins in pairwise distances histogram along with BCF.

Dataset 2 3 4 5 6 8 12
Animal 87.64 87.71 87.85 87.80 87.72 87.68 87.70
MPEG7 97.54 97.59 97.80 97.89 97.90 97.84 97.69
Swedish leaf 97.35 97.35 97.43 97.47 97.44 97.36 97.31

Varying the number of bins in pairwise directions histogram along with BCF.



Contribution of descriptor components

Dataset 1D 2D 3D 1D+2D 1D+3D 2D+3D 1D+2D+3D
Animal 92.40 92.96 90.59 93.29 92.79 93.19 93.50
MPEG7 97.61 98.53 97.49 99.03 98.70 98.64 99.06
Swedish leaf 99.03 98.95 98.03 99.21 99.12 99.05 99.25

Using histograms of various dimensions and BCF descriptor together.

Dataset 4 5 7 10 15 20 30 50 100
Animal 93.47 93.61 93.87 93.75 93.57 93.88 93.95 93.87 93.68
MPEG7 99.27 99.31 99.27 99.36 99.31 99.30 99.37 99.31 99.30
Swedish leaf 99.08 99.11 99.15 99.17 99.17 99.17 99.19 99.16 99.15

Varying the number of bins of thickness spectrum along with the previous parts.



Animal (20 classes of 100 instances)

Method Accuracy
Class Segment Sets 69.7%
Inner-Distance Shape Context 73.6%
Contour Segments 71.7%
Skeleton Paths 67.9%
Contour Segments & Skeleton Paths 78.4%
Bag of Contour Fragments 83.4%
Shape Tree 80.0%
Local and Global Features 80.4%
Shape Vocabulary 84.3%
Bag of Contour Fragments + Bag of Skeleton Paths 85.5%
Multi Component-2 85.9%
Contour-Skeleton-Thickness 93.9%



Results for each class of Animal

Method Bird Butterfly Cat Cow Crocodile Deer Dog
BCF 87.6% 92.2% 73.8% 77.4% 76.8% 90.4% 82.6%
CST 95.2% 99.6% 91.0% 88.8% 83.8% 94.4% 98.4%

Method Dolphin Duck Elephant Fish Flyingbird Hen Horse
BCF 89.0% 87.0% 95.2% 79.8% 72.0% 94.2% 95.4%
CST 97.6% 97.2% 96.6% 90.4% 89.0% 96.0% 99.4%

Method Leopard Monkey Rabbit Rat Spider Tortoise
BCF 66.4% 58.4% 85.8% 70.6% 99.2% 93.6%
CST 85.2% 92.6% 96.4% 90.4% 99.8% 97.2%



MPEG7 (70 classes of 20 instances)

Method
Accuracy

(half testing)
Accuracy

(leave one out)
CSS 90.9% 97.93%
CS 91.1% -
SP 86.7% -
ICS 96.6% -
PMR - 97.57%
SoS - 97.36%
RS - 98.57%
KD - 98.93%
BCF 97.03% 98.86%
BCF+BSP 98.35% -
CST 99.27% 99.71%



Swedish leaf (15 classes of 75 instances)

Method Accuracy
MAC 82.00%
Fourier 89.60%
CS + DP 88.12%
IDSC + DP 94.13%
MDM 93.60%
IDSC + MS 94.80%
RS 95.47%
Shape Tree 96.28%
BCF 97.52%
CST 99.25%



Conclusion

Skeleton-geodesic histograms are informative characteristic of the shape
that is resistant to changes in a flexible shape and thickness changes.

They complement contour description better than other known features
extracted from the skeleton, allowing to achieve results that outperform all
existing counterparts.

Growth in the classification quality is achieved by adding a relatively small
number of features (some hundreds against tens of thousands).

Efficient computation of histograms is made possible by the continuous
mathematical morphology methods.

The main drawback of the method is instability of the skeleton to accident
holes occurring in the figure.



Thank you for attention!


