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AnHOTaIUA

[Tocneanne jgocTuzkeHust B 00JACTH  aJrOPUTMOB OOyUeHUsl C  HOJKPEILIEHUEM,
AIIPOKCUMUPYIONNE (DYHKINUIO IOJIE3HOCTU TPU TIOMOIIU HEHPOHHBIX CeTeil, YCIENTHO
NPUMEHSIOTCS JIJI PEIIeHUs PsAda MPaAKTUIeCKUX 3aJad, OJHAKO TEOPETHUYECKUE ACIEKTDI
UX HUCIOJIb30BaHUs BCE elé TpeOyIoT TIHaTeJbHOro m3ydenus. Hefipornbie cetu MoryT
HaXOJIUTh XOPOIINEe IPU3HAKOBBIE OIMCAHUsT COCTOSIHUM CPEJIbl, OMHAKO O CHUX IIOP BELyTCs
CIIOPBI O TOM, KaK UMEHHO UM 3TO yhaércd. [ljasg jrydrnero nonnManus MexaHu3Ma paboThI
HEHPOHHBIX CeTeil MBI IPeJjIaraeM MCIIOJIb30BaTh WJICH, MOJIyIeHHbIE B PE3y/IbTaTe MHOIUX
JIET WCCJIeIOBAHN B 00/IACTH JIMHEHHOM allllPOKCUMAITIU (DYHKIIUH [TOJIE€3HOCTH.

Ora paboTa MPOIOIKAET TEOPUIO JIMHEHHOTO CXKaThs IPUSHAKOB M HCCJIEIYeT
npobJieMy HAXOXKJICHUS MHOYKECTBA IMPU3HAKOB, B KOTOPOM JIMHEHHAs AaIlIPOKCUMAIIUs
GYHKIUN TI0JIE3HOCTH ONTHUMaJIbHa B CMbIC/Ie MHUHUMM3aIuu omuoku besivana.  Mbr
upejcrapiasgem Compressed Value Iteration — anropursm JuHEIHOTO KOAUPOBaHUsI, KOTOPOIt
MOC/IeI0BATEILHO PACIIUPAET ITPOCTPAHCTBO MPU3HAKOB JI0 MOMEHTA, KOTJIa OINTUMAaJIbHOEe
MHO»KECTBO IPU3HAKOB HaiijgeHo. Mbl dopMmynupyeM Jg0CcTaTOYHbIE YCJIOBUA JIJIsi TOTO,
9TOOBI HAOOP HIPU3HAKOB ObLI ONTHMAJIBHBIM U JIOKA3bIBAE€M, UTO TOT HAOOP JIEXKUT B
norpocTpancTBe KpbiioBa, o0pa30BaHHOM AIITPOKCUMAIIAE BEKTOPa HArpajl U MaTPHUIIbI
MOJIC/TH CPE/IbI.

Hairma mosixojr cocront u3 jiByx 1maros. Ha mepBom mare Mbl HIIeM MaTPHILY [T€PEX0OJIa
U3 IIPOCTPAHCTBA BBICOKON pa3MepHOCTH (B KOTOPOM COCTOSIHUSI CPE/JIbI TIPEJICTABJICHBI B BUJIE
KapTUHOK) B IPOCTPAHCTBO HU3KOH PasMEpHOCTH, IPU3HAKOBOE OIMCAHME COCTOSTHUN CPEeIbI
B KOTOPOM SBJIAETCA ONTHUMAIbHBIM. Ha BTOpOM Iare Mbl UIeM JIUHEHHYIO aIlllPOKCHMAITUIO
dbyukmmn nosesnocrn npu nomornu ajiroputrma Least-Squares Policy Iteration (LSPI) u
HAXOJ/IMM ONTUMAJIbHYIO CTPATETUIO TTOBEJIEHUsT areHTa O0yYeHUs C IMOAKPEILIEHUEM.

Jnga  TecTupoBaHUs TPEJJIOKEHHOIO AJI'OPUTMA W CPaBHEHUS €ro ¢ JIDYTUMHA
HOTY/ISIPHBIMEU  TTOJIXOJaMHU MbI ITPOBEJIM CEPHUIO SKCIIEPUMEHTOB Ha Pa3/IMYHbIX 3a/adax
00yYeHUsl C MOJKPEILJICHUEM. [TonmoxkuTenbHbIE pe3yJIbTAaThl, I[OJYUEeHHbIE B 3ajade
KJtaccmiaeckoro KoHTpoJis “IlepesépruyToiit Magrnuk”’, a Takzke B urpe “Ilunr-ITonr” uz cepun
urp Arapu 2600, ¢ COCTOSTHUSIMU, IIPE/ICTABIEHHBIMI B BHJIe KApPTUHOK, IOJATBEPKIAOT

pa6OTOCHOCO6HOCTb IpEeaJIOZKEHHOI'O ITOAXO0/1A.
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I'maBa 1

BBenenue

1.1 MoTuBarus

The reinforcement learning paradigm was first introduced in the late 1980s as an at-
tempt to apply an optimal control theory to learning by trial and error — a learning method
common to both human beings and animals. The idea to develop strict theoretical sub-
stantiation for the social phenomena of self-learning had one ultimate goal — to bring the
mankind to the creation of artificial intelligence. However, after the development of the
necessary mathematical apparatus, scientists faced another conundrum. To solve real-world
problems; reinforcement learning algorithms required prodigious computational resources,
unavailable at that time. This gap between theoretical grounding and practical implemen-
tation persisted until the year of 2015.

During the last two years reinforcement learning experienced a powerful rise and be-
came very popular topic in machine learning field, and computer science in general. Deep
neural networks which outperformed state-of-the art approaches in such fields as computer
vision, natural language processing, and speech recognition showed extremely good results
on a bunch of complicated reinforcement learning problems. For example, a deep reinforce-
ment learning agent developed for playing the game of Go managed to beat the world’s best
professional players, while all other existing algorithms did not surpass even the amateur
dan.

The excessive popularity of deep reinforcement learning at first quickly overcame the
gap between theory and practice, but then it started to create the gap in opposite direc-
tion. Algorithms based on neural networks began to use a profusion of different heuristics to

achieve better results on real-world problems providing no theoretical grounding. Therefore,



despite the successes in practice and, arguably because of them, we need to provide thought-
ful study and investigation of theoretical aspects behind the usage of neural networks for
solving reinforcement learning problems.

