
Bayesian logistic regression for classification of tabular data (ИОИ-8) 1

Bayesian logistic regression for classification of tabular data∗

Kropotov D., Vetrov D., Wolf L., Hassner T.

dmitry.kropotov@gmail.com, vetrovd@yandex.ru, wolf@cs.tau.ac.il, hassner@openu.ac.il

Moscow, Russia, Dorodnicyn Computing Centre of RAS, Moscow State University;

Tel-Aviv, Israel, Tel-Aviv University, The Open University of Israel

We extend the Relevance Vector Machine (RVM) framework to handle cases of table-structured data, i. e. when
each object is represented by a table of features rather than by a single vector. This is achieved by coupling
the regularization coefficients of rows and columns of features. We present two variants of this new gridRVM
framework, based on the way in which the regularization coefficients of the rows and columns are combined.
Appropriate variational optimization algorithms are derived for inference within this framework. The consequent
reduction in the number of parameters from the product of the table’s dimensions to the sum of its dimensions
allows for better performance in the face of small training sets, resulting in improved resistance to overfitting
problems, as well as providing better interpretation of results. These properties are demonstrated on a synthetic
data-set as well as on a modern and challenging visual identification benchmark.

In classical machine learning theory, a training set
consists of a number of objects (precedents), each rep-
resented as a vector of features. This is not, how-
ever, always an optimal representation. In some cases,
a tabular representation is more convenient. Objects
are then described by a number of features that form
a table rather than a single vector.

A natural example of such case arises in a re-
gion/descriptor-based framework for image analysis.
Within this framework, an image is split into several
regions (blocks) and a set of descriptors is then com-
puted for each region. Then, we may associate each
feature with the pair region/descriptor and form a tab-
ular view of a single image. Note that often the number
of features extracted from the image exceeds the num-
ber of images in the whole training set, resulting in in-
creased risk of overfitting.

Another example is related to the use of radial ba-
sis functions (RBF) in classification algorithms. Tradi-
tionally, RBF depends only on the distance ρ(x, ym)
between the object x and some predefined point ym

in the space of features R
d, i. e. ϕm(x) = f

(

ρ(x, ym)
)

,
m = 1, . . . , M . Each object is described by a vec-
tor of M RBF values. Gaussian RBFs ϕm(x) =
= exp(−γ‖x− ym‖2) are a popular “rule-of-thumb”
choice in many classification algorithms, e. g. in lo-
gistic regression. The obvious drawback of Gaussian
RBFs is their low discriminative ability in the pres-
ence of numerous noisy features. To deal with noisy
features one might consider basis functions consisting
of a single feature ϕmj(x) = f

(

|x(j) − ym(j)|
)

. Al-
though it is possible to represent an object x as a vec-
tor (ϕ11(x), . . . , ϕM,d(x)), it could be more natural
to form a table of M columns and d rows.

The tabular representation of data provides new
options in analyzing feature sets. In particular, we may
search for relevant columns and rows instead of search-
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ing for relevant features. Besides, we will show that
in some cases tabular data classifier has better gen-
eralization properties compared to analogous feature
vector classifier.

GridRVM models

Consider a two-class classification problem with
tabular data. Let (X, t) = {xn, tn}N

n=1
be the train-

ing set where tn ∈ {−1, 1} are class labels and each
object xn is represented as a table of generalized fea-

tures
(

ϕij(xn)
)M1,M2

i,j=1
. Note that we will also use one-

index notation (ϕk(xn))M
k=1

, M = M1M2 when we
need to treat the description of the object as a vector
and denote Φ = {ϕk(xn)}M,N

k,n=1
. Define the following

probabilistic model (p-gridRVM):

p(t, w, α, β |X) = p(t |X, w)p(w |α, β)p(α)p(β),

p(t |X, w) =
N
∏

n=1

σ
(

tnwTϕ(xn)
)

,

p(w |α, β) =

M1,M2
∏

i,j=1

√

αiβj

√
2π

M1M2

exp

(

− 1

2

M1,M2
∑

i,j=1

αiβjw
2

ij

)

, (1)

p(α) =
M1
∏

i=1

G(αi | a0, b0), p(β) =
M2
∏

j=1

G(βj | c0, d0),

where σ(y) = 1/
(

1 + exp(−y)
)

is a logistic func-
tion, G(αi | a0, b0) stands for gamma distribution over
αi with parameters a0, b0 and all αi, βj > 0. The
p-gridRVM model differs from the conventional RVM
model only in (1), where instead of individual regular-
ization coefficient αij for each weight wij we assign in-
dependent regularization coefficients to each row and
column of the tabular presentation. The regularization
coefficient for the weight wij is a product of αi and βj .
Alternatively, we may consider the sum, i. e.

p(w |α, β) =

M1,M2
∏

i,j=1

√

αi+βj

√
2π

M1M2

exp

(

− 1

2

M1,M2
∑

i,j=1

(αi+βj)w
2

ij

)

.
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We refer to this model as s-gridRVM. Note that
in both introduced models the number of regulariza-
tion coefficients α and β is M1+M2 while the number
of weights is M1M2. However, they have one impor-
tant distinction. In s-gridRVM large value of αi means
that all features from the ith row have regularization
coefficients at least as large as αi, while in p-gridRVM
large αi does not necessarily imply large values of
the regularization coefficient for a weight wij since
the coefficient βj may have a small value. Thus we
may expect a different behavior from these models.

Variational learning in gridRVM models

In a classification problem we wish to calculate

p(tnew |xnew, t, X) =

∫

p(tnew |xnew, w) ×

p(w, α, β | t, X) dw dα dβ (2)

for any new object xnew. For models p- and s-gridRVM
this integration is intractable and hence some approx-
imation scheme is needed. Here we use the variational
approach [1], which has been successfully applied for
the conventional RVM model in [3], and try to find a
variational approximation q(w, α, β) to the true pos-
terior p(w, α, β | t, X) in the following family of fac-
torized distributions:

q(w, α, β) = qw(w)qα(α)qβ(β).

Then (2) can be reduced to integration over the fac-
torized distribution q:

p(tnew|xnew, t, X) ≃
∫

p(tnew|xnew,w)qw(w)dw. (3)

Using the Jaakkola-Jordan inequality [1] for
the likelihood function p(t |X, w), we obtain:

p(t |X, w) > F (t, X, w, ξ) =

N
∏

n=1

σ(ξn) exp
(zn − ξn

2
− λ(ξn)(z2

n − ξ2

n)
)

,

where λ(ξ) = tanh(ξ/2)/(4ξ), zn = tnwTϕ(xn). This
bound is tight for ξn = zn. Then it can be shown that

log p(t |X) >

∫

log
F (t, X, w, ξ)p(w |α, β)p(α)p(β)

qw(w)qα(α)qβ(β)
×

qw(w) qα(α) qβ(β) dw dα dβ. (4)

From the theory of variational inference [1], it fol-
lows that maximization of the criterion function (4)
w. r. t. distributions qw(w), qα(α), qβ(β) and varia-
tional parameters ξ leads to the following result:

qw(w) = N (w |µ, Σ), (5)

qα(α) =

M1
∏

i=1

G(αi | ai, bi), qβ(β) =

M2
∏

j=1

G(βj | cj , dj),

where each distribution is iteratively updated with all
others fixed by the following formulae:

Σ = (diag(EααiEββj) + 2ΦTΛΦ)
−1

,

Λ = diag
(

λ(ξn)
)

, µ =
1

2
ΣΦTt,

ai = a0 +
M2

2
, bi = b0 +

1

2

M2
∑

j=1

EββjEww2

ij ,

cj = c0 +
M1

2
, dj = d0 +

1

2

M1
∑

i=1

EααiEww2

ij ,

ξ2

n = ϕT(xn)EwwwTϕ(xn).

