
Министерство образования и науки Российской Федерации

Московский физико-технический институт (государственный университут)

Факультет управления и прикладной математики

Вычислительный центр им А. А. Дородницына РАН

03.04.01 Прикладные математика и физика

Изучение пространства признаков в задаче
обучения с подкреплением

Выпускная квалификационная работа магистра

Автор .

Гринчук Алексей Валерьевич

Кафедра интеллектуальных систем

Научный руководитель .

Оселедец Иван Валерьевич

Доктор физико-математических наук

Профессор

Заведующий кафедрой .

Рудаков Константин Владимирович

Доктор физико-математических наук

Профессор, академик РАН

Москва

2017

Аннотация

Последние достижения в области алгоритмов обучения с подкреплением,

аппроксимирующие функцию полезности при помощи нейронных сетей, успешно

применяются для решения ряда практических задач, однако теоретические аспекты

их использования всё ещё требуют тщательного изучения. Нейронные сети могут

находить хорошие признаковые описания состояний среды, однако до сих пор ведутся

споры о том, как именно им это удаётся. Для лучшего понимания механизма работы

нейронных сетей мы предлагаем использовать идеи, полученные в результате многих

лет исследований в области линейной аппроксимации функции полезности.

Эта работа продолжает теорию линейного сжатия признаков и исследует

проблему нахождения множества признаков, в котором линейная аппроксимация

функции полезности оптимальна в смысле минимизации ошибки Беллмана. Мы

представляем Compressed Value Iteration — алгоритм линейного кодирования, которой

последовательно расширяет пространство признаков до момента, когда оптимальное

множество признаков найдено. Мы формулируем достаточные условия для того,

чтобы набор признаков был оптимальным и доказываем, что этот набор лежит в

подпространстве Крылова, образованном аппроксимацией вектора наград и матрицы

модели среды.

Наша подход состоит из двух шагов. На первом шаге мы ищем матрицу перехода

из пространства высокой размерности (в котором состояния среды представлены в виде

картинок) в пространство низкой размерности, признаковое описание состояний среды

в котором является оптимальным. На втором шаге мы ищем линейную аппроксимацию

функции полезности при помощи алгоритма Least-Squares Policy Iteration (LSPI) и

находим оптимальную стратегию поведения агента обучения с подкреплением.

Для тестирования предложенного алгоритма и сравнения его с другими

популярными подходами мы провели серию экспериментов на различных задачах

обучения с подкреплением. Положительные результаты, полученные в задаче

классического контроля “Перевёрнутый Маятник”, а также в игре “Пинг-Понг” из серии

игр Атари 2600, с состояниями, представленными в виде картинок, подтверждают

работоспособность предложенного подхода.

2

Содержание

1 Введение . 5

1.1 Мотивация . 5

1.2 Описание задачи . 6

1.3 Обзор литературы . 7

1.4 Научная новизна . 8

1.5 Структура работы . 9

2 Базовые понятия . 10

2.1 Задача обучения с подкреплением . 10

2.2 Марковский решающий процесс . 11

2.3 Линейная аппроксимация функции полезности 12

2.4 Теория линейного сжатия . 13

2.5 Обучение по выборке . 14

2.6 Least-Squares Policy Iteration . 15

3 Compressed Value Iteration . 17

3.1 Предсказательно оптимальное сжатие признаков 17

3.2 Compressed Value Iteration: общий вид . 18

3.3 Compressed Value Iteration: подпространства Крылова 22

4 Вычислительный эксперимент . 24

4.1 Описание экспериментов . 24

4.2 Перевёрнутый маятник . 25

4.2.1 Описание среды . 25

4.2.2 Размерность кодировщика 𝑘 . 26

4.2.3 Размер обучающей выборки . 27

4.2.4 Визуализация весов кодировщика 28

4.3 Атари 2600 Пинг-Понг . 29

3

4.3.1 Описание среды . 29

4.3.2 Разреженные состояния . 30

4.3.3 Результаты экспериментов . 31

5 Обсуждение . 32

5.1 Заключение . 32

5.2 Дальнейшая работа . 32

4

Глава 1

Введение

1.1 Мотивация

The reinforcement learning paradigm was first introduced in the late 1980s as an at-

tempt to apply an optimal control theory to learning by trial and error — a learning method

common to both human beings and animals. The idea to develop strict theoretical sub-

stantiation for the social phenomena of self-learning had one ultimate goal — to bring the

mankind to the creation of artificial intelligence. However, after the development of the

necessary mathematical apparatus, scientists faced another conundrum. To solve real-world

problems, reinforcement learning algorithms required prodigious computational resources,

unavailable at that time. This gap between theoretical grounding and practical implemen-

tation persisted until the year of 2015.

During the last two years reinforcement learning experienced a powerful rise and be-

came very popular topic in machine learning field, and computer science in general. Deep

neural networks which outperformed state-of-the art approaches in such fields as computer

vision, natural language processing, and speech recognition showed extremely good results

on a bunch of complicated reinforcement learning problems. For example, a deep reinforce-

ment learning agent developed for playing the game of Go managed to beat the world’s best

professional players, while all other existing algorithms did not surpass even the amateur

dan.

The excessive popularity of deep reinforcement learning at first quickly overcame the

gap between theory and practice, but then it started to create the gap in opposite direc-

tion. Algorithms based on neural networks began to use a profusion of different heuristics to

achieve better results on real-world problems providing no theoretical grounding. Therefore,

5

despite the successes in practice and, arguably because of them, we need to provide thought-

ful study and investigation of theoretical aspects behind the usage of neural networks for

solving reinforcement learning problems.

In this work we show that neural networks used for solving reinforcement learning

problems nowadays can be considered as linear value function approximations on so called

encoded feature representations. We investigate a problem of finding a low-dimensional

set of features in which linear value function approximation is optimal. We introduce a

compressed value iteration algorithm for searching for good feature representations of the

states and vindicate the eligibility of the proposed approach by computational experiments

on various reinforcement learning problems.

1.2 Описание задачи

In this section we provide brief description of the problem and why it is important to

solve it. More formal and mathematically strict problem statement is presented in Chapter 2

after we introduce necessary notation and background.

Feature representation of states and actions is of vital importance in reinforcement

learning, as the quality of value function or policy is largely determined by corresponding

features. However, major part of reinforcement learning environments enables superfluous

representations of states, when the number of features is much bigger then the number

of effective parameters which determine the dynamics of the whole system. For example,

classical problem of balancing 2D inverted pendulum has only two effective parameters, angle

and angular velocity, which fully determine the system’s behavior. If we draw the pendulum

as an image of resolution 30×60 pixels (which is quite low resolution), the number of features

will equal 1800.

Training time of reinforcement learning algorithms is directly proportional to the di-

mensionality of feature space, and, if we manage to reduce the number of features in states

representations, we can get significant speed improvement. Despite the variety of meth-

ods for feature space dimensionality reduction (e.g. principal component analysis and its

modifications), there are no theoretical guarantees that they are applicable to reinforcement

learning. This observation brings us to the informal problem statement: to find a transfor-

mation from high-dimensional raw feature space to low-dimensional feature space sufficient

for learning an optimal value function and policy.

6

In addition to speeding up existing reinforcement learning algorithms, there is one more

very interesting perspective of looking for low-dimensional feature space representation. Deep

neural networks trained with stochastic gradient descent find good feature representations,

but the discussion of how they do it is still open. Theoretical concepts of linear feature

encoding we present in this work, if extended to more complicated case of non-linear neural

networks, can provide better understanding of the role of features in reinforcement learning

and improve the existing algorithms.

1.3 Обзор литературы

The most complete exposition of reinforcement learning with its achievements and

challenges is presented in the book of Sutton and Barto [1]. Basic concepts of Markov

decision processes (MDPs), which are a mathematical core of reinforcement learning, can

be found in the work of Puterman [2]. Dynamic programming paradigm which preceded

reinforcement learning was first introduced by Bellman [3]. A lot of work in the field of

approximate dynamic programming was done by Bertsekas and Tsitsiklis [4].

Feature construction has been and remains an important topic for reinforcement learn-

ing. Expert features, being used instead of the original ones, demonstrated a huge perfor-

mance improvement in TD-gammon [5]. In the following years a lot of theoretical and

practical work was done on understanding how to generate good features for linear value

function approximation. Mahadevan and Maggioni introduced a Laplacian framework for

learning representations for linear value function approximation [6], while Parr at al. used

Bellman error approach for analyzing and generating features [7]. Petrik [8] conducted fur-

ther analysis of Laplacian methods and demonstrated that augmented Krylov methods may

significantly outperform them. Parr et al. [9] presented elaborate analysis of linear value

function approximation theory and proved an equivalence of augmented Krylov methods

and Bellman error based methods for feature selection in reinforcement learning.

More recent practical advances which used deep neural networks for state-action value

function approximation showed extremely successful results and initiated a new wave of

interest in reinforcement learning. Mnih et al. [10] described a reinforcement learning system,

referred to as Deep Q-Networks (DQN) which learned to play dozens of Atari 2600 games

and managed to outperform a good human player in a number of them. However, the

real triumph of deep reinforcement learning happened after a self-trained agent, part of the

AlphaGo framework, beat 18-time Go world champion Lee Sedol in a series of five games.

7

The computer program AlphaGo developed by Google DeepMind [11] managed to find good

value function approximation based on DQN and outplay a professional Go player, which

had been regarded impossible for a long time.

There are several other very interesting examples of cross-disciplinary research based

on deep reinforcement learning. A step forward to creating true artificial intelligence was

done in a work on robotics of Gureshi et al. [12] where robot was self-trained to interact

with humans. Leibo et al. [13] used reinforcement learning agents in social games to test

some aspects of game theory in practice. Olivecrona et al. [14] applied deep reinforcement

learning to computational de-novo drug discovery in chemoinformatics.

Despite the insane success of deep reinforcement learning, there is one problem still in

existence — neural networks require expensive computational clusters of GPUs and need days

of training time to create a really good agent. A great deal of work was done in a direction of

optimizing DQN in terms of reducing training time and improving computational efficiency.

Mnih et al. [15] introduced Advanced Asynchronous Actor Critic (A3C) model which works

on CPU and uses tens of agents interacting with the environment in parallel. Pritzel et

al. [16] proposed to use kd-tree based memory layer in neural networks to increase efficiency

of training and reduce both training time and training data size.

As an example of the connection between practical neural network techniques and

linear value function approximation theory, we note that Oh et al. [17] trained an action-

conditional encoder for the next state prediction. Despite the next states prediction is a well-

known technique used in neural networks, more recent linear value-function approximation

theory proves that predicting next states is sufficient to ensure the existence of optimal

value function [9]. This concept was generalized by Song et al. [18] to state-action value

functions, where a simple linear encoder trained to predict the next states was able to learn

good policies for Inverted Pendulum and Black Jack problems with states represented as raw

images.

1.4 Научная новизна

This section outlines main contributions of the proposed work.

1. We develop further theory of linear feature encoding for reinforcement learning. We

prove that it is sufficient to be able to predict encoded next states instead of raw

8

ones [18] to guarantee the optimality of linear value function approximation with linear

encoder and discuss the insights behind this idea.

2. We present compressed value iteration – an algorithm which extends the feature set

iteratively to solve the optimization problem induced by the idea of the next encoded

state prediction. Although this problem is quadratic in general, its form is a bit tricky

and there is no straightforward way to solve it with standard methods.

3. We discuss two modifications of compressed value iteration. One of them uses Krylov

methods for feature generation similar to Petrik [8], another one benefits from sparse

representation of the states common to most reinforcement learning environments.

These modifications allow us to achieve significant speed up comparing to original

compressed value iteration and other methods for linear value function approximation.

4. In a series of computational experiments we vindicate the eligibility of the presented

method and compare it with other popular approaches for feature encoding. As a

benchmark we choose two reinforcement learning environments. The first one is In-

verted Pendulum classic control problem with states represented by two successive raw

images of the pendulum instead of its natural hidden parameters — angle and angular

velocity. The second one is the Atari 2600 game Pong with states represented by four

successive frames of the gaming screen transformed into gray scale from RGB.

1.5 Структура работы

This chapter is aimed to delineate the current status of reinforcement learning research

and introduce the problem of searching for a low-dimensional state space representation, we

solve in this thesis. Chapter 2 contains all necessary preliminaries, background, and notation

to formulate the problem mathematically. It also describes the Least-Squares Policy Iteration

algorithm — a standard method for solving reinforcement learning problems with linear value

function approximation.

In Chapter 3 we present compressed value iteration — a linear encoding method for

solving the aforementioned problem and discuss its peculiarities. Chapter 4 is devoted to

computational experiments aimed to prove the eligibility of the proposed approach and

compare it to other methods of constructing features in reinforcement learning problems.

Finally, Chapter 5 concludes the presented work and discusses its perspective extensions,

including possible directions of future work.

9

Глава 2

Базовые понятия

2.1 Задача обучения с подкреплением

Reinforcement learning problem consists of three basic elements: a learning agent, an

environment, and a reward signal. At each time step 𝑡, the agent receives some representation

of the environment’s state 𝑠𝑡 ∈ 𝒮, where 𝒮 is the set of possible states, and on that basis

selects an action, 𝑎𝑡 ∈ 𝒜 from the set of available actions. The environment reacts to the

agent’s action by giving it a numerical reward 𝑟𝑡+1 ∈ R, and changing its state to a new state

𝑠𝑡+1 [1]. Through such interactions, the agent collects experience of how the environment

works and aims to understand how it should behave to get the maximum amount of reward.

Figure 2.1 represents the scheme of agent-environment interaction.

At each time step, the agent implements a mapping from states to probabilities of

selecting each possible action. This mapping is called the agent’s policy and is denoted by

𝜋 : 𝒮 → 𝒜, where 𝜋(𝑎|𝑠) = P(𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠) is the probability of choosing action 𝑎 while

being in state 𝑠. To solve reinforcement learning problem means to find such policy 𝜋 that

maximizes the total expected amount of reward:

E𝜋(𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + . . .)→ max
𝜋

where 0 ≤ 𝛾 < 1 is a parameter called the discount rate — a heuristics which guarantees

that the infinite sum of rewards has a finite value for bounded values of rewards 𝑟.

10

Figure 2.1 — The agent-environment interaction in reinforcement learning. This image was
adapted from Sutton and Barto book [1].

2.2 Марковский решающий процесс

The mathematical formalization of the reinforcement learning problem is a Markov

Decision Processes (MDPs). In general, a Markov Decision Process (MDP) is a fivetuple

ℳ = ⟨𝒮,𝒜,ℛ,𝒫 ,𝛾⟩, where 𝒮 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} is the state set with states represented by

vectors of dimensionality 𝑙: 𝑠 ∈ R𝑙 in our setting, 𝒜 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} is the action set. The

reward function ℛ(𝑠𝑖, 𝑎𝑗) denotes the expected immediate reward when taking action 𝑎𝑗 in

state 𝑠𝑖, the transition function 𝒫(𝑠𝑖, 𝑎, 𝑠𝑗) denotes the probability of transiting from state

𝑠𝑖 to state 𝑠𝑗 when taking an action 𝑎, and 𝛾 ∈ [0, 1) is the discount factor for future reward.

The policy 𝜋 in an MDP can be represented in terms of probability of taking action 𝑎 when

in state 𝑠: 𝜋(𝑎|𝑠) ∈ [0, 1] and
∑︀

𝑎 𝜋(𝑎|𝑠) = 1.

In this work we use more convenient matrix notation. We define raw state-action

matrix 𝐴 ∈ R𝑛𝑚×𝑚𝑙 where each row represents a state-action pair (𝑠𝑖, 𝑎𝑗). All rows are split

into 𝑚 blocks of size 𝑙 and only the block corresponding to the action taken is non-zero:

it contains a vector of size 𝑙 which is the vector of corresponding state (see Figure 2.2 for

an illustration). The reward function is represented as a vector 𝑅(𝑠, 𝑎) ∈ R𝑛𝑚×1 and the

transition function is represented as a matrix 𝑃 ((𝑠, 𝑎), 𝑠′) ∈ R𝑛𝑚×𝑛. Given a policy 𝜋, we

define 𝑃 𝜋(𝑠′, 𝑎′|𝑠, 𝑎) ∈ R𝑛𝑚×𝑛𝑚 as the transition probability for the state action pairs, where

𝑃 𝜋(𝑠′, 𝑎′|𝑠, 𝑎) = 𝑃 ((𝑠, 𝑎), 𝑠′)𝜋(𝑎′|𝑠′).

11

Figure 2.2 — Illustration of how the state-action matrix 𝐴 is constructed for four different
states and three actions.

For any policy 𝜋, its Q-function 𝑄𝜋(𝑠, 𝑎) is defined over the state-action pairs (𝑠, 𝑎)

and represents total 𝛾-discounted reward when taking action 𝑎 in state 𝑠 and following 𝜋

afterwards. We consider Q-function as a vector 𝑄𝜋(𝑠, 𝑎) ∈ R𝑛𝑚×1. The Q-function satisfies

the Bellman equation which has the following form in presented above matrix notation:

𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′,𝑎′

𝑃 𝜋(𝑠, 𝑎|𝑠′, 𝑎′)𝑄𝜋(𝑠′, 𝑎′). (2.1)

2.3 Линейная аппроксимация функции полезности

There are some cases when Q-function can be represented exactly as a closed-form

solution to Bellman equation, but in general it is not possible. For example, when the number

of states is too big or even continuous, it is impossible to apply the dynamic programming

approach because of a huge (or infinite) size of the table containing Q-values. When it is

impossible to represent the Q-function exactly, it is usually approximated with a function

from some parametric family 𝑄̂𝜋 ∈ ℬ(𝜃).

The Bellman operator 𝑇 𝜋 [18] on the Q-functions is defined as

𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′,𝑎′

𝑃 𝜋(𝑠, 𝑎|𝑠′, 𝑎′)𝑄𝜋(𝑠′, 𝑎′).

In terms of 𝑇 𝜋, the Bellman equation can be rewritten in a form of 𝑇 𝜋𝑄𝜋 = 𝑄𝜋, where

𝑄𝜋 is a fixed point of 𝑇 𝜋. We define the Bellman error for an approximated Q-function 𝑄̂𝜋

as BE(𝑄̂𝜋) = 𝑇 𝜋𝑄̂𝜋− 𝑄̂𝜋. When the Bellman error is 0, the Q-function is at the fixed point.

Otherwise, we have [19]:

12

‖𝑄̂𝜋 −𝑄𝜋‖∞ ≤
1

1− 𝛾
‖𝑄̂𝜋 − 𝑇 𝜋𝑄̂𝜋‖∞,

where ‖x‖∞ refers to the 𝑙∞ norm of a vector x.

In this work, we consider linear Q-function approximation: 𝑄̂𝜋 = 𝐴w𝜋
𝐴, where w𝜋

𝐴 ∈

R𝑚𝑙×1 is the weight vector. The linear fixed point methods [20–22] find w𝜋
𝐴 as a solution of

so-called fixed point equation:

𝐴w𝜋
𝐴 = Π(𝑅 + 𝛾𝑃 𝜋𝐴w𝜋

𝐴), (2.2)

where Π = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 is the orthogonal 𝑙2 projector on span(𝐴). Solving 2.2 leads to the

following linear fixed-point solution:

w𝜋
𝐴 = (𝐴𝑇𝐴− 𝛾𝐴𝑇𝑃 𝜋𝐴)−1𝐴𝑇𝑅. (2.3)

2.4 Теория линейного сжатия

Computing w𝜋
𝐴 in a form of 2.3 exhibits two serious drawbacks. Firstly, it contains

matrix inversion which is undefined if a matrix is not full rank. This happens, for example,

if a number of features is greater than a number of states. This situation is vacuous if we

have access to all states, as in this case we can simply reduce number of features, eliminating

superfluous ones. In practice we usually do not have access to all states and have to use

samples from the agent’s experience. Secondly, computational complexity of matrix inversion

in this case is 𝒪({𝑚𝑙}3) which makes this method inapplicable to real-world problems, as

they usually have 𝑚𝑙 ≈ 104 − 105.

The main idea of feature encoding is to find another, low-dimensional feature represen-

tation of the state-action pairs. Similar to [18], we refer to the transformation which reduces

a number of features using an encoder.

Definition 1. The encoder ℰ𝜋 is a transformation ℰ𝜋 : R𝑛𝑚×𝑚𝑙 → R𝑛𝑚×𝑘 from high-

dimensional raw feature space of matrices 𝐴 to low-dimensional encoded feature space of

matrices Φ = ℰ𝜋(𝐴). If the encoder is linear, Φ = ℰ𝜋(𝐴) = 𝐴𝐸𝜋 where 𝐸𝜋 ∈ R𝑚𝑙×𝑘.

In terms of the encoded feature space representation, linear Q-function approximation

and solution to the fixed point equation 2.3 have the following form:

13

𝑄̂𝜋 = Φw𝜋
Φ, w𝜋

Φ = (Φ𝑇Φ− 𝛾Φ𝑇𝑃 𝜋Φ)−1Φ𝑇𝑅

Instead of approximating the Q-function linearly and solving the fixed-point equa-

tion 2.2, we can approximate the reward function 𝑅 and the expected policy-conditional

next feature 𝑃 𝜋Φ to force the solution of approximated Bellman equation to be linear. Ac-

cording to Parr et al. [9], we can do it, using the following linear model:

𝑅̂ = Φ𝑟Φ = Φ(Φ𝑇Φ)−1Φ𝑇𝑅, (2.4a)̂︂𝑃 𝜋Φ = Φ𝑃 𝜋
Φ = Φ(Φ𝑇Φ)−1Φ𝑇𝑃 𝜋Φ. (2.4b)

Interestingly, the linear fixed-point solution and the linear model solution are the

same [7], so there is no need to differentiate them. However, the linear model paradigm

gives us an opportunity to decompose the Bellman error into a sum of reward error and

policy-conditional per-feature error:

∆𝑅 = 𝑅− 𝑅̂ = 𝑅− Φ𝑟Φ, (2.5a)

∆𝜋
Φ = 𝑃 𝜋Φ− ̂︂𝑃 𝜋Φ = 𝑃 𝜋Φ− Φ𝑃 𝜋

Φ . (2.5b)

Theorem 1. (Parr et al.) For any MDP ℳ with feature representation Φ, and policy

𝜋 represented as the fixed point of the approximate Q-function, the Bellman error can be

represented as

BE(𝑄̂𝜋) = ∆𝑅 + 𝛾∆𝜋
Φ,w

𝜋
Φ

From Theorem 1 it is clear that condition ∆𝑅 = 0, ∆Φ = 0 is sufficient (but not

necessary) to achieve zero Bellman error and a perfect Q-function. Specifically, it requires

that the features of the approximate model capture the structure of the reward function, and

that the features of the approximate model are sufficient to predict expected next features [9].

2.5 Обучение по выборке

In practice we do not have access to the model of the environment 𝑃 𝜋, but do have

access to samples from agent-environment interaction history, obtained after exploitation of

14

some policy. In such setting, the environment is considered a “black box” — it receives some

policy 𝜋 as an input and outputs a desired number of fourtuples (𝑠, 𝑎, 𝑟, 𝑠′).

In our notation, state-action matrix 𝐴 and reward vector 𝑅 will now have 𝑁 rows,

instead of 𝑛𝑚, where 𝑁 is a number of samples. We define state-action matrix of raw states

𝐴 ∈ R𝑁×𝑚𝑙, built from pairs (𝑠, 𝑎); reward vector 𝑅 ∈ R𝑁×1, built from rewards 𝑟; and

state-action matrix of raw next states 𝐴′ ∈ R𝑁×𝑚𝑙, built from pairs (𝑠′, 𝑎′), where actions

𝑎′ are sampled from the environment with some policy 𝜋, correspondingly to states 𝑠′. We

refer to Φ = 𝐴𝐸𝜋 ∈ R𝑁×𝑘 as to a matrix of encoded states and to Φ′ = 𝐴′𝐸𝜋 ∈ R𝑁×𝑘 as to

a matrix of encoded next states.

2.6 Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) algorithm [23] is a method of discovering the

optimal policy for any given MDP, which belongs to the class of so-called policy iteration

methods [24] — a standard way to solve MDPs. LSPI starts from some policy 𝜋0, usually ran-

dom, and discovers the optimal policy by generating a sequence of monotonically improving

policies.

Each learning iteration of LSPI consists of two steps. At the first step we evaluate

current policy 𝜋𝑖 and find linear Q-function approximation 𝑄̂𝜋𝑖 = Φw𝜋𝑖
Φ with the LSTDQ

procedure, which simply calculates the vector of weights w𝜋
Φ. At the second step we construct

improved greedy policy 𝜋𝑖+1 over 𝑄̂𝜋𝑖 as

𝜋𝑖+1(𝑠, 𝑎) =

⎧⎪⎨⎪⎩1, 𝑎 = arg max𝑎∈𝒜 𝑄̂𝜋𝑖(𝑠, 𝑎),

0, otherwise.

Policy 𝜋𝑖+1 is a deterministic policy which is better than 𝜋𝑖, if the policy evaluation step is

exact. However, if the policy evaluation step is approximate, as it is in the case with the

LSTDQ, then the new policy is not guaranteed to be uniformly better. These two steps

(policy evaluation and policy improvement) are repeated until convergence. Algorithm 1

represents LSPI algorithm, its block diagram is portrayed as Figure 2.3.

15

Figure 2.3 — Least-squares policy iteration algorithm block diagram. This picture was
borrowed from original LSPI article [23].

The LSPI algorithm is fast if the number of features is small, and it usually converges

after several iterations. In this work we use the off-policy version of the LSPI algorithm,

when learning takes places after the training samples have been collected.

Algorithm 1 Least-Squares Policy Iteration
Input: Samples (𝑠, 𝑎, 𝑟, 𝑠′), discount factor 𝛾, initial policy 𝜋0

Construct state-action matrix Φ from samples (𝑠, 𝑎)
𝜋′ ← 𝜋0

repeat
𝜋 ← 𝜋′

Sample actions 𝑎′ for 𝑠′ with policy 𝜋
Construct state-action matrix Φ′ from samples (𝑠′, 𝑎′)
w𝜋

Φ = (Φ𝑇Φ− 𝛾Φ𝑇Φ′)−1Φ𝑇𝑅
𝜋′ ← greedy policy over 𝑄̂ = Φw𝜋

Φ

until 𝜋 ≈ 𝜋′ (‖w𝜋
Φ −w′𝜋

Φ‖2 < 𝜖)
return 𝜋
Here w′𝜋

Φ represents the vector of weights from the previous iteration.

16

Глава 3

Compressed Value Iteration

3.1 Предсказательно оптимальное сжатие признаков

Theorem 1 suggests a sufficient condition for a set of features to be optimal, which

lies in minimization of the model prediction prediction error ∆𝜋
Φ and reward prediction

error ∆𝑅. If we manage to predict both the reward vector and encoded next features —

which means that there exists some predictor matrix 𝐷𝜋 (we refer to as decoder), such that

𝐴𝐸𝜋𝐷𝜋 = [𝑅,𝐴′𝐸𝜋] — then we can get a perfect value function 𝑄̂, such that BE(𝑄̂) = 0

(see Theorem 3 below for justification). In practice we will minimize the Frobenius norm of

the difference:

‖𝐴𝐸𝜋𝐷𝜋 − [𝑅,𝐴′𝐸𝜋]‖𝐹 → min
𝐸𝜋 ,𝐷𝜋

(3.1)

This optimization problem is a bit tricky to solve, because 𝐸𝜋 appears inconveniently

on both sides of 3.1 making it difficult to rearrange terms to solve for 𝐸𝜋 as an optimization

problem with a fixed target. Song et al. [18] proposed to solve another optimization problem

and predict raw next states, instead of the encoded ones, which is easier. They introduced

theory of predictively optimal feature encoding and proved that such shift from one optimiza-

tion problem to another does not violate the equation BE(𝑄̂) = 0. Below we provide the

key results of this theory.

Definition 2. Low-dimensional representation Φ = ℰ𝜋(𝐴) is predictively optimal for raw

features with respect to 𝐴, 𝐴′, and 𝜋 if there exists 𝐷𝜋 ∈ R𝑁×(𝑚𝑙+1) such that ℰ𝜋(𝐴)𝐷𝜋 =

[𝑅,𝐴′]. In case of linear encoder, we have 𝐴𝐸𝜋𝐷𝜋 = [𝑅,𝐴′].

17

Theorem 2. (Song et al., [18]) For any MDPℳ with predictively optimal for raw features

Φ = 𝐴𝐸𝜋 with respect to 𝐴, 𝐴′, and 𝜋, if the linear fixed point for Φ is 𝑄̂𝜋, then BE(𝑄̂𝜋) = 0.

Theorem 2 implies the following optimization problem:

‖𝐴𝐸𝜋𝐷𝜋 − [𝑅,𝐴′]‖𝐹 → min
𝐸𝜋 ,𝐷𝜋

(3.2)

which can be solved with Alternating Least-Squares (ALS) algorithm [18], which starts from

random matrix 𝐷𝜋 and alternatively updates 𝐸𝜋 and 𝐷𝜋, according to the updating rules

𝐸𝜋 ← 𝐴†[𝑅,𝐴′](𝐷𝜋)† and 𝐷𝜋 ← (𝐴𝐸𝜋)†[𝑅,𝐴′]. Here, † represents (truncated) Moore-

Penrose pseudoinverse.

Proposed ALS for solving the optimization problem 3.2 shows good results on Inverted

Pendulum and Black Jack environments with states represented as raw images, which has

always seemed to be a challenge for a simple linear architecture. It outperforms the random

projection method for feature selection, introduced by Ghavamzadeh [25].

However, there is one unpleasant drawback, connected with the idea to replace predic-

tion of encoded next states with prediction of raw next states. The presented above theory

can not be easily generalized to the case where non-linear encoder is used. Unfortunately,

it is impossible to apply it directly to deep neural networks with linear output layer (lin-

ear Q-function approximation) and sophisticated non-linear feature extraction modules (all

layers preceding output layer). This shortcoming drives us to the idea of returning back to

solving 3.1 and to the development of our compressed value iteration algorithm.

3.2 Compressed Value Iteration: общий вид

In this section we present the central part of the thesis — compressed value iteration

(CVI) algorithm for linear feature encoding. First of all, let us introduce one more definition

and prove formally the assertion made at the beginning of the previous section.

Definition 3. Low-dimensional representation Φ = ℰ𝜋(𝐴) is predictively optimal for en-

coded features with respect to 𝐴, 𝐴′, and 𝜋 if there exists 𝐷𝜋 ∈ R𝑁×(𝑘+1) such that

ℰ𝜋(𝐴)𝐷𝜋 = [𝑅, ℰ𝜋(𝐴′)]. In case of linear encoder, it is 𝐴𝐸𝜋𝐷𝜋 = [𝑅,𝐴′𝐸𝜋].

Theorem 3. For any MDP ℳ with predictively optimal for encoded features Φ = 𝐴𝐸𝜋

with respect to 𝐴, 𝐴′, and 𝜋, if the linear fixed point for Φ is 𝑄̂𝜋, then BE(𝑄̂𝜋) = 0.

18

Proof. (Inspired by Song et al. [18] proof of Theorem 2.) For predictively optimal for

encoded features Φ = 𝐴𝐸𝜋, there exists a decoder 𝐷𝜋 ∈ R𝑁×(𝑘+1), such that

𝐴𝐸𝜋𝐷𝜋 = [𝑅,𝐴′𝐸𝜋]. (3.3)

We denote the first column and the last 𝑘 columns of matrix 𝐷𝜋 as 𝐷𝜋
𝑟 and 𝐷𝜋

𝑠 respectively.

In such notation, we can rewrite Equation 3.3 as a system of two linear equations:⎧⎪⎨⎪⎩𝐴𝐸𝜋𝐷𝜋
𝑟 = 𝑅,

𝐴𝐸𝜋𝐷𝜋
𝑠 = 𝐴′𝐸𝜋.

Now, we pick 𝑃 𝜋
Φ = 𝐷𝜋

𝑠 and 𝑟Φ = 𝐷𝜋
𝑟 , and get the following inference:

∆𝜋
Φ = 𝑃 𝜋Φ− Φ𝑃 𝜋

Φ = Φ′ − 𝐴𝐸𝜋𝐷𝜋
𝑠 = 𝐴′𝐸𝜋 − 𝐴′𝐸𝜋 = 0,

∆𝑅 = 𝑅− Φ𝑟Φ = 𝑅− 𝐴𝐸𝜋𝐷𝜋
𝑟 = 𝑅−𝑅 = 0,

From Theorem 1, we have BE(𝑄̂𝜋) = ∆𝑅 + 𝛾∆𝜋
Φw

𝜋
Φ = 0.

Usually we are not able to solve Equation 3.3 directly and find exact solution in a

closed-form, so we undermine the condition of strict equality and solve the optimization

problem 3.1 instead.

The idea of compressed value iteration is to start with less difficult problem of predict-

ing the vector of rewards only and then increase the number of features iteratively, until we

get the optimal set of features. Initially, our set of features is empty.

At the first step we solve the following optimization problem:

‖𝐴𝐸𝜋
1𝐷

𝜋
1 −𝑅‖𝐹 → min

𝐸𝜋
1 ,𝐷

𝜋
1

The solution of this problem in terms of 𝑋1 = 𝐸𝜋
1𝐷

𝜋
1 is a least-squares solution 𝑋1 =

𝐴†𝑅 ∈ R𝑚𝑙×1. As we see, the product 𝐸𝜋
1𝐷

𝜋
1 is a matrix of rank 1, so we can pick

𝐸𝜋
1 = 𝑋1 = 𝐴†𝑅 and 𝐷𝜋

1 = 1. As a result of the first iteration we get 1-dimensional encoder

𝐸𝜋
1 and corresponding set of features Φ1 = 𝐴𝐸𝜋

1 , which consists of one feature only.

Now we proceed to the second step. At the previous step we have learned to predict

the vector of rewards at the cost of adding one extra feature to our (empty) feature set.

Initial optimization problem 3.1 implies that we need to predict not only the rewards but

also the encoded features. So, now we are going to search for another encoder-decoder pair

19

which allows us to predict both the rewards 𝑅 and encoded next states 𝐴′𝐸𝜋
1 introduced on

the previous iteration. Corresponding optimization problem has the following form:

‖𝐴𝐸𝜋
2𝐷

𝜋
2 − [𝑅,𝐴′𝐸𝜋

1]‖𝐹 → min
𝐸𝜋

2 ,𝐷
𝜋
2

.

Similar to the first iteration, we have 𝑋2 = 𝐸𝜋
2𝐷

𝜋
2 = 𝐴†[𝑅,𝐴′𝐸𝜋

1] and the product 𝐸𝜋
2𝐷

𝜋
2 is

a matrix of rank not greater than 2. Let 𝑈2𝑇2 = 𝑋2 be a QR-decomposition of matrix 𝑋2.

We pick 𝐸𝜋
2 = 𝑈2 and 𝐷𝜋

2 = 𝑇2 to get orthogonal encoder 𝐸𝜋
2 ∈ R𝑚𝑙×2 and upper-diagonal

decoder 𝐷𝜋
2 ∈ R2×2. If decoder is a singular matrix, then we have finished and 𝐸𝜋

1 is desired

encoder. Otherwise, we claim 𝐸𝜋
2 as the current encoder and proceed to the next step.

Before describing general form of the iteration (which is easily implied from transition

𝐸𝜋
1 → 𝐸𝜋

2), let us clarify why we pick 𝐸𝜋
2 = 𝑈2, not 𝐸𝜋

2 = 𝑈2𝑇2, or 𝐸𝜋
2 = 𝑈2

√
𝑇2, or

some other matrix that satisfies 𝐸𝜋
2𝐷

𝜋
2 = 𝑄2𝑅2, of which are infinite number. Because

of linear nature of LSPI algorithm we use to find policy on the encoded features, we may

not differentiate between various encoders, distinct up to a product by non-singular matrix.

Orthogonal matrices, in turn, possess many good properties. Below we provide justification

of this statement.

Lemma 1. For any encoder 𝐸𝜋 and non-singular matrix 𝑌 , the resulting policies of LSPI

algorithm for two sets of features Φ = 𝐴𝐸𝜋 and Φ𝑌 = Φ𝑌 = 𝐴𝐸𝜋𝑌 are the same.

Proof. For two different sets of features, the only difference in LSPI algorithm lies in com-

putation of the vector of weights w and approximate Q-function 𝑄̂𝜋. Let us look at the

corresponding vectors for both Φ and Φ𝑌 for arbitrary iteration of LSPI:

w𝜋
Φ = (Φ𝑇Φ− 𝛾Φ𝑇Φ′)−1Φ𝑇𝑅,

w𝜋
Φ𝑌

= (Φ𝑌
𝑇Φ𝑌 − 𝛾Φ𝑌

𝑇Φ′
𝑌)−1Φ𝑌

𝑇𝑅 = (𝑌 𝑇Φ𝑇Φ𝑌 − 𝛾𝑌 𝑇Φ𝑇Φ′𝑌)−1𝑌 𝑇Φ𝑇𝑅 =

=
(︀
𝑌 𝑇 [Φ𝑇Φ− 𝛾Φ𝑇Φ′]𝑌

)︀−1
𝑌 𝑇Φ𝑇𝑅 = 𝑌 −1(Φ𝑇Φ− 𝛾Φ𝑇Φ′)−1(𝑌 𝑇)−1𝑌 𝑇Φ𝑇𝑅 =

= 𝑌 −1(Φ𝑇Φ− 𝛾Φ𝑇Φ′)−1Φ𝑇𝑅.

Here are corresponding Q-functions:

𝑄̂𝜋
Φ = Φ(Φ𝑇Φ− 𝛾Φ𝑇Φ′)−1Φ𝑇𝑅,

𝑄̂𝜋
Φ𝑌

= Φ𝑌 𝑌 −1(Φ𝑇Φ− 𝛾Φ𝑇Φ′)−1Φ𝑇𝑅 = Φ(Φ𝑇Φ− 𝛾Φ𝑇Φ′)−1Φ𝑇𝑅.

20

As we see, 𝑄̂𝜋
Φ ≡ 𝑄̂𝜋

Φ𝑌
for any iteration of LSPI algorithm. Corresponding greedy

policies over 𝑄̂𝜋
Φ and 𝑄̂𝜋

Φ𝑌
are equal too, as well as resulting policies.

We return to describing a general form of the iteration of our algorithm. Assume that

we have an encoder 𝐸𝜋
𝑘 ∈ R𝑙𝑚×𝑘, and we want to predict the rewards 𝑅 and encoded next

states Φ′ = 𝐴′𝐸𝜋
𝑘 . We face the following optimization problem:

‖𝐴𝐸𝜋
𝑘+1𝐷

𝜋
𝑘+1 − [𝑅,𝐴′𝐸𝜋

𝑘]‖𝐹 → min
𝐸𝜋

𝑘+1,𝐷
𝜋
𝑘+1

In terms of 𝑋𝑘+1 = 𝐸𝜋
𝑘+1𝐷

𝜋
𝑘+1 we have a least-squares solution 𝑋𝑘+1 = 𝐴†[𝑅,𝐴′𝐸𝜋

𝑘] and the

product 𝐸𝜋
𝑘+1𝐷

𝜋
𝑘+1 is a matrix of rank not greater than (𝑘 + 1). Let 𝑈𝑘+1𝑇𝑘+1 = 𝑋𝑘+1 be a

QR-decomposition of matrix 𝑋𝑘+1, then we pick 𝐸𝜋
𝑘+1 = 𝑈𝑘+1 and 𝐷𝜋

𝑘+1 = 𝑇𝑘+1.

Now, we know how to increase the number of features iteratively and construct the

encoder 𝐸𝜋
𝑘 for any 𝑘, and the only thing left is to describe stopping criteria for our algorithm.

Our iterative process terminates if one of the following conditions is met:

1. The number of iterations 𝑘 reaches the maximally allowed one 𝐾.

2. The residual ‖𝐴𝐸𝜋
𝑘𝐷

𝜋
𝑘−[𝑅,𝐴′𝐸𝜋

𝑘]‖𝐹
‖𝑅,𝐴′𝐸𝜋

𝑘 ‖𝐹
is below a threshold 𝜖, where 𝐷𝜋

𝑘 = (𝐴𝐸𝜋
𝑘)†[𝑅,𝐴′𝐸𝜋

𝑘].

Aforementioned procedure of encoder training is summarized in Algorithm 2.

Algorithm 2 Iterative Encoder Training
Input: State-action matrices 𝐴 and 𝐴′, vector of rewards 𝑅, 𝐾, 𝜖
𝑘 ← 1
𝐸1 = 𝐴†𝑅
while Convergence Conditions Not Satisfied do

𝑋𝑘 = 𝐴†[𝑅,𝐴′𝐸𝑘−1]
𝑈𝑘, 𝑇𝑘 = 𝑄𝑅(𝑋𝑘)
𝐸𝑘 = 𝑈𝑘

𝑘 ← 𝑘 + 1
end while
return 𝐸𝑘

See text for termination conditions.
† is the (truncateds) Moore-Penrose pseudoinverse.

Combining the idea of iterative encoder training with LSPI, we come to the Compressed

Value Iteration algorithm (Algorithm 3).

21

Algorithm 3 Compressed Value Iteration
Input: Samples (𝑠, 𝑎, 𝑟, 𝑠′), discount factor 𝛾, initial policy 𝜋0, 𝐾, 𝜖
Construct state-action matrix 𝐴 from samples (𝑠, 𝑎)
Sample actions 𝑎′ for 𝑠′ with policy 𝜋0

Construct state-action matrix 𝐴′ from samples (𝑠′, 𝑎′)
Train encoder 𝐸𝜋 from 𝐴, 𝑅, and 𝐴′

𝜋′ ← 𝜋0

repeat
𝜋 ← 𝜋′

Φ = 𝐴𝐸𝜋, Φ′ = 𝐴′𝐸𝜋

w𝜋
Φ = (Φ𝑇Φ− 𝛾Φ𝑇Φ′)−1Φ𝑅

𝜋′ ← greedy policy over 𝑄̂ = Φw𝜋
Φ

Construct state-action matrix 𝐴′ from samples (𝑠′, 𝑎′)
Sample actions 𝑎′ for 𝑠′ with policy 𝜋′

Train encoder 𝐸𝜋 from 𝐴, 𝑅, and 𝐴′

until 𝜋 ≈ 𝜋′

return 𝜋

3.3 Compressed Value Iteration: подпространства

Крылова

The compressed value iteration algorithm allows for multiple modifications, as we can

use any other algorithms than Algorithm 2 for encoder training. In this section we discuss

one modification that uses vectors from Krylov subspace generated by an 𝑚𝑙 ×𝑚𝑙 matrix

𝐴†𝐴′ and a vector 𝐴†𝑅 of dimensionality 𝑚𝑙.

Let us return to the 𝑘th iteration of the iterative encoder training procedure (Algo-

rithm 2), used in general form of CVI. Lemma 1 allows us to pick any other combination of

𝐸𝜋
𝑘 and 𝐷𝜋

𝑘 , so we pick 𝐸𝜋
𝑘 = 𝑈𝑘𝑇𝑘 and 𝐷𝜋

𝑘 = 𝐼𝑘, where 𝐼𝑘 is identity matrix of rank 𝑘. At

the first iteration column space of our encoder matrix consists of one vector, which is 𝐴†𝑅.

At the second iteration 𝐸𝜋
2 = 𝐴†[𝑅,𝐴′𝐸𝜋

1] = 𝐴†[𝑅,𝐴′𝐴†𝑅], and column space of our encoder

matrix consists of two vectors: {𝐴†𝑅, 𝐴†𝐴′𝐴†𝑅}. At the 𝑘th iteration column space of our

encoder matrix consists of 𝑘 vectors and has the following form {(𝐴†𝐴′)𝑖𝐴†𝑅}𝑘−1
𝑖=0 . As we

see, column space of our encoder matrix is exactly the order-𝑘 Krylov subspace generated by

matrix 𝐴†𝐴′ and a vector 𝐴†𝑅. This is an interesting observation, as Petrik [8] has already

proposed to use augmented Krylov method for features generation, however, he came to such

result from other considerations.

The observation that columns of our encoder lie in Krylov subspace let us rewrite

iterative encoder training procedure and speed it up, as we eliminate QR-decompositions

that can be computationally expensive for large values of 𝑘. Another consideration to speed

22

up iterative encoder training is to precompute vector 𝐴†𝑅 and matrix 𝐴†𝐴′ before iterating

over 𝑘, as we use them often. Described procedure is outlined as Algorithm 4.

Algorithm 4 Krylov Iterative Encoder Training
Input: State-action matrices 𝐴 and 𝐴′, vector of rewards 𝑅, 𝐾, 𝜖
𝑘 ← 1
Precompute 𝐴†𝑅 and 𝐴†𝐴′

𝑒1 = 𝐴†𝑅
𝐸 = {𝑒1}
while Convergence Conditions Not Satisfied do

𝑒𝑘 = 𝐴†𝐴′𝑒𝑘−1

𝐸 = 𝐸 ∪ 𝑒𝑘
𝑘 ← 𝑘 + 1

end while
𝐸𝑘 = [𝑒1, 𝑒2, . . . , 𝑒𝑘]
return 𝐸𝑘

See text for termination conditions.
† is the (truncateds) Moore-Penrose pseudoinverse.

However, Krylov methods exhibit one shortcoming. If we construct the Krylov sub-

space directly multiplying the forming vector by matrix every time, the obtained vectors

usually soon become almost linearly dependent due to properties of power iteration. Meth-

ods, relying on Krylov subspace frequently involve some orthogonalization scheme, such as

Lanczos iteration [26] for Hermitian matrices or Arnoldi iteration [27] for more general ma-

trices. In order to preserve the win in speed, we can perform orthogonalization, for example,

every 5 or 10 iterations, which brings us to some combination of Algorithm 2 and Algorithm 4

for encoder training.

23

Глава 4

Вычислительный эксперимент

4.1 Описание экспериментов

The goal of our computational experiments is to demonstrate practicality and effective-

ness of the proposed approach. We apply our method to two popular benchmark domains in

reinforcement learning — classic control Inverted Pendulum and the Atari 2600 game Pong.

This section describes baseline we compare to, training data we use, and how we organize

our experiments in general.

We implemented the compressed value iteration (CVI) algorithm and, for comparison,

the alternating least-squares (ALS) algorithm for feature encoding in [18]. We chose the

ALS algorithm as a baseline as it outperformed other methods for feature selection, such as

the random projection model in Ghavamzadeh et al. [25] or OMP-TD in Painter-Wakefield

et al. [28].

We concatenated vectorized gray-scaled images of several successive frames of our en-

vironments and used them as raw features. We ran a simulation with a random policy for a

particular number of time steps to form the training sample. The code was written in Python

and tested on a machine with a 2.9 GHz Intel Core i7 and 16 GB 2133 MHz LPDDR3 RAM.

All specifications of the environments we used are described in corresponding sections.

As it is not clear in advance how many features (a number of columns in 𝐸𝜋) we need,

we tested different models with different values of 𝑘 and chose the best one based on their

performance. We note that CVI algorithm is better designed for such model selection. For

some maximum number of iterations 𝐾, one run of iterative encoder training procedure in

CVI may output the whole sequence of encoders 𝐸1, 𝐸2, . . . , 𝐸𝐾 , while ALS requires 𝐾 runs

for the same purpose.

24

4.2 Перевёрнутый маятник

4.2.1 Описание среды

Inverted Pendulum is a classic control problem — a cart is moving on an infinite

rail upon which an inverted pendulum is mounted. The dynamics of the environment is

determined by the following system of non-linear differential equations [29]

⎧⎪⎨⎪⎩𝜃 = 𝜔,

𝜔̇ = 𝑔 sin(𝜃)−𝛼𝑚𝑙𝜔2 sin(2𝜃)/2−𝛼 cos(𝜃)𝑢
4𝑙/3−𝛼𝑚𝑙 cos2(𝜃)

,

and has only two natural parameters — vertical angle 𝜃 and angular velocity 𝜔 of the pendu-

lum. Here 𝑢 is a force applied to the cart (control), 𝑔 is the gravity constant (𝑔 = 9.8𝑚/𝑠2),

𝑚 is the mass of the pendulum (𝑚 = 2.0 kg), 𝑀 is the mass of the cart (𝑀 = 8.0 kg), 𝑙 is

the length of the pendulum (𝑙 = 0.5 m), and 𝛼 = 1/(𝑚 + 𝑀).

There are 3 discrete actions LEFT (𝑢 = −50 Newtons), RIGHT (𝑢 = +50 Newtons),

and NOOP (“no operate”, 𝑢 = 0 Newtons) and continuous state space in the Inverted

Pendulum environment. To be precise, a switch from pure angles and angular velocities to

raw pixel images of a pendulum discretizes state space, but a number of states is too large,

so we cannot apply dynamic programming to this problem and have to search for some

Q-function approximation anyway.

A noise sampled from uniform distribution U[−10, 10] is added to each chosen action

to incorporate some randomness common to real-world problems. For each time step the

pendulum is balanced, there is a reward of 0, and a penalty of −1 for allowing the pendulum

to fall (we consider the pendulum to be fallen if |𝜃| ≥ 𝜋/2). The discount factor 𝛾 in this

problem is set to 0.95.

Training data consists of a desired number of trajectories with starting angle and angu-

lar velocity chosen randomly from U[−0.2, 0.2]. Each state is represented by two successive

grayscale images of the pendulum. The simulation step is set to 0.1 seconds. Each frame

has 30× 60 pixels, the raw state is a 30× 60× 2 = 3600 dimensional vector, and hence the

matrices 𝐴 and 𝐴′ have 10800 columns. Similar to Song et al. [18], we forced the angular

velocity to match the change in angle per time step to ensure that the two successive frames

are a Markovian state.

Figure 4.1 shows several examples of how our Inverted Pendulum looks like.

25

Figure 4.1 — Some images of the pendulum. Two successive images are used as the state.

4.2.2 Размерность кодировщика 𝑘

We compare the policies learned with CVI and the policies learned with ALS for

a different number of features 𝑘. Each policy is evaluated 200 times to obtain the average

number of balancing steps. If the pendulum does not fall after 𝑇 = 1000 time steps, we claim

it a success and terminate testing simulation. The maximum allowed number of iterations 𝑇

was chosen to be much bigger than the average number of time steps before the pendulum,

driven by random policy, falls. In our experiments this average number was equal to 11.5,

the maximum number of balancing time steps before random policy failed was 35. In our

experiments we used 1000 training episodes.

Figure 4.2 shows the results, given different numbers of encoder dimensionalities 𝑘.

We see that CVI finds good sets of features that are smaller than the ones ALS finds, which

seems to be logical. Instead of trying to predict big matrix [𝑅, 𝐴′] ∈ R𝑁×(𝑙𝑚+1) given matrix

𝐴 ∈ R𝑁×𝑙𝑚 we are trying to predict much smaller matrix [𝑅, 𝐴′𝐸𝜋] ∈ R𝑁×(𝑘+1).

(a) Balancing steps (b) Prob. of success

Figure 4.2 — Number of balancing steps and probability of success, versus encoder rank 𝑘.

26

CVI predicting encoded next features finds more reasonable features than ALS pre-

dicting raw next features, as it needs fewer features to learn a good policy. CVI is also better

in terms of numerical stability. ALS starts from random initialization of 𝐷𝜋, while CVI is

fully deterministic for particular training sample.

Table 4.1 compares computational times of ALS and CVI for 1000 training episodes.

We exclude time needed for the computation of the truncated pseudoinverse 𝐴†, as it is the

same for both algorithms. It shows that ALS is a bit more computationally efficient than

CVI. However, because of the randomness in the training data, the dependence between

policy and encoder rank (Figure 4.2) is not monotonic and a series of encoders (with different

values of 𝑘) is needed to choose the best model. Therefore, we can say that ALS requires 𝐾

times more computational time to solve reinforcement learning problems if we do not have

any prior knowledge of encoder dimensionality.

𝑘 10 20 30 40 50 60 70 80 90 100

ALS 22.9 25.3 29.9 31.1 35.2 38.2 42 44.9 48.5 53.2

CVI 18.9 23.4 30.9 38.1 51.8 58.7 70 84 99 107

Table 4.1: Comparison of ALS and CVI in terms of computational time (in seconds) for
different values of encoder rank 𝑘.

4.2.3 Размер обучающей выборки

Experiment settings are the same as in the previous subsection, but now we compare

the policies obtained for different number of training episodes. Table 4.2 shows the results

of this experiment. We can say that CVI requires less training data than ALS to train good

policy, what makes it more memory-efficient.

training episodes 100 200 300 400 500 600 700

ALS, 𝑘 = 150 38 45 185 448 615 998 905

CVI, 𝑘 = 40 95 426 537 574 561 966 998

CVI, 𝑘 = 70 117 455 659 597 913 941 987

Table 4.2: Comparison of ALS and CVI in terms of average number of balancing time steps
for different number of training episodes.

Figure 4.3 provides more thorough analysis of how the performance depends on the

number of training episodes for CVI only. As we see, for small amounts of training data,

27

quality of learned policies largely depends on quality of the samples. If samples contain

almost all possible configurations of the pendulum (the whole spectrum of possible states),

we can learn great policy even if we have only 150 episodes (matrix 𝐴 has approximately

1500 rows).

(a) Balancing steps (b) Prob. of success

Figure 4.3 — Number of balancing steps and probability of success, versus number of
training episodes for CVI averaged over 6 different samples of training data.

4.2.4 Визуализация весов кодировщика

We also created a heat map of encoder weights for encoder trained on 1000 episodes

with 𝑘 = 40, which is presented on Figure 4.4. If we define a vector of encoding weights

as u𝜋
Φ = 𝐸𝜋w𝜋

Φ, we can conditionally divide it into six equal parts — three pairs which

correspond to each action (each pair represents the environment state which consists of two

successive frames).

Figure 4.4 shows that our encoder has managed to train something interesting, rather

than simply picking features from the state-action matrix 𝐴. From the top images we can

observe that if the pendulum tilts right, the action RIGHT will have large weights (dark red

color), forcing the agent to choose this action and stabilize the pendulum. The same picture

is observed for the action LEFT. The weights for the action NOOP are almost symmetric,

which is also reasonable, as this action should not depend on the side to which the pendulum

tilts.

28

Figure 4.4 — Linear Q-function approximation weights u𝜋
Φ = 𝐸𝜋w𝜋

Φ. Each state is a pair of
two succesive frames (the first is on the left, the second is on the right). Top images

correspond to the action RIGHT, middle – NOOP, botton – LEFT.

4.3 Атари 2600 Пинг-Понг

4.3.1 Описание среды

Atari 2600 arcade games are another popular benchmark domain in reinforcement

learning, which consists of 57 arcade games developed by the eponymous company in the

1980s. Pong is a simple two-dimensional sports game that simulating table tennis. In this

game the two players controlled by either humans or computer return the ball back and

forth in order to score a goal. We used a Python implementation of the Pong environment

provided by OpenAI Gym1. Figure 4.5 shows how this game looks like.
1https://gym.openai.com

29

https://gym.openai.com

Figure 4.5 — Some images of Pong. Four successive images are used as the state.

Similar to the pendulum, there are three actions in the pong environment: LEFT

(move paddle down), RIGHT (move paddle up), and NOOP (do nothing). The chosen

action is applied during four successive frames and each state is represented by four successive

frames of the game. To simplify the calculations we truncated the scoreboard, switched from

RGB to gray scale, and reshaped images to be 80 × 80 pixels. Hence each raw state is a

80× 80× 4 = 25600 dimensional vector, and state-action matrix 𝐴 has 76800 columns.

For each time step of the simulation, there is a reward of 0. Our agent also gets a

reward of 1 if it wins a score and −1 if it loses it. We form training data by running a

simulation for the desired number of time steps, choosing actions at random.

4.3.2 Разреженные состояния

Despite our simplifications, the dimensionality of the raw states remains too big to talk

about memory efficiency and fast computations. We either use a small number of training

episodes (which is bad), or need to allocate tons of memory and wait hours while the model

trains (which is not better). However, this problem, as well as a lot of other reinforcement

learning problems, exhibits one peculiarity we may benefit from.

If we look at how the frames of Pong look like, we may notice that a huge part of the

screen displays a background. After binarization of these frames (paddles and pongs become

ones, pixels of the background become zeros), raw states representations appear to be very

sparse. Then we incorporate actions and get state-action matrices 𝐴 and 𝐴′ which are even

sparser. In our experiments these matrices appeared to be more than 99.5% sparse.

We implemented a modification of CVI algorithm which works with scipy.sparse [30]2

Python package and supports the usage of sparse matrices. This extension showed huge

improvement in speed and memory, being approximately 30 times faster and 100 times more
2https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html

30

https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html

memory-efficient, which allowed us to try a lot of different parameters configurations and

learn good policies for Pong.

4.3.3 Результаты экспериментов

We conducted a series of experiments for three different settings. We played till any

player won 1 score in the first setting, till both players together scored 2 points in the second,

and till both players scored 3 point in the third one. To train the encoder and learn policies

we used 1000 training episodes which resulted in approximately 70000, 115000, and 155000

rows of the matrix 𝐴 respectively.