In this work we show that neural networks used for solving reinforcement learning
problems nowadays can be considered as linear value function approximations on so called
encoded feature representations. We investigate a problem of finding a low-dimensional
set of features in which linear value function approximation is optimal. We introduce a
compressed value iteration algorithm for searching for good feature representations of the
states and vindicate the eligibility of the proposed approach by computational experiments

on various reinforcement learning problems.

1.2 Omnucanue 3a1a4n

In this section we provide brief description of the problem and why it is important to
solve it. More formal and mathematically strict problem statement is presented in Chapter 2
after we introduce necessary notation and background.

Feature representation of states and actions is of vital importance in reinforcement
learning, as the quality of value function or policy is largely determined by corresponding
features. However, major part of reinforcement learning environments enables superfluous
representations of states, when the number of features is much bigger then the number
of effective parameters which determine the dynamics of the whole system. For example,
classical problem of balancing 2D inverted pendulum has only two effective parameters, angle
and angular velocity, which fully determine the system’s behavior. If we draw the pendulum
as an image of resolution 30 x 60 pixels (which is quite low resolution), the number of features
will equal 1800.

Training time of reinforcement learning algorithms is directly proportional to the di-
mensionality of feature space, and, if we manage to reduce the number of features in states
representations, we can get significant speed improvement. Despite the variety of meth-
ods for feature space dimensionality reduction (e.g. principal component analysis and its
modifications), there are no theoretical guarantees that they are applicable to reinforcement
learning. This observation brings us to the informal problem statement: to find a transfor-
mation from high-dimensional raw feature space to low-dimensional feature space sufficient

for learning an optimal value function and policy.



In addition to speeding up existing reinforcement learning algorithms, there is one more
very interesting perspective of looking for low-dimensional feature space representation. Deep
neural networks trained with stochastic gradient descent find good feature representations,
but the discussion of how they do it is still open. Theoretical concepts of linear feature
encoding we present in this work, if extended to more complicated case of non-linear neural
networks, can provide better understanding of the role of features in reinforcement learning

and improve the existing algorithms.

1.3 O630p auTeparypbl

The most complete exposition of reinforcement learning with its achievements and
challenges is presented in the book of Sutton and Barto [1]. Basic concepts of Markov
decision processes (MDPs), which are a mathematical core of reinforcement learning, can
be found in the work of Puterman [2]. Dynamic programming paradigm which preceded
reinforcement learning was first introduced by Bellman [3]. A lot of work in the field of
approximate dynamic programming was done by Bertsekas and Tsitsiklis [4].

Feature construction has been and remains an important topic for reinforcement learn-
ing. Expert features, being used instead of the original ones, demonstrated a huge perfor-
mance improvement in TD-gammon [5]. In the following years a lot of theoretical and
practical work was done on understanding how to generate good features for linear value
function approximation. Mahadevan and Maggioni introduced a Laplacian framework for
learning representations for linear value function approximation [6], while Parr at al. used
Bellman error approach for analyzing and generating features [7]. Petrik [8] conducted fur-
ther analysis of Laplacian methods and demonstrated that augmented Krylov methods may
significantly outperform them. Parr et al. [9] presented elaborate analysis of linear value
function approximation theory and proved an equivalence of augmented Krylov methods
and Bellman error based methods for feature selection in reinforcement learning.

More recent practical advances which used deep neural networks for state-action value
function approximation showed extremely successful results and initiated a new wave of
interest in reinforcement learning. Mnih et al. [10] described a reinforcement learning system,
referred to as Deep Q-Networks (DQN) which learned to play dozens of Atari 2600 games
and managed to outperform a good human player in a number of them. However, the
real triumph of deep reinforcement learning happened after a self-trained agent, part of the

AlphaGo framework, beat 18-time Go world champion Lee Sedol in a series of five games.



The computer program AlphaGo developed by Google DeepMind [11] managed to find good
value function approximation based on DQN and outplay a professional Go player, which
had been regarded impossible for a long time.

There are several other very interesting examples of cross-disciplinary research based
on deep reinforcement learning. A step forward to creating true artificial intelligence was
done in a work on robotics of Gureshi et al. [12] where robot was self-trained to interact
with humans. Leibo et al. [13] used reinforcement learning agents in social games to test
some aspects of game theory in practice. Olivecrona et al. [14] applied deep reinforcement
learning to computational de-novo drug discovery in chemoinformatics.

Despite the insane success of deep reinforcement learning, there is one problem still in
existence — neural networks require expensive computational clusters of GPUs and need days
of training time to create a really good agent. A great deal of work was done in a direction of
optimizing DQN in terms of reducing training time and improving computational efficiency.
Mnih et al. [15] introduced Advanced Asynchronous Actor Critic (A3C) model which works
on CPU and uses tens of agents interacting with the environment in parallel. Pritzel et
al. [16] proposed to use kd-tree based memory layer in neural networks to increase efficiency
of training and reduce both training time and training data size.

As an example of the connection between practical neural network techniques and
linear value function approximation theory, we note that Oh et al. [17] trained an action-
conditional encoder for the next state prediction. Despite the next states prediction is a well-
known technique used in neural networks, more recent linear value-function approximation
theory proves that predicting next states is sufficient to ensure the existence of optimal
value function [9]. This concept was generalized by Song et al. [18] to state-action value
functions, where a simple linear encoder trained to predict the next states was able to learn
good policies for Inverted Pendulum and Black Jack problems with states represented as raw

images.

1.4 Hayuynas HOBU3Ha
This section outlines main contributions of the proposed work.

1. We develop further theory of linear feature encoding for reinforcement learning. We

prove that it is sufficient to be able to predict encoded next states instead of raw



ones [18] to guarantee the optimality of linear value function approximation with linear

encoder and discuss the insights behind this idea.

2. We present compressed value iteration — an algorithm which extends the feature set
iteratively to solve the optimization problem induced by the idea of the next encoded
state prediction. Although this problem is quadratic in general, its form is a bit tricky

and there is no straightforward way to solve it with standard methods.

3. We discuss two modifications of compressed value iteration. One of them uses Krylov
methods for feature generation similar to Petrik [8], another one benefits from sparse
representation of the states common to most reinforcement learning environments.
These modifications allow us to achieve significant speed up comparing to original

compressed value iteration and other methods for linear value function approximation.

4. In a series of computational experiments we vindicate the eligibility of the presented
method and compare it with other popular approaches for feature encoding. As a
benchmark we choose two reinforcement learning environments. The first one is In-
verted Pendulum classic control problem with states represented by two successive raw
images of the pendulum instead of its natural hidden parameters — angle and angular
velocity. The second one is the Atari 2600 game Pong with states represented by four

successive frames of the gaming screen transformed into gray scale from RGB.

1.5 CrpyKTypa padboThl

This chapter is aimed to delineate the current status of reinforcement learning research
and introduce the problem of searching for a low-dimensional state space representation, we
solve in this thesis. Chapter 2 contains all necessary preliminaries, background, and notation
to formulate the problem mathematically. It also describes the Least-Squares Policy Iteration
algorithm — a standard method for solving reinforcement learning problems with linear value
function approximation.

In Chapter 3 we present compressed value iteration — a linear encoding method for
solving the aforementioned problem and discuss its peculiarities. Chapter 4 is devoted to
computational experiments aimed to prove the eligibility of the proposed approach and
compare it to other methods of constructing features in reinforcement learning problems.
Finally, Chapter 5 concludes the presented work and discusses its perspective extensions,

including possible directions of future work.



I'maBa 2

ba3oBble mongaTuga

2.1 3agada obyveHUd C IOJKpENJIeHAEM

Reinforcement learning problem consists of three basic elements: a learning agent, an
environment, and a reward signal. At each time step ¢, the agent receives some representation
of the environment’s state s; € S, where S is the set of possible states, and on that basis
selects an action, a; € A from the set of available actions. The environment reacts to the
agent’s action by giving it a numerical reward r;,; € R, and changing its state to a new state
Si+1 |1]. Through such interactions, the agent collects experience of how the environment
works and aims to understand how it should behave to get the maximum amount of reward.
Figure 2.1 represents the scheme of agent-environment interaction.

At each time step, the agent implements a mapping from states to probabilities of
selecting each possible action. This mapping is called the agent’s policy and is denoted by
m: S — A, where m(als) = P(a; = als; = s) is the probability of choosing action a while
being in state s. To solve reinforcement learning problem means to find such policy 7 that

maximizes the total expected amount of reward:

Ex(ry + v +727’t+2+...) — max

where 0 < v < 1 is a parameter called the discount rate — a heuristics which guarantees

that the infinite sum of rewards has a finite value for bounded values of rewards r.
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Figure 2.1 — The agent-environment interaction in reinforcement learning. This image was
adapted from Sutton and Barto book [1].

2.2 MapkoBckuii peniaroinnii mpoiiecc

The mathematical formalization of the reinforcement learning problem is a Markov
Decision Processes (MDPs). In general, a Markov Decision Process (MDP) is a fivetuple
M= (S, AR, Py), where S = {s1, S2,...,5,} is the state set with states represented by
vectors of dimensionality I: s € R! in our setting, A = {ay,as,...,a,} is the action set. The
reward function R(s;,a;) denotes the expected immediate reward when taking action a; in
state s;, the transition function P(s;, a,s;) denotes the probability of transiting from state
s; to state s; when taking an action a, and v € [0,1) is the discount factor for future reward.
The policy 7 in an MDP can be represented in terms of probability of taking action a when
in state s: m(als) € [0,1] and Y, 7w(als) = 1.

In this work we use more convenient matrix notation. We define raw state-action
matrix A € R">*™ where each row represents a state-action pair (s;,a;). All rows are split
into m blocks of size [ and only the block corresponding to the action taken is non-zero:
it contains a vector of size | which is the vector of corresponding state (see Figure 2.2 for
an illustration). The reward function is represented as a vector R(s,a) € R™*! and the
transition function is represented as a matrix P((s,a),s’) € R™*". Given a policy 7, we
define P™(s',d’|s,a) € R™™*™" a5 the transition probability for the state action pairs, where

P7(s',d|s,a) = P((s,a),s)n(d|s).

11



S1 ai=2 S1

S2 dljj a2=3 ||] [ S2

s3 as=1 S3
s4 a4=3 s4
states and corresponding actions state-action matrix A

Figure 2.2 — Illustration of how the state-action matrix A is constructed for four different

states and three actions.

For any policy 7, its Q-function Q7 (s, a) is defined over the state-action pairs (s,a)
and represents total y-discounted reward when taking action a in state s and following 7
afterwards. We consider Q-function as a vector Q™(s,a) € R"*!. The Q-function satisfies

the Bellman equation which has the following form in presented above matrix notation:

Q™ (s,a) = R(s,a) + 72 P7(s,als’,a")Q™(s',d’). (2.1)

2.3 Jluneiinas annpokcumanus (pyHKIIUU TOJIE3HOCTHU

There are some cases when Q-function can be represented exactly as a closed-form
solution to Bellman equation, but in general it is not possible. For example, when the number
of states is too big or even continuous, it is impossible to apply the dynamic programming
approach because of a huge (or infinite) size of the table containing Q-values. When it is
impossible to represent the Q-function exactly, it is usually approximated with a function
from some parametric family Q™ € B(6).

The Bellman operator 77 [18] on the Q-functions is defined as

Q" (s,a) = R(s,a) + VZ P7(s,als',d"\Q"(s',d).

In terms of 7™, the Bellman equation can be rewritten in a form of T7Q™ = ()™, where
Q™ is a fixed point of T™. We define the Bellman error for an approximated Q-function Q”
as BE(Q™) = T™Q™ — Q™. When the Bellman error is 0, the Q-function is at the fixed point.

Otherwise, we have [19]:

12



. 1 . .
0" = @7lloo < 7= 11Q" = T"Q" ]
-

where ||x|| refers to the [, norm of a vector x.
In this work, we consider linear QQ-function approximation: Q” = Aw’,, where w7, €
R™>1 is the weight vector. The linear fized point methods [20-22| find w7 as a solution of

so-called fixed point equation:

Aw? =1I(R + yvP"Aw?), (2.2)

where IT = A(ATA)~' AT is the orthogonal I; projector on span(A). Solving 2.2 leads to the

following linear fixed-point solution:

wT = (ATA — yATPTA)'ATR. (2.3)

2.4 Teopusi IUMHENHOTO CXKATUS

Computing w7 in a form of 2.3 exhibits two serious drawbacks. Firstly, it contains
matrix inversion which is undefined if a matrix is not full rank. This happens, for example,
if a number of features is greater than a number of states. This situation is vacuous if we
have access to all states, as in this case we can simply reduce number of features, eliminating
superfluous ones. In practice we usually do not have access to all states and have to use
samples from the agent’s experience. Secondly, computational complexity of matrix inversion
in this case is O({mi}?) which makes this method inapplicable to real-world problems, as
they usually have ml ~ 10* — 10°.

The main idea of feature encoding is to find another, low-dimensional feature represen-
tation of the state-action pairs. Similar to [18|, we refer to the transformation which reduces

a number of features using an encoder.

Definition 1. The encoder &, is a transformation &, : R"™*m — R"m*k from high-
dimensional raw feature space of matrices A to low-dimensional encoded feature space of

matrices ® = &,(A). If the encoder is linear, ® = &,(A) = AE, where E, € R™**,

In terms of the encoded feature space representation, linear Q-function approximation

and solution to the fixed point equation 2.3 have the following form:

13



Q" =ow;, wj=(0"0—+0"P"®)'d"R

Instead of approximating the Q-function linearly and solving the fixed-point equa-
tion 2.2, we can approximate the reward function R and the expected policy-conditional
next feature P™® to force the solution of approximated Bellman equation to be linear. Ac-

cording to Parr et al. [9], we can do it, using the following linear model:

R=®re = o(070)'07R, (2.4a)
P7d = OPF = &(d7T D) 1T P, (2.4D)

Interestingly, the linear fixed-point solution and the linear model solution are the
same [7], so there is no need to differentiate them. However, the linear model paradigm
gives us an opportunity to decompose the Bellman error into a sum of reward error and

policy-conditional per-feature error:

Ar=R—R=R— r, (2.5a)
AL = P™® — Prd = P"d — P, (2.5b)

Theorem 1. (Parr et al.) For any MDP M with feature representation ®, and policy
7 represented as the fixed point of the approximate Q-function, the Bellman error can be

represented as

BE(Q") = Ag +7AF, wh

From Theorem 1 it is clear that condition Ar = 0, Ag = 0 is sufficient (but not
necessary) to achieve zero Bellman error and a perfect Q-function. Specifically, it requires
that the features of the approximate model capture the structure of the reward function, and

that the features of the approximate model are sufficient to predict expected next features [9].

2.5 (O0yuyeHme o BBIOOPKE

In practice we do not have access to the model of the environment P™, but do have

access to samples from agent-environment interaction history, obtained after exploitation of

14



some policy. In such setting, the environment is considered a “black box” — it receives some
policy 7 as an input and outputs a desired number of fourtuples (s, a,r,s’).

In our notation, state-action matrix A and reward vector R will now have N rows,
instead of nm, where N is a number of samples. We define state-action matrix of raw states
A € RV huilt from pairs (s,a); reward vector B € RY*! built from rewards r; and
state-action matrix of raw next states A’ € RY>*™ huilt from pairs (s’,a’), where actions
a’ are sampled from the environment with some policy 7, correspondingly to states s’. We
refer to ® = AE, € RV** as to a matrix of encoded states and to ® = A’E, € RV** as to

a matrix of encoded next states.

2.6 Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) algorithm [23] is a method of discovering the
optimal policy for any given MDP, which belongs to the class of so-called policy iteration
methods [24] — a standard way to solve MDPs. LSPI starts from some policy 7, usually ran-
dom, and discovers the optimal policy by generating a sequence of monotonically improving
policies.

Each learning iteration of LSPI consists of two steps. At the first step we evaluate
current policy m; and find linear Q-function approximation Q’” = dwy with the LSTDQ
procedure, which simply calculates the vector of weights wj. At the second step we construct

improved greedy policy ;1 over Q’”’ as

1, a = argmax,c 4 Q’”(s, a),
Tit1(s,a) =
0, otherwise.

Policy 741 is a deterministic policy which is better than m;, if the policy evaluation step is
exact. However, if the policy evaluation step is approximate, as it is in the case with the
LSTDQ, then the new policy is not guaranteed to be uniformly better. These two steps
(policy evaluation and policy improvement) are repeated until convergence. Algorithm 1

represents LSPI algorithm, its block diagram is portrayed as Figure 2.3.

15



Approximate
Value Function

—
Linear architecture
Qr=o'w
Policy Evaluation Policy

and Projection Improvement
LSTDQ Maximization

POllcy

* Greedy policy

Samples _overQr

Figure 2.3 — Least-squares policy iteration algorithm block diagram. This picture was

borrowed from original LSPI article [23].

The LSPI algorithm is fast if the number of features is small, and it usually converges
after several iterations. In this work we use the off-policy version of the LSPI algorithm,

when learning takes places after the training samples have been collected.

Algorithm 1 Least-Squares Policy Iteration

Input: Samples (s,a,r,s"), discount factor ~, initial policy mg
Construct state-action matrix ® from samples (s, a)
7w+ T
repeat
w7
Sample actions a’ for s’ with policy 7
Construct state-action matrix ¢’ from samples (s, a’)
wl = (07 — y0T®)"1dTR
7+ greedy policy over Q = dw]
until 7 = 7' (||w} — w'g|l2 <€)
return w
Here w'g, represents the vector of weights from the previous iteration.
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I'maBa 3

Compressed Value Iteration

3.1 HpeﬂCKaSaTeﬂbHO OIITUMAJIbHOE C2KaTHue IIPU3HaKOB

Theorem 1 suggests a sufficient condition for a set of features to be optimal, which
lies in minimization of the model prediction prediction error A} and reward prediction
error Agr. If we manage to predict both the reward vector and encoded next features —
which means that there exists some predictor matrix D™ (we refer to as decoder), such that
AE™D™ = [R, A’E™] — then we can get a perfect value function Q, such that BE(Q) =0
(see Theorem 3 below for justification). In practice we will minimize the Frobenius norm of

the difference:

|AE"D™ — [R, A'E™] | — min (3.1)

This optimization problem is a bit tricky to solve, because E™ appears inconveniently
on both sides of 3.1 making it difficult to rearrange terms to solve for E™ as an optimization
problem with a fixed target. Song et al. [18| proposed to solve another optimization problem
and predict raw next states, instead of the encoded ones, which is easier. They introduced
theory of predictively optimal feature encoding and proved that such shift from one optimiza-

tion problem to another does not violate the equation BE((Q)) = 0. Below we provide the

key results of this theory.

