Regularization

Victor Kitov v.v.kitov@yandex.ru

Regularization

Aims of regularization:

- make underdetermined model determined¹
- improve generalization (performance on train may decrease)
 - by encoding prior domain knowledge
 - by solving bias-variance trade-off
 - reduces variance
 - at the expense of small bias increase
 - this can useful when
 - model space is large and complex (\downarrow variance)
 - model space can approximate well the true model (bias is low)
 - example: decision trees, neural nets.

¹examples: linear regression estimated with LS, logistic regression

Types of regularization

- add restrictions on parameters
- add penalty to objective function (soft restriction)
- ensemble learning

Soft regularization

Modified loss:

$$\widetilde{J}(\theta) = J(\theta) + \alpha R(\theta)$$

- Specifics of neural networks:
 - On layer h: $i^{h+1} = \beta_0 + \sum \beta_k o_k^h$
 - bias term β_0 is usually not included in regularization
 - there are comparatively few bias terms
 - model will stay unbiased
 - we may use different α_h for different layers h = 1, 2, ... H.

L₂ regularization («weight decay»)

$$\widetilde{J}(w, X, Y) = \frac{\alpha}{2} w^T w + J(w, X, Y)$$

$$\nabla_{w} \tilde{J}(w, X, Y) = \alpha w + \nabla_{w} J(w, X, Y)$$

Stochastic gradient descent step:

$$w \leftarrow (1 - \varepsilon \alpha) w - \varepsilon \nabla_w J(w, X, Y)$$

Weights are shrunk towards zero.

Write J(w) for Taylor 2nd order approximation around
 w* = arg min_w J(w):

$$\widehat{J}(w) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*) + \frac{\alpha}{2}w^T w$$

where $H = \nabla_w^2 J(w^*) \succeq 0$ and $\nabla_w J(w^*)^T (w - w^*) = 0$, because in minimum $\nabla_w J(w^*) = 0$.

This expansion is precise for quadratic loss J(w) (e.g. MSE).
Minimum is achieved when ∇Ĵ(w̃) = 0:

$$H(\tilde{w} - w^*) + \alpha \tilde{w} = 0$$

(H + \alpha I) $\tilