Regularization

Victor Kitov
v.v.kitov@yandex.ru

Regularization

Aims of regularization:

- make underdetermined model determined ${ }^{1}$
- improve generalization (performance on train may decrease)
- by encoding prior domain knowledge
- by solving bias-variance trade-off
- reduces variance
- at the expense of small bias increase
- this can useful when
- model space is large and complex (\downarrow variance)
- model space can approximate well the true model (bias is low)
- example: decision trees, neural nets.
${ }^{1}$ examples: linear regression estimated with LS, logistic regression

Types of regularization

- add restrictions on parameters
- add penalty to objective function (soft restriction)
- ensemble learning

Soft regularization

- Modified loss:

$$
\tilde{J}(\theta)=J(\theta)+\alpha R(\theta)
$$

- Specifics of neural networks:
- On layer h: $i^{h+1}=\beta_{0}+\sum \beta_{k} o_{k}^{h}$
- bias term β_{0} is usually not included in regularization
- there are comparatively few bias terms
- model will stay unbiased
- we may use different α_{h} for different layers $h=1,2, \ldots H$.

L_{2} regularization («weight decay»)

$$
\begin{gathered}
\tilde{J}(w, X, Y)=\frac{\alpha}{2} w^{\top} w+J(w, X, Y) \\
\nabla_{w} \tilde{J}(w, X, Y)=\alpha w+\nabla_{w} J(w, X, Y)
\end{gathered}
$$

Stochastic gradient descent step:

$$
w \leftarrow(1-\varepsilon \alpha) w-\varepsilon \nabla_{w} J(w, X, Y)
$$

Weights are shrunk towards zero.

Analysis of L_{2}-regularized solution

- Write $\tilde{J}(w)$ for Taylor 2nd order approximation around $w^{*}=\arg \min _{w} J(w):$

$$
\widehat{J}(w)=J\left(w^{*}\right)+\frac{1}{2}\left(w-w^{*}\right)^{T} H\left(w-w^{*}\right)+\frac{\alpha}{2} w^{T} w
$$

where $H=\nabla_{w}^{2} J\left(w^{*}\right) \succeq 0$ and $\nabla_{w} J\left(w^{*}\right)^{T}\left(w-w^{*}\right)=0$, because in minimum $\nabla_{w} J\left(w^{*}\right)=0$.

- This expansion is precise for quadratic loss $J(w)$ (e.g. MSE).
- Minimum is achieved when $\nabla \widehat{J}(\tilde{w})=0$:

$$
\begin{gather*}
H\left(\tilde{w}-w^{*}\right)+\alpha \tilde{w}=0 \\
(H+\alpha I) \tilde{w}=H w^{*} \tag{1}\\
\tilde{w}=(H+\alpha I)^{-1} H w^{*}
\end{gather*}
$$

- When $\alpha=0 \tilde{w}=w^{*}$.

Analysis of L_{2}-regularized solution

- $H=Q \wedge Q^{T}$ (spectral decomposition), where
- Q is orthonormal basis of eigenvectors
- Λ - diagonal matrix with eigenvalues

Analysis of L_{2}-regularized solution

- $H=Q \wedge Q^{T}$ (spectral decomposition), where
- Q is orthonormal basis of eigenvectors
- Λ - diagonal matrix with eigenvalues
- Substituting spectral decomposition into(1), we obtain:

$$
\begin{aligned}
\tilde{w} & =\left(Q \wedge Q^{T}+\alpha I\right)^{-1} Q \wedge Q^{T} w^{*} \\
& =\left[Q(\Lambda+\alpha I) Q^{T}\right]^{-1} Q \wedge Q^{T} w^{*} \\
& =Q(\Lambda+\alpha I)^{-1} \wedge Q^{T} w^{*}
\end{aligned}
$$

Analysis of L_{2}-regularized solution

- $H=Q \wedge Q^{T}$ (spectral decomposition), where
- Q is orthonormal basis of eigenvectors
- Λ - diagonal matrix with eigenvalues
- Substituting spectral decomposition into(1), we obtain:

$$
\begin{aligned}
\tilde{w} & =\left(Q \wedge Q^{T}+\alpha I\right)^{-1} Q \wedge Q^{T} w^{*} \\
& =\left[Q(\Lambda+\alpha I) Q^{T}\right]^{-1} Q \wedge Q^{T} w^{*} \\
& =Q(\Lambda+\alpha I)^{-1} \Lambda Q^{T} w^{*}
\end{aligned}
$$

- \tilde{w} is obtained by rescaling w^{*} along the eigenvectors.
- along i-th eigenvector rescaling factor is $\frac{\lambda_{i}}{\lambda_{i}+\alpha}$
- rescaling effect is
- high for small λ_{i}
- insignificant for large λ_{i}

Illustration of L_{2} regularization effect

- Notation
- Solid: iso-lines of $J(w)$
- Dashed: iso-lines of $\frac{\alpha}{2} w^{T} w$
- \tilde{w} - equlibrium point
- Eigenvectors of H :
- $v_{1}=[1,0], \lambda_{1}$ is small $=>\left|w_{1}^{*}-\tilde{w}_{1}\right|$ - large
- $v_{2}=[0,1], \lambda_{2}$ large $=>\left|w_{2}^{*}-\tilde{w}_{2}\right|-$ small

Linear regression with L_{2} regularization

$$
\begin{gathered}
y=x^{T} w \\
\widehat{w}=\arg \min _{w} \sum_{n=1}^{N}\left(x_{n}^{T} w-y_{n}\right)^{2}+\frac{\alpha}{2} w^{T} w
\end{gathered}
$$

Solution:

$$
\widehat{w}=\left(X^{T} X+\alpha I\right)^{-1} X^{T} Y
$$

For centered features:
$X^{\top} X \propto \operatorname{Ncov}[x, x], X^{\top} Y=\operatorname{Ncov}[x, y]$
L_{2} regularization «adds» α variance to each feature. this forces estimator to reduce weights (based on $\operatorname{cov}[x, y]$)

L_{1} norm regularization

$$
\begin{gathered}
\tilde{J}(w)=J(w)+\alpha\|w\|_{1} \\
\nabla \tilde{J}(w)=\nabla J(w)+\alpha \operatorname{sign}(w)
\end{gathered}
$$

When $\alpha>\sup _{w_{i}}|\nabla J(w)|$ SGD will force $w_{i} \rightarrow 0$.

Effect of L_{1} regularization on solution

- To get analytical solution need to assume that Hessian is diagonal.
- Consider 2nd order Taylor approximation to $\widehat{J}(w)$:

$$
\widehat{J}(w)=J\left(w^{*}\right)+\sum_{i}\left[\frac{1}{2} H_{i, i}\left(w_{i}-w_{i}^{*}\right)^{2}+\alpha\left|w_{i}\right|\right]
$$

- Solution ${ }^{2}$:

$$
w_{i}=\operatorname{sign}\left(w_{i}^{*}\right) \max \left\{\left|w_{i}^{*}-\frac{\alpha}{H_{i, i}}, 0\right|\right\}
$$

- Analysis:
- solution is sparse (many w_{i} may be 0)
- shift in weights is smaller along directions with high $H_{i, i}$
- $\frac{\alpha}{H_{i, i}}>w_{i}^{*}$: regularizer dominates $J(w)$ improvements.
${ }^{2} L_{2}$ regularized solution would be here $w_{i}=\frac{H_{i, i}}{H_{i, i}+\alpha} w_{i}^{*}$

L_{1} regularizer: feature selection

- $\|w\|_{1}$ regularizer will do feature selection.
- Consider

$$
\tilde{J}(w)=J(w)+\alpha \sum_{d=1}^{D}\left|w_{d}\right|
$$

- if $\alpha>\sup _{w}\left|\frac{\partial J(w)}{\partial w_{i}}\right|$, then it becomes optimal to set $w_{i}=0$
- For higher α more weights will become zeroes.
L_{2} regularizer: no feature selection
- Consider $R(w)=\frac{\alpha}{2}\|w\|_{2}^{2}=\frac{\alpha}{2} \sum_{d} w_{d}^{2}$

$$
\tilde{J}(w)=J(w)+\frac{\alpha}{2} \sum_{d=1}^{D} w_{d}^{2}
$$

- $\frac{\partial R(w)}{\partial w_{i}}=\alpha w_{i} \rightarrow 0$ when $w_{i} \rightarrow 0$.

Illustration

Constrained optimization

$$
\tilde{J}(\theta)=J(\theta)+\alpha R(\theta) \rightarrow \min _{\theta}
$$

is equivalent to constrained maximization task for some $\gamma=\gamma(\alpha)$:

$$
\left\{\begin{array}{l}
J(\theta) \rightarrow \min _{\theta} \tag{2}\\
R(\theta) \leq \gamma
\end{array}\right.
$$

$\alpha \downarrow \Longleftrightarrow \gamma \uparrow$
To solve (2) repeat:
$\theta \leftarrow \theta-\varepsilon \nabla J(\theta)$ (or any other optimization update)
project θ onto region $\{\theta: R(\theta) \leq \gamma\}$

When to use constrained optimization

- Penalty addition may force algorithm get stuck in local optima around zero:
- causing «dead units» with very small weights
- inefficient local solution
- Constrained maximization has no such problem
- Constrained maximization: more stable
- weights cannot take arbitrary values
- may use higher learning rate!

Constrained optimization

- We can impose constraints on:
- all weights
- all weights within each layer
- all incoming weights to each neuron
- Bias weights are usually not constrained.

Dataset augmentation

- More data - more accurate model.
- Using known invariant transformations - can generate more data.
- Example for image classification:
- translation
- scaling
- reflection
- counterexample: b->d
- rotation
- not big, otherwise 6->9, p->d
- cropping
- adding small random noise

Adding noise

- Add noise to inputs
- solution becomes robust to input noise
- Add noise to hidden unit inputs
- this is dataset augmentation with different levels of abstraction
- Add noise to weights
- pushes weights to «plateu» regions where small weight changes do not affect output

Add noise to gradient ${ }^{3}$

$$
\nabla J(\theta) \leftarrow \nabla J(\theta)+N\left(0, \sigma_{t}\right)
$$

Recommended schedule:

$$
\sigma_{t}=\frac{\eta}{(1+t)^{\gamma}}
$$

where $\eta \in\{0.01,0.3,1.0\}, \gamma=0.55$.

Improvements obtained:

- for networks with poor initialization (all zeroes)
- for very deep networks
- for memory networks
${ }^{3}$ Neelakantan, Arvind et al. Adding Gradient Noise Improves Learning for Very Deep Networks. 2015.

Add noise to outputs

- When incorrect labels present - overfitting.
- Instead of sampling objects with modified outputs we can
- For $\left(x_{n}, y_{n}\right)$ replace hard targets with soft targets:
hard target soft target

$$
\begin{array}{ccc}
y=1 & 0 & \frac{\varepsilon}{C} \\
\ldots & & \frac{\varepsilon}{C} \\
y=y_{n}-1 & 0 & 1-\frac{C-1}{C} \varepsilon \\
y=y_{n} & 1 & \frac{\varepsilon}{C} \\
y=y_{n}+1 & 0 & \frac{\varepsilon}{C} \\
\ldots & & 0
\end{array}
$$

- Smoothed likelihood:

$$
\prod_{n=1}^{N} \prod_{y \neq y_{n}} p\left(y \mid x_{n}\right)^{\frac{\varepsilon}{C}} p\left(y_{y} \mid x_{n}\right)^{1-\frac{c-1}{C} \varepsilon} \rightarrow \max _{\theta}
$$

Semi-supervised learning

- In semi-supervised learning we use:
- labelled data $\left(x_{1}, y_{1}\right), \ldots\left(x_{N}, y_{N}\right)$
- unlabelled data $x_{N+1}, \ldots x_{N+M}$.
- Motivation:
- labelling is expensive
- N is small and $M \gg N$.
- $p(x)$ and $p(y \mid x)$ have shared parametrization.