Because of extremely large state space and randomness in training data we ran CVI

100 times for each setting and chose the best policies for demonstration of the results. As

ALS and other baselines didn’t manage to learn policies much better than random policy we

compare our results with random policy. The results are presented in Table 4.3.

1-score game 2-score game 3-score game

Random CVI, 𝑘 = 50 Random CVI, 𝑘 = 35 Random CVI, 𝑘 = 50

<3.5% 46% <2.5% 37% <1.5% 11%

Table 4.3: Comparison of policies produced by CVI and random policies in terms of the
percentage of scores won.

Unfortunately, we didn’t manage to learn playing Pong as well as Inverted Pendulum.

However, the obtained results look quite promising. We showed that high-dimensional states

representations we used can be effectively supplanted by small sets of several dozens of

features. Although deep neural networks may learn good policies for Pong, it is not fair to

compare them with CVI. DQN requires several days of training, much greater computational

resources, and tons of training data, while our algorithm finds reasonable policies in several

minutes and uses relatively small training samples.

31

Глава 5

Обсуждение

5.1 Заключение

In this work, we have presented compressed value iteration — a linear encoding method

for solving reinforcement learning problems, which searches for a low-dimensional represen-

tation of state-action pairs. Although our method uses rather simple linear architecture and

can not compete with sophisticated deep neural networks, it produces reasonable results and

may provide some insights on how to search for good feature representations. The proposed

method is fast, as it needs only several minutes of computations on a laptop with regular

CPU to learn rather good policies, while neural networks train for several days and require

expensive GPUs. It is also very data- and memory-efficient as it needs relatively small

amount of training data and RAM.

The proposed method can be potentially applied to real-world problems with limited

data availability which require fast and working solution. For each particular problem CVI

may be adjusted to benefit from problem specification and used data format. Our algorithm

may be also extended to a non-linear case, providing many directions of the future work.

5.2 Дальнейшая работа

We should move on to solving the optimization problem

‖ℰ𝜋(𝐴)𝐷𝜋 − [𝑅, ℰ𝜋(𝐴′)]‖𝐹 → min
ℰ𝜋 ,𝐷𝜋

,

instead of 3.1, where ℰ𝜋 is some non-linear transformation to low-dimensional encoded fea-

ture space, to find an optimal set of features.

32

It may be difficult to train a neural network to discover an optimal set of features using

gradient descent for a variety of reasons. The nature of the optimization problem (with ℰ𝜋 on

both sides of the equation) makes the optimization more challenging than typical supervised

learning tasks. (Indeed, our initial experiments with the linear case suggest that this is the

case.) To address this, we will adopt ideas from deep neural networks and from linear value

function approximation theory.

Curriculum learning [31] is a technique for neural networks that trains networks on

easier problems before training them on harder problems. The incremental nature of CVI

could combine naturally with the curriculum learning approach to neural network training.

For example, we would first train an encoder network to produce a single feature and linear

decoder that predicts the immediate reward. At each iteration, we would check if the decoder

can predict the reward and all next feature values. If it cannot, then we would train the

network to produce a new feature to predict the reward and existing feature set.

Благодарности

The author would like to thank Ron Parr, a professor and department chair of Com-

puter Science Department at Duke University, for collaboration, mentoring, and support in

the research which has developed into this work. The author thanks Skoltech for providing

necessary funding to accomplish the four-month research trip to Duke University during fall

semester. The author wish to thank Ivan Oseledets, an associate professor at Skoltech, for

wise supervising and joint fruitful work during the two years of author’s Master’s studies at

Skoltech. Finally, the author thanks the whole group of Scientific Computing at Skoltech

for valuable pieces of advice and discussions.

33

Список литературы

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998.

[2] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

[3] Richard Bellman. Dynamic programming and lagrange multipliers. Proceedings of the

National Academy of Sciences, 42(10):767–769, 1956.

[4] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview.

In Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, volume 1,

pages 560–564. IEEE, 1995.

[5] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-

level play. Neural computation, 6(2):215–219, 1994.

[6] Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework

for learning representation and control in markov decision processes. Journal of Machine

Learning Research, 8(Oct):2169–2231, 2007.

[7] Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman. Ana-

lyzing feature generation for value-function approximation. In Proceedings of the 24th

international conference on Machine learning, pages 737–744. ACM, 2007.

[8] Marek Petrik. An analysis of laplacian methods for value function approximation in

mdps. In IJCAI, pages 2574–2579, 2007.

[9] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L

Littman. An analysis of linear models, linear value-function approximation, and feature

selection for reinforcement learning. In Proceedings of the 25th international conference

on Machine learning, pages 752–759. ACM, 2008.

34

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-

trovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, 2015.

[11] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489, 2016.

[12] Ahmed Hussain Qureshi, Yutaka Nakamura, Yuichiro Yoshikawa, and Hiroshi Ishiguro.

Robot gains social intelligence through multimodal deep reinforcement learning. In

Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on,

pages 745–751. IEEE, 2016.

[13] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Grae-

pel. Multi-agent reinforcement learning in sequential social dilemmas. arXiv preprint

arXiv:1702.03037, 2017.

[14] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular

de novo design through deep reinforcement learning. arXiv preprint arXiv:1704.07555,

2017.

[15] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods

for deep reinforcement learning. In International Conference on Machine Learning,

pages 1928–1937, 2016.

[16] Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech, Oriol

Vinyals, Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control.

arXiv preprint arXiv:1703.01988, 2017.

[17] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-

conditional video prediction using deep networks in atari games. In Advances in Neural

Information Processing Systems, pages 2863–2871, 2015.

[18] Zhao Song, Ronald E Parr, Xuejun Liao, and Lawrence Carin. Linear feature encoding

for reinforcement learning. In Advances in Neural Information Processing Systems,

pages 4224–4232, 2016.

35

[19] Ronald J Williams and Leemon C Baird. Tight performance bounds on greedy policies

based on imperfect value functions. Technical report, Citeseer, 1993.

[20] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine

learning, 3(1):9–44, 1988.

[21] Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal

difference learning. Machine learning, 22(1-3):33–57, 1996.

[22] Huizhen Yu and Dimitri P Bertsekas. Convergence results for some temporal difference

methods based on least squares. IEEE Transactions on Automatic Control, 54(7):1515–

1531, 2009.

[23] Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of

machine learning research, 4(Dec):1107–1149, 2003.

[24] Ronald A Howard. Dynamic programming and markov processes.. 1960.

[25] Mohammad Ghavamzadeh, Alessandro Lazaric, Odalric Maillard, and Rémi Munos.

Lstd with random projections. In Advances in Neural Information Processing Systems,

pages 721–729, 2010.

[26] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of lin-

ear differential and integral operators. United States Governm. Press Office Los Angeles,

CA, 1950.

[27] Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the

matrix eigenvalue problem. Quarterly of applied mathematics, 9(1):17–29, 1951.

[28] Christopher Painter-Wakefield and Ronald Parr. Greedy algorithms for sparse reinforce-

ment learning. arXiv preprint arXiv:1206.6485, 2012.

[29] Robert H Cannon. Dynamics of physical systems. Courier Corporation, 2003.

[30] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools

for Python, 2001–. [Online; accessed <today>].

[31] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum

learning. In Proceedings of the 26th annual international conference on machine learn-

ing, pages 41–48. ACM, 2009.

36

	Введение
	Мотивация
	Описание задачи
	Обзор литературы
	Научная новизна
	Структура работы

	Базовые понятия
	Задача обучения с подкреплением
	Марковский решающий процесс
	Линейная аппроксимация функции полезности
	Теория линейного сжатия
	Обучение по выборке
	Least-Squares Policy Iteration

	Compressed Value Iteration
	Предсказательно оптимальное сжатие признаков
	Compressed Value Iteration: общий вид
	Compressed Value Iteration: подпространства Крылова

	Вычислительный эксперимент
	Описание экспериментов
	Перевёрнутый маятник
	Описание среды
	Размерность кодировщика k
	Размер обучающей выборки
	Визуализация весов кодировщика

	Атари 2600 Пинг-Понг
	Описание среды
	Разреженные состояния
	Результаты экспериментов

	Обсуждение
	Заключение
	Дальнейшая работа