Definition 2. Low-dimensional representation ® = £7(A) is predictively optimal for raw
features with respect to A, A’, and 7 if there exists D™ € RV*(Mm+1) guch that £7(A)D™ =
[R, A']. In case of linear encoder, we have AE™D™ = [R, A'].
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Theorem 2. (Song et al., [18]) For any MDP M with predictively optimal for raw features
® = AE™ with respect to A, A’, and 7, if the linear fixed point for ® is Q, then BE(Q”) =0.

Theorem 2 implies the following optimization problem:

|AE™D™ — [R, A]||r — min (3.2)

E™ D7

which can be solved with Alternating Least-Squares (ALS) algorithm [18], which starts from
random matrix D™ and alternatively updates £E™ and D™, according to the updating rules
E™ + A'[R,A)(D™)" and D™ < (AE™)'[R, A’]. Here, T represents (truncated) Moore-
Penrose pseudoinverse.

Proposed ALS for solving the optimization problem 3.2 shows good results on Inverted
Pendulum and Black Jack environments with states represented as raw images, which has
always seemed to be a challenge for a simple linear architecture. It outperforms the random
projection method for feature selection, introduced by Ghavamzadeh [25].

However, there is one unpleasant drawback, connected with the idea to replace predic-
tion of encoded next states with prediction of raw next states. The presented above theory
can not be easily generalized to the case where non-linear encoder is used. Unfortunately,
it is impossible to apply it directly to deep neural networks with linear output layer (lin-
ear Q-function approximation) and sophisticated non-linear feature extraction modules (all
layers preceding output layer). This shortcoming drives us to the idea of returning back to

solving 3.1 and to the development of our compressed value iteration algorithm.

3.2 Compressed Value Iteration: obimii Bu

In this section we present the central part of the thesis — compressed value iteration
(CVI) algorithm for linear feature encoding. First of all, let us introduce one more definition

and prove formally the assertion made at the beginning of the previous section.

Definition 3. Low-dimensional representation ® = £7(A) is predictively optimal for en-
coded features with respect to A, A’, and 7 if there exists D™ € RN*(*+1 guch that
ET(A)D™ = [R,&:(A")]. In case of linear encoder, it is AE™D™ = [R, A'E7].

Theorem 3. For any MDP M with predictively optimal for encoded features ® = AE™
with respect to A, A, and m, if the linear fixed point for ® is Q, then BE(Q”) =0.
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Proof. (Inspired by Song et al. [18] proof of Theorem 2.) For predictively optimal for

encoded features ® = AE™, there exists a decoder D™ € RV*(*+1) such that
AE™D™ = [R,A'E"]. (3.3)

We denote the first column and the last £ columns of matrix D™ as D] and DT respectively.

In such notation, we can rewrite Equation 3.3 as a system of two linear equations:

AE™DT = R,

AE™D™ = A'E™.

Now, we pick P§ = D7 and rg = D], and get the following inference:

T=P"h—®Pf =& — AETDT = AET — AE" =0,
Ap=R—®re=R— AE"D" = R— R =0,

From Theorem 1, we have BE(Q,) = Ag + yAZwE = 0. O

Usually we are not able to solve Equation 3.3 directly and find exact solution in a
closed-form, so we undermine the condition of strict equality and solve the optimization
problem 3.1 instead.

The idea of compressed value iteration is to start with less difficult problem of predict-
ing the vector of rewards only and then increase the number of features iteratively, until we
get the optimal set of features. Initially, our set of features is empty.

At the first step we solve the following optimization problem:

|ABTD} ~ Rllr - min
The solution of this problem in terms of X; = ETDT is a least-squares solution X; =
ATR € R™*1 As we see, the product ETDT is a matrix of rank 1, so we can pick
ET = X, = ATR and DT = 1. As a result of the first iteration we get 1-dimensional encoder
ET and corresponding set of features ®; = AET, which consists of one feature only.

Now we proceed to the second step. At the previous step we have learned to predict
the vector of rewards at the cost of adding one extra feature to our (empty) feature set.
Initial optimization problem 3.1 implies that we need to predict not only the rewards but

also the encoded features. So, now we are going to search for another encoder-decoder pair
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which allows us to predict both the rewards R and encoded next states A’ET introduced on
the previous iteration. Corresponding optimization problem has the following form:

|AES DS — [R, A’ET]||r — min .

ET, DY

Similar to the first iteration, we have X, = EF D} = A'[R, A’ET] and the product EJ D7 is
a matrix of rank not greater than 2. Let UyT; = X5 be a QR-decomposition of matrix Xs.
We pick EF = U, and DF = T, to get orthogonal encoder EF € R™>*2 and upper-diagonal
decoder D3 € R**2. If decoder is a singular matrix, then we have finished and ET is desired
encoder. Otherwise, we claim E7J as the current encoder and proceed to the next step.
Before describing general form of the iteration (which is easily implied from transition
ET — ET), let us clarify why we pick Ef = Uy, not Ef = UyTy, or Ef = Uy\/Ty, or
some other matrix that satisfies Ef D5 = (Q2R,, of which are infinite number. Because
of linear nature of LSPI algorithm we use to find policy on the encoded features, we may
not differentiate between various encoders, distinct up to a product by non-singular matrix.
Orthogonal matrices, in turn, possess many good properties. Below we provide justification

of this statement.

Lemma 1. For any encoder K™ and non-singular matrix Y, the resulting policies of LSPI

algorithm for two sets of features ® = AE™ and &y = ®Y = AE™Y are the same.

Proof. For two different sets of features, the only difference in LSPI algorithm lies in com-
putation of the vector of weights w and approximate Q-function Q”. Let us look at the

corresponding vectors for both ® and ®y for arbitrary iteration of LSPI:
wp = (07D — ydT®) 1T R,
W, = (Dy By — 7Py @) 'Oy TR= (YTOTRY — 1Y 0TOY) YO TR =
— (YT[0T® — 7070 Y) " YTOTR = Y (070 — 407d) 1(YT) 'YTOTR =
=Y HdTd — 0T ) 1dTR.
Here are corresponding Q-functions:
Qr = &(TD — 43T 1PTR,

Q5 = DYV H(@TD — 10" V) BT R = B(dTD — 40T D) DT R.

20



As we see, Qg = ng for any iteration of LSPI algorithm. Corresponding greedy

policies over QF and Qg are equal too, as well as resulting policies.

We return to describing a general form of the iteration of our algorithm. Assume that
we have an encoder ET € R'™ % and we want to predict the rewards R and encoded next
states ®' = A'E]. We face the following optimization problem:

IAE;  Diyy — [RA'E]||p —  min

E;’J+17DL’+1

In terms of X1 = EF, Df.; we have a least-squares solution X1 = A'[R, A’E}| and the
product EJ,, D, is a matrix of rank not greater than (k4 1). Let Upy1Tpq1 = Xjy1 be a
QR-decomposition of matrix X, then we pick £ | = Uypy1 and D | = Ty

Now, we know how to increase the number of features iteratively and construct the
encoder E for any k, and the only thing left is to describe stopping criteria for our algorithm.

Our iterative process terminates if one of the following conditions is met:

1. The number of iterations k reaches the maximally allowed one K.

| IAEEDf —[RAEf| F

2. The residua IR AL

is below a threshold €, where DT = (AET)'[R, AET].

Aforementioned procedure of encoder training is summarized in Algorithm 2.

Algorithm 2 Iterative Encoder Training

Input: State-action matrices A and A’, vector of rewards R, K, ¢
k<« 1
E, = AR
while Convergence Conditions Not Satisfied do
X, = AT[R, A'Ey_4]
Uk, Tr, = QR(X%)
E, =Uy
kE+—k+1
end while
return Fj,
See text for termination conditions.
T is the (truncateds) Moore-Penrose pseudoinverse.

Combining the idea of iterative encoder training with LSPI, we come to the Compressed

Value Iteration algorithm (Algorithm 3).
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Algorithm 3 Compressed Value Iteration

Input: Samples (s,a,r,s"), discount factor -, initial policy mo, K, €
Construct state-action matrix A from samples (s, a)
Sample actions a’' for s’ with policy 7
Construct state-action matrix A’ from samples (', a’)
Train encoder E™ from A, R, and A’
< o
repeat
w7
= AE™, & — AET
Wi = (070 — 4 TD) 1O R
7 + greedy policy over Q = dw]
Construct state-action matrix A’ from samples (s, a’)
Sample actions a’ for s’ with policy 7’
Train encoder E™ from A, R, and A’
until 7 ~ 7’
return m

3.3 Compressed Value Iteration: IO POCTPAHCTBA,
KpbLiosa

The compressed value iteration algorithm allows for multiple modifications, as we can
use any other algorithms than Algorithm 2 for encoder training. In this section we discuss
one modification that uses vectors from Krylov subspace generated by an ml x ml matrix
ATA" and a vector AR of dimensionality mi.

Let us return to the kg, iteration of the iterative encoder training procedure (Algo-
rithm 2), used in general form of CVI. Lemma 1 allows us to pick any other combination of
E} and Df, so we pick E] = U,T}, and D} = I;, where [, is identity matrix of rank k. At
the first iteration column space of our encoder matrix consists of one vector, which is AfR.
At the second iteration EF = AT[R, A'ET] = AT[R, A’ATR], and column space of our encoder
matrix consists of two vectors: {ATR, ATA’ATR}. At the ki, iteration column space of our
encoder matrix consists of k vectors and has the following form {(ATAYATR}*"}. As we
see, column space of our encoder matrix is exactly the order-k Krylov subspace generated by
matrix ATA’ and a vector ATR. This is an interesting observation, as Petrik [8] has already
proposed to use augmented Krylov method for features generation, however, he came to such
result from other considerations.

The observation that columns of our encoder lie in Krylov subspace let us rewrite
iterative encoder training procedure and speed it up, as we eliminate QR-decompositions

that can be computationally expensive for large values of k. Another consideration to speed
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up iterative encoder training is to precompute vector ATR and matrix ATA’ before iterating

over k, as we use them often. Described procedure is outlined as Algorithm 4.

Algorithm 4 Krylov Iterative Encoder Training

Input: State-action matrices A and A’, vector of rewards R, K, €
k+1
Precompute ATR and ATA’
€1 — ATR
E= {61}
while Convergence Conditions Not Satisfied do
Cr — ATAlek_l
E=FU €L
kE+—k+1
end while
Er = [e1,e9,..., e
return Fj
See text for termination conditions.
T is the (truncateds) Moore-Penrose pseudoinverse.

However, Krylov methods exhibit one shortcoming. If we construct the Krylov sub-
space directly multiplying the forming vector by matrix every time, the obtained vectors
usually soon become almost linearly dependent due to properties of power iteration. Meth-
ods, relying on Krylov subspace frequently involve some orthogonalization scheme, such as
Lanczos iteration [26] for Hermitian matrices or Arnoldi iteration [27] for more general ma-
trices. In order to preserve the win in speed, we can perform orthogonalization, for example,
every 5 or 10 iterations, which brings us to some combination of Algorithm 2 and Algorithm 4

for encoder training.
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I'maBa 4

BorancanreapHbBII IKCIIEPpNMMEHT

4.1 Omnwmncanune 3KCOEPUMEHTOB

The goal of our computational experiments is to demonstrate practicality and effective-
ness of the proposed approach. We apply our method to two popular benchmark domains in
reinforcement learning — classic control Inverted Pendulum and the Atari 2600 game Pong.
This section describes baseline we compare to, training data we use, and how we organize
our experiments in general.

We implemented the compressed value iteration (CVI) algorithm and, for comparison,
the alternating least-squares (ALS) algorithm for feature encoding in [18]. We chose the
ALS algorithm as a baseline as it outperformed other methods for feature selection, such as
the random projection model in Ghavamzadeh et al. [25] or OMP-TD in Painter-Wakefield
et al. [28].

We concatenated vectorized gray-scaled images of several successive frames of our en-
vironments and used them as raw features. We ran a simulation with a random policy for a
particular number of time steps to form the training sample. The code was written in Python
and tested on a machine with a 2.9 GHz Intel Core i7 and 16 GB 2133 MHz LPDDR3 RAM.
All specifications of the environments we used are described in corresponding sections.