The necessary statistics are calculated as follows:

Eww = µ, Eα log αi = Ψ(ai) − log bi,
Eww2

ij = Σij,ij + µ2

ij , Eββj = ci

di

,

Eααi = ai

bi

, Eβ log βj = Ψ(cj) − log dj ,

(6)
where Ψ(a) = d

da
log Γ(a) — digamma function.

For learning in s-gridRVM model we propose a new
variational bound:

log(x + y) > log(η + ζ)+

η
(

log(x) − log(η)
)

+ ζ
(

log(y) − log(ζ)
)

η + ζ
, (7)

where η and ζ are variational parameters. This bound
is tight when x/y = η/ζ and illustrated in Fig. 1.
The inequality (7) leads to the following lower bound
on log p(w |α, β):

log p(w |α, β) =
1

2

M1,M2
∑

i,j=1

[log(αi + βj) − (αi + βj)w
2

ij ] −

M1M2

2
log 2π > log G(w, α, β, η, ζ) =

1

2

M1,M2
∑

i,j=1

[

log(ηij + ζij) +
ηij

(

log(αi) − log(ηij)
)

ηij + ζij

+

ζij

(

log(βj) − log(ζij)
)

ηij + ζij

− (αi + βj)w
2

ij

]

−M1M2

2
log 2π.

This bound is tight, e. g. if ηij = αi and ζij = βj .
Maximization of the criterion function

log p(t |X) >
∫

log
F (t, X, w, ξ)G(w, α, β, η, ζ)p(α)p(β)

qw(w)qα(α)qβ(β)
×

qw(w)qα(α)qβ(β)dwdαdβ

w. r. t. distributions qw(w), qα(α), qβ(β) and varia-
tional parameters ξ, η, ζ leads to (5), where

Σ =
(

diag(Eααi + Eββj) + 2ΦTΛΦ
)

−1

,

Λ = diag
(

λ(ξn)
)

, µ =
1

2
ΣΦTt,
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Fig. 1. One-dimensional projection of the bound (7)
for parameters y = 3, η = 2, ζ = 4.

ai = a0 +
1

2

M2
∑

j=1

ηij

ηij + ζij

, bi = b0 +
1

2

M2
∑

j=1

Eww2

ij ,

cj = c0 +
1

2

M1
∑

i=1

ζij

ηij + ζij

, dj = d0 +
1

2

M1
∑

i=1

Eww2

ij ,

ηij = exp(Eα log αi), ζij = exp(Eβ log βj),

ξ2

n = ϕT(xn)EwwwTϕ(xn).

The necessary statistics are still calculated using (6).
Now return to decision making scheme (3). Us-

ing (5) the integral (3) can be rewritten as

∫

σ
(

tnewwTϕ(xnew)
)

N (w |µ, Σ)dw =

∫

σ(z)N
(

z | tnewµTϕ(xnew), ϕT(xnew)Σϕ(xnew)
)

dz.

The last integral is one-dimensional and can be easily
calculated using the Monte Carlo technique. The use-
ful analytical approximation for this integral is pro-
posed in [5]:

∫

σ(z)N (z |m, s2)dz ≃ σ

(

m
/

√

1 + πs2

8

)

.

Experiments

First consider an artificial classification dataset1

taken from [4] (see Fig. 3c). This is a 2-class problem
with 200 objects in the training set and 5000 objects
in the test set. The feature space is two-dimensional
and the data are generated from a specified distribu-
tion with Bayesian error rate 19%. The optimal dis-
criminative surface is non-linear. In the experiment
we add up to 30 normally distributed noisy features
and investigate the behaviour of the conventional vari-
ational RVM [3], p-gridRVM and s-gridRVM with
3 types of basis functions. In the first case we take
initial features, i. e. ϕj(y) = y(j) (total d features).