Semi-supervised learning - neural nets ${ }^{4}$

$$
\mathcal{L}_{\text {hybrid }}(X, Y)=\mathcal{L}_{\text {disc }}(X, Y)+\gamma \mathcal{L}_{\text {unsup }}(X)
$$

where

- $\mathcal{L}_{\text {disc }}(X, Y)=\sum_{n=1}^{N} \ln p\left(y_{n} \mid x_{n}\right)$-discriminative log-likelihood
- $\mathcal{L}_{\text {unsup }}(X, Y)=\sum_{n=1}^{N+M} \ln p\left(x_{n}\right)$ - unsupervised log-likelihood
- γ - trade-off hyperparameter (tuned on validation set)

Results:

- In article Bolzmann machines were used
- Significant reduction of error-rate on MNIST, 20 newsgroups.
> ${ }^{4}$ Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted Boltzmann machines. In ICML'2008.

Multi-task learning

- Applicable when several tasks have shared factors.
- Statistical benefit - more accurate estimation

Early stopping

- Is similar to weight decay. Needs separate validation set.
- Parameters:
- period of steps when validation performance is reevaluated
- smaller period - more accurate, but more computationally intensive
- after how many «bad» evaluations (quality didn't improve) set to stop
- if small - may stop too early due to noisy performance estimation.

Early stopping - utilizing validation set

Early stopping returned:

- optimal number of steps i^{*}
- optimal parameters θ^{*}
- performance on validation $P_{\text {val }}$ and train $P_{\text {train }}$

Two approaches how to utilize validation set:
(1) reinitialize NN and run i^{*} steps using training+validation set.

- use the same number of passes through objects or dataset (epochs)?
(2) continue training NN with initialization θ^{*} on the validation set until quality on validation reaches $P_{\text {train }}$.
- may not reach

Sparse representation

- Suppose
- θ is a vector of estimated model parameters
- h is inner representation:
- Optimized criterion in sparse representation becomes:

$$
\tilde{J}(\theta)=J(\theta)+\alpha R(h(\theta)) \rightarrow \min _{\theta}
$$

where $R(h)$ is sparsity provoking prior such as $R(h)=\sum_{i}\left|h_{i}\right|$.

Example of sparse representation: sparse coding

- Definitions:
- $X \in \mathbb{R}^{N \times D}$ - design matrix
- $D \in \mathbb{R}$ - dictionary matrix (rows-code words)
- $W \in \mathbb{R}$ - representation matrix (rows-object representations)
- Sparse coding is found with optimization task:

$$
\begin{equation*}
\|X-W D\|_{2}^{2}+\|W\|_{1} \rightarrow \min _{D, W} \tag{3}
\end{equation*}
$$

where $\|A\|_{2}^{2}:=\sum_{i, j} a_{i, j}^{2}$ and $\|A\|_{1}:=\sum_{i, j}\left|a_{i, j}\right|$.

Example of sparse representation: sparse coding

- Definitions:
- $X \in \mathbb{R}^{N \times D}$ - design matrix
- $D \in \mathbb{R}$ - dictionary matrix (rows-code words)
- $W \in \mathbb{R}$ - representation matrix (rows-object representations)
- Sparse coding is found with optimization task:

$$
\begin{equation*}
\|X-W D\|_{2}^{2}+\|W\|_{1} \rightarrow \min _{D, W} \tag{3}
\end{equation*}
$$

where $\|A\|_{2}^{2}:=\sum_{i, j} a_{i, j}^{2}$ and $\|A\|_{1}:=\sum_{i, j}\left|a_{i, j}\right|$.

- Task (3) is not convex with respect to D, W but is convex with respect to D or W only (holding another matrix fixed).

Sparse coding: algorithm

INPUT: design matrix X
initialize D randomly
while stop condition not met:

$$
\begin{aligned}
& W=\arg \min _{W}\|X-W D\|_{2}^{2}+\|W\|_{1} \\
& D=\arg \min _{D}\|X-W D\|_{2}^{2}+\|W\|_{1}
\end{aligned}
$$

OUTPUT: dictionary D and sparse representation W

Table of Contents

(1) Dropout

(2) Batch normalization

Dropout idea

Each node in the neural network is removed with probability $1-p$ independently from decisions about other nodes:

Comparison neural net without/with dropout

(a) Standard Neural Net

(b) After applying dropout.

- Output layer nodes are never removed.
- Recommended parameters:
- $p=0.5$ for inner layer nodes
- $p=0.8$ for input layer nodes (feature subsampling)

Dropout motivation

- Motivation from genetic theory of evolution:
- sexual reproduction involves taking half the genes of one parent and half of the other.
- best fit genes get mixed with 0.5 probabilities
- best genes should learn "by themselves", not relying on complex outer gene structure
- less ovefitting
- In dropout network:
- nodes rely less on outputs of other nodes
- try more to learn something by themselves
- behave in a more robust way
- resulting network becomes less overfitted.

Dropout algorithm

Comparison of usual and dropout network for one node

(a) Standard network

(b) Dropout network

Definitions

Define:

- $f(x)$ - an activation function.
- y^{\prime} - vector of outputs at layer I
- z^{\prime} - vector of inputs to layer I
- $a * b$ defines element-wise product of elements.
- L - number of layers in neural network
- $y^{(0)}=x$ - input feature vector
- Bernoulli (p) returns a vector of independent Bernoulli random variables with parameter p.

Forward propagation algorithm

We need to repeat forward propagation recurrently for $I=0,1, \ldots L-1$.
(1) Usual feed-forward neural network:

$$
\begin{aligned}
& z_{i}^{(I+1)}=w_{i}^{(I+1)} y^{\prime}+b_{i}^{(I+1)} \\
& y_{i}^{(I+1)}=f\left(z_{i}^{(I+1)}\right)
\end{aligned}
$$

(2) Feed-forward network with dropout:

$$
\begin{aligned}
& r_{j}^{(I)} \sim \text { Bernoulli }(p) \\
& \tilde{y}^{\prime}=r^{(I)} * y^{(I)} \\
& z_{i}^{(I+1)}=w_{i}^{(I+1)} \tilde{y}^{\prime}+b_{i}^{(I+1)} \\
& y_{i}^{(I+1)}=f\left(z_{i}^{(I+1)}\right)
\end{aligned}
$$

Application of dropout

- Learning
- while weights not converge:
(1) sample random subnetwork ("thinned network") with dropout
(2) apply one step of stochastic gradient descent to thinned network

Comment: due to weights sharing across all thinned networks the number of parameters is the same as in original network.

Application of dropout

- Prediction
- use full networks with all nodes, but multiply each weight by p^{5}.
- such scaling will yield the same output as average thinned network.
${ }^{5}$ precise for networks without non-linearities. With non-linearities MonteCarlo sampling may work better.

Complexity

- $O(W)$ operations during each step to generate binary mask.
- $O(W)$ memory to store the mask
- Complexity of forward and backward pass - the same
- BUT: total number of steps until convergence may increase
- dropout shrinks model capacity
- to offset this, need to increase the network, make more optimization steps

Modifications

- Additive Gaussian noise:
- $h_{i} \leftarrow h_{i} * N(1,1)$
- at test time: no scaling needed
- Dropconnect

Conclusion

- Dropout behaves similar to generating 2^{W} networks and taking weighted average of their predictions (W is the number of weights in the original neural network).
- Dropout performes intelligent high-level information destruction
- model becomes more robust (at high levels of abstraction as well)
- Properties:
- number of parameters is the same
- training complexity is reduced
- complexity of prediction is the same
- Dropout provides accuracy improvement in many domains.
- More details in: "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov. Journal of Machine Learning/Research 15 (2014) 1929-1958.