As it is not clear in advance how many features (a number of columns in £™) we need,
we tested different models with different values of k and chose the best one based on their
performance. We note that CVI algorithm is better designed for such model selection. For
some maximum number of iterations K, one run of iterative encoder training procedure in
CVI may output the whole sequence of encoders 1, Es, ..., EFx, while ALS requires K runs

for the same purpose.
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4.2 IlepeBépHyThblii MaITHUK

4.2.1 Omnucanue cpeabl

Inverted Pendulum is a classic control problem — a cart is moving on an infinite
rail upon which an inverted pendulum is mounted. The dynamics of the environment is

determined by the following system of non-linear differential equations [29]

0 =w,

gsin(6)—amiw? sin(26) /2—a cos(8)u
41/3—aml cos?(0) )

w =
and has only two natural parameters — vertical angle 6 and angular velocity w of the pendu-
lum. Here u is a force applied to the cart (control), g is the gravity constant (g = 9.8m/s?),
m is the mass of the pendulum (m = 2.0 kg), M is the mass of the cart (M = 8.0 kg), [ is
the length of the pendulum (I = 0.5 m), and o = 1/(m + M).

There are 3 discrete actions LEFT (u = —50 Newtons), RIGHT (u = +50 Newtons),
and NOOP (“no operate”, u = 0 Newtons) and continuous state space in the Inverted
Pendulum environment. To be precise, a switch from pure angles and angular velocities to
raw pixel images of a pendulum discretizes state space, but a number of states is too large,
so we cannot apply dynamic programming to this problem and have to search for some
Q-function approximation anyway.

A noise sampled from uniform distribution U[—10, 10] is added to each chosen action
to incorporate some randomness common to real-world problems. For each time step the
pendulum is balanced, there is a reward of 0, and a penalty of —1 for allowing the pendulum
to fall (we consider the pendulum to be fallen if |#| > 7/2). The discount factor + in this
problem is set to 0.95.

Training data consists of a desired number of trajectories with starting angle and angu-
lar velocity chosen randomly from U[—0.2,0.2]. Each state is represented by two successive
grayscale images of the pendulum. The simulation step is set to 0.1 seconds. Each frame
has 30 x 60 pixels, the raw state is a 30 x 60 x 2 = 3600 dimensional vector, and hence the
matrices A and A’ have 10800 columns. Similar to Song et al. [18], we forced the angular
velocity to match the change in angle per time step to ensure that the two successive frames
are a Markovian state.

Figure 4.1 shows several examples of how our Inverted Pendulum looks like.
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Figure 4.1 — Some images of the pendulum. Two successive images are used as the state.

4.2.2 Pa3MepHOCTh KOAUPOBIIUKA k

We compare the policies learned with CVI and the policies learned with ALS for
a different number of features k. Each policy is evaluated 200 times to obtain the average
number of balancing steps. If the pendulum does not fall after 7" = 1000 time steps, we claim
it a success and terminate testing simulation. The maximum allowed number of iterations T’
was chosen to be much bigger than the average number of time steps before the pendulum,
driven by random policy, falls. In our experiments this average number was equal to 11.5,
the maximum number of balancing time steps before random policy failed was 35. In our
experiments we used 1000 training episodes.

Figure 4.2 shows the results, given different numbers of encoder dimensionalities k.
We see that CVI finds good sets of features that are smaller than the ones ALS finds, which
seems to be logical. Instead of trying to predict big matrix [R, A’] € RV*(m+1) given matrix

A € RVXI™ we are trying to predict much smaller matrix [R, A'E7™] € RV*(k+1),

1000  —— CVI 1.0 —— CVI
— ALS — ALS

a
‘:7))’ 800 » 0.8
G © 0.6
g 600 “
° iy
§ 3 04
s 400 K
&n S
s &
C>) 0.2
< 200
0.0
20 40 60 80 100 20 40 60 80 100
Encoder rank k Encoder rank k
(a) Balancing steps (b) Prob. of success

Figure 4.2 — Number of balancing steps and probability of success, versus encoder rank k.

26



CVI predicting encoded next features finds more reasonable features than ALS pre-
dicting raw next features, as it needs fewer features to learn a good policy. CVTI is also better
in terms of numerical stability. ALS starts from random initialization of D™, while CVT is
fully deterministic for particular training sample.

Table 4.1 compares computational times of ALS and CVI for 1000 training episodes.
We exclude time needed for the computation of the truncated pseudoinverse A, as it is the
same for both algorithms. It shows that ALS is a bit more computationally efficient than
CVI. However, because of the randomness in the training data, the dependence between
policy and encoder rank (Figure 4.2) is not monotonic and a series of encoders (with different
values of k) is needed to choose the best model. Therefore, we can say that ALS requires K
times more computational time to solve reinforcement learning problems if we do not have

any prior knowledge of encoder dimensionality.

k 10 20 30 40 20 60 | 70 | 80 90 | 100
ALS || 229 | 25.3 | 299 | 31.1 | 35.2 | 38.2 | 42 | 44.9 | 48.5 | 53.2
CVI || 189 | 234|309 | 38.1 | 51.8 | 58.7 | 70 | &4 99 | 107

Table 4.1: Comparison of ALS and CVI in terms of computational time (in seconds) for
different values of encoder rank k.

4.2.3 Pa3mep oby4uaronieit BLIDOPKN

Experiment settings are the same as in the previous subsection, but now we compare
the policies obtained for different number of training episodes. Table 4.2 shows the results
of this experiment. We can say that CVI requires less training data than ALS to train good

policy, what makes it more memory-efficient.

training episodes || 100 | 200 | 300 | 400 | 500 | 600 | 700
ALS, k =150 38 | 45 | 185 | 448 | 615 | 998 | 905
CVI, k£ =40 95 | 426 | 537 | 574 | 561 | 966 | 998
CVL k=70 117 | 455 | 659 | 597 | 913 | 941 | 987

Table 4.2: Comparison of ALS and CVI in terms of average number of balancing time steps
for different number of training episodes.

Figure 4.3 provides more thorough analysis of how the performance depends on the

number of training episodes for CVI only. As we see, for small amounts of training data,
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quality of learned policies largely depends on quality of the samples. If samples contain
almost all possible configurations of the pendulum (the whole spectrum of possible states),
we can learn great policy even if we have only 150 episodes (matrix A has approximately

1500 rows).
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Figure 4.3 — Number of balancing steps and probability of success, versus number of

training episodes for CVI averaged over 6 different samples of training data.

4.2.4 BusyaJjm3alnus BeCOB KOJIUPOBIINKA

We also created a heat map of encoder weights for encoder trained on 1000 episodes
with k = 40, which is presented on Figure 4.4. If we define a vector of encoding weights
as uj = E™w], we can conditionally divide it into six equal parts — three pairs which
correspond to each action (each pair represents the environment state which consists of two
successive frames).