1http://www-stat.stanford.edu/~tibs/ElemStatLearn/

datasets/mixture.example.data
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Fig. 2. Experimental results for LFW dataset. See the text
for details.

This corresponds to a linear separating hyperplane.
In the second case we take Gaussian RBFs of the form
ϕj(y) = exp(−δ‖y −xj‖2), where xj are training ob-
jects (total N features). In the third case we take
separate RBFs calculated for each dimension, i. e.

ϕij(y) = exp
(

−δ
(

y(i)− xj(i)
)2

)

(total Nd features).

In the first two cases we have a standard vector repre-
sentation of objects, M2 = 1 for both gridRVMs and
hence gridRVMs are very similar to standard RVM
here. In the last case we may treat objects’ represen-
tation both as a matrix of size N × d for gridRVMs
and as a vector of length Nd for RVM. The experimen-
tal results (error rates) are shown in figure 3 (a: ini-
tial features, b: standard RBFs, d: RBFs calculated
for each dimension, color legend: light grey — RVM,
black — p-gridRVM, dark grey — s-gridRVM, dot-
ted line stands for train error, solid line — test er-
ror). In all cases δ = 5.55. In the first case we have
more than 27% error rate for all three methods be-
cause linear hyperplane is inadequate for this non-
linear data. For the second case all methods show
similar performance and quickly overfit with the ad-
dition of noisy features. However, the overfit speed for
gridRVM methods is less than for RVM. In the last
case, where the tabular representation of data is ap-
propriate, gridRVM methods show stable performance
resulting in 22–23% of errors even for 30 noisy fea-
tures while RVM definitely overfits starting from sev-
eral noisy features. The number of the relevant basis
functions for the last type of basis functions is shown
on fig. 3e. We can see that the s-gridRVM model gives
less sparse solution compared to p-gridRVM.

We also test gridRVM approach on the Labeled
Faces in the Wild (LFW) pair-matching benchmark2.

2http://vis-www.cs.umass.edu/lfw/
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Fig. 3. Experimental results. Please see the text for details.

The LFW data set provides a set of facial images
which were automatically harvested from news web-
sites and thus present faces under challenging, uncon-
strained viewing conditions. The goal of the bench-
mark is to determine, given a pair of images from
the collection, whether the two images match (por-
tray the same subject) or not.

We represent the images in the following way. Each
face image was subdivided into 63 non-overlapping
blocks of 23×18 pixels centered on the face (see
Fig. 2a) and for each block a set of values was cal-
culated using Local Binary Patterns approach [6]. We
used four different LBPs and thus four different fea-
ture vectors for each block. Each pair of images to be
compared is represented by one table of similarity val-
ues. The rows of the tables correspond to similarities
values, calculated using particular LBP type and par-
ticular distance function (we used two variants – Eu-
clidian and Hellinger distance) and the columns cor-
respond to the 63 facial blocks.

We report our results in Fig. 3f where the pair-
matching performance of s-gridRVM (dark grey) and
p-gridRVM (black) is compared against two baseline
methods — RVM (light grey) and linear SVM (dot-
ted black). As can be seen, the gridRVM methods
show a clear advantage over both baseline methods.
This is particularly true when only a small amount
of training data is available. Although this advantage
diminishes as more training is made available, both
grid methods remain superior. Note that the results
improve the ones reported in [2], where the same fea-

tures were used for the whole image and the reported
(best at that time) accuracy was 78.47%. P-gridRVM
and s-gridRVM showed 79.34% and 79.42% of correct
answers respectively.

GridRVM approach allows us to analyze relevant
rows and columns in object’s tabular representation.
In the context of face images this corresponds to rele-
vant blocks and relevant descriptors (LBPs + distance
types). Fig. 2b shows the block relevance (the darker
the more informative) and Fig. 2c shows the relevance
of descriptors (inverse regularization coefficient).
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