Table of Contents

(1) Dropout

(2) Batch normalization

Batch normalization ${ }^{6}$

- Learning by minibatches
- more accurate gradient
- faster by using parallelizm
- Problems of deep networks:
- all parameters change simultaneously
- this change gets amplified in deep networks
- for each neuron its input distribution changes
- neuron such as sigmoid may saturate
> ${ }^{6}$ Sergey loffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015.

Batch normalization

- Standardizes outputs
- Gradient becomes scale invariant
- Can ensure staying away from neuron saturation regions
- May use higher learning rates
- Approach has beaten state-of-the-art ImageNet model (inception network)

Batch normalization

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$; Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Normalization propagation

$$
\begin{aligned}
\frac{\partial \ell}{\partial \widehat{x}_{i}} & =\frac{\partial \ell}{\partial y_{i}} \cdot \gamma \\
\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} & =\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot\left(x_{i}-\mu_{\mathcal{B}}\right) \cdot \frac{-1}{2}\left(\sigma_{\mathcal{B}}^{2}+\epsilon\right)^{-3 / 2} \\
\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} & =\left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}\right)+\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m}-2\left(x_{i}-\mu_{\mathcal{B}}\right)}{m} \\
\frac{\partial \ell}{\partial x_{i}} & =\frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}+\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2\left(x_{i}-\mu_{\mathcal{B}}\right)}{m}+\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m} \\
\frac{\partial \ell}{\partial \gamma} & =\sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i} \\
\frac{\partial \ell}{\partial \beta} & =\sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}}
\end{aligned}
$$

Batch normalization: algorithm

Input: Network N with trainable parameters Θ; subset of activations $\left\{x^{(k)}\right\}_{k=1}^{K}$
Output: Batch-normalized network for inference, $N_{\mathrm{BN}}^{\mathrm{inf}}$
1: $N_{\mathrm{BN}}^{\mathrm{tr}} \leftarrow N \quad / /$ Training BN network
2: for $k=1 \ldots K$ do
3: Add transformation $y^{(k)}=\mathrm{BN}_{\gamma^{(k)}, \beta^{(k)}}\left(x^{(k)}\right)$ to $N_{\mathrm{BN}}^{\mathrm{tr}}$ (Alg. 1)
4: Modify each layer in $N_{\mathrm{BN}}^{\mathrm{tr}}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
5: end for
6: Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters $\Theta \cup$ $\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
7: $N_{\mathrm{BN}}^{\mathrm{inf}} \leftarrow N_{\mathrm{BN}}^{\mathrm{tr}}$ // Inference BN network with frozen // parameters

Batch normalization: algorithm

8: $\boldsymbol{f o r} k=1 \ldots K$ do
9: $\quad / /$ For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
10: Process multiple training mini-batches \mathcal{B}, each of size m, and average over them:

$$
\begin{aligned}
\mathrm{E}[x] & \leftarrow \mathrm{E}_{\mathcal{B}}\left[\mu_{\mathcal{B}}\right] \\
\operatorname{Var}[x] & \leftarrow \frac{m}{m-1} \mathrm{E}_{\mathcal{B}}\left[\sigma_{\mathcal{B}}^{2}\right]
\end{aligned}
$$

11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y=\mathrm{BN}_{\gamma, \beta}(x)$ with $y=\frac{\gamma}{\sqrt{\operatorname{Var}[x]+\epsilon}} \cdot x+\left(\beta-\frac{\gamma \mathrm{E}[x]}{\sqrt{\operatorname{Var}[x]+\epsilon}}\right)$
12: end for
Algorithm 2: Training a Batch-Normalized Network

Weights initialization

- random with distribution $w_{i} \sim F\left(0, \sigma^{2}\right)$, having
- zero mean
- varaince equal to $\frac{1}{n_{\text {in }}}$ or $\frac{2}{n_{\text {in }}+n_{\text {out }}}$ where
- $n_{i n}$ is the number of incoming connections for neuron i.
- $n_{\text {out }}$ is the number of outgoing connections for neuron i.
- Unsupervised pretraining
- obtain initial weights from solving data-representation problem with autoencoder