Figure 4.4 shows that our encoder has managed to train something interesting, rather
than simply picking features from the state-action matrix A. From the top images we can
observe that if the pendulum tilts right, the action RIGHT will have large weights (dark red
color), forcing the agent to choose this action and stabilize the pendulum. The same picture
is observed for the action LEFT. The weights for the action NOOP are almost symmetric,
which is also reasonable, as this action should not depend on the side to which the pendulum

tilts.
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Figure 4.4 — Linear Q-function approximation weights uj = E"wj. Each state is a pair of
two succesive frames (the first is on the left, the second is on the right). Top images
correspond to the action RIGHT, middle — NOOP, botton — LEFT.

4.3 Arapm 2600 IImar-Ilonr

4.3.1 Onucanue cpeabl

Atari 2600 arcade games are another popular benchmark domain in reinforcement
learning, which consists of 57 arcade games developed by the eponymous company in the
1980s. Pong is a simple two-dimensional sports game that simulating table tennis. In this
game the two players controlled by either humans or computer return the ball back and
forth in order to score a goal. We used a Python implementation of the Pong environment

provided by OpenAI Gym!. Figure 4.5 shows how this game looks like.

1ht‘cps ://gym.openai.com
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Figure 4.5 — Some images of Pong. Four successive images are used as the state.

Similar to the pendulum, there are three actions in the pong environment: LEFT
(move paddle down), RIGHT (move paddle up), and NOOP (do nothing). The chosen
action is applied during four successive frames and each state is represented by four successive
frames of the game. To simplify the calculations we truncated the scoreboard, switched from
RGB to gray scale, and reshaped images to be 80 x 80 pixels. Hence each raw state is a
80 x 80 x 4 = 25600 dimensional vector, and state-action matrix A has 76800 columns.

For each time step of the simulation, there is a reward of 0. Our agent also gets a
reward of 1 if it wins a score and —1 if it loses it. We form training data by running a

simulation for the desired number of time steps, choosing actions at random.

4.3.2 Pa3pexkeHHbIEe COCTOSAHUSA

Despite our simplifications, the dimensionality of the raw states remains too big to talk
about memory efficiency and fast computations. We either use a small number of training
episodes (which is bad), or need to allocate tons of memory and wait hours while the model
trains (which is not better). However, this problem, as well as a lot of other reinforcement
learning problems, exhibits one peculiarity we may benefit from.

If we look at how the frames of Pong look like, we may notice that a huge part of the
screen displays a background. After binarization of these frames (paddles and pongs become
ones, pixels of the background become zeros), raw states representations appear to be very
sparse. Then we incorporate actions and get state-action matrices A and A’ which are even
sparser. In our experiments these matrices appeared to be more than 99.5% sparse.

We implemented a modification of CVI algorithm which works with scipy.sparse [30]?
Python package and supports the usage of sparse matrices. This extension showed huge

improvement in speed and memory, being approximately 30 times faster and 100 times more

2https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html
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memory-efficient, which allowed us to try a lot of different parameters configurations and

learn good policies for Pong.

4.3.3 Pe3yabTaTbl 9KCHEPUMEHTOB

We conducted a series of experiments for three different settings. We played till any
player won 1 score in the first setting, till both players together scored 2 points in the second,
and till both players scored 3 point in the third one. To train the encoder and learn policies
we used 1000 training episodes which resulted in approximately 70000, 115000, and 155000
rows of the matrix A respectively.

Because of extremely large state space and randomness in training data we ran CVI
100 times for each setting and chose the best policies for demonstration of the results. As
ALS and other baselines didn’t manage to learn policies much better than random policy we

compare our results with random policy. The results are presented in Table 4.3.

1-score game 2-score game 3-score game

Random | CVI, k =50 Random | CVI, k=35 Random | CVI, k =50
<3.5% 46% <2.5% 37% <1.5% 11%

Table 4.3: Comparison of policies produced by CVI and random policies in terms of the
percentage of scores won.

Unfortunately, we didn’t manage to learn playing Pong as well as Inverted Pendulum.
However, the obtained results look quite promising. We showed that high-dimensional states
representations we used can be effectively supplanted by small sets of several dozens of
features. Although deep neural networks may learn good policies for Pong, it is not fair to
compare them with CVI. DQN requires several days of training, much greater computational
resources, and tons of training data, while our algorithm finds reasonable policies in several

minutes and uses relatively small training samples.
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I'maBa 5

Oo6cyxkjieHue

5.1 3BakJroyeHue

In this work, we have presented compressed value iteration — a linear encoding method
for solving reinforcement learning problems, which searches for a low-dimensional represen-
tation of state-action pairs. Although our method uses rather simple linear architecture and
can not compete with sophisticated deep neural networks, it produces reasonable results and
may provide some insights on how to search for good feature representations. The proposed
method is fast, as it needs only several minutes of computations on a laptop with regular
CPU to learn rather good policies, while neural networks train for several days and require
expensive GPUs. It is also very data- and memory-efficient as it needs relatively small
amount of training data and RAM.

The proposed method can be potentially applied to real-world problems with limited
data availability which require fast and working solution. For each particular problem CVI
may be adjusted to benefit from problem specification and used data format. Our algorithm

may be also extended to a non-linear case, providing many directions of the future work.

5.2 JlanbHeitnias padora
We should move on to solving the optimization problem
1E™(A) DT = [R, E"(AD)]||lr — min,

instead of 3.1, where £™ is some non-linear transformation to low-dimensional encoded fea-

ture space, to find an optimal set of features.
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It may be difficult to train a neural network to discover an optimal set of features using
gradient descent for a variety of reasons. The nature of the optimization problem (with £™ on
both sides of the equation) makes the optimization more challenging than typical supervised
learning tasks. (Indeed, our initial experiments with the linear case suggest that this is the
case.) To address this, we will adopt ideas from deep neural networks and from linear value
function approximation theory.

Curriculum learning [31] is a technique for neural networks that trains networks on
easier problems before training them on harder problems. The incremental nature of CVI
could combine naturally with the curriculum learning approach to neural network training.
For example, we would first train an encoder network to produce a single feature and linear
decoder that predicts the immediate reward. At each iteration, we would check if the decoder
can predict the reward and all next feature values. If it cannot, then we would train the

network to produce a new feature to predict the reward and existing feature set.
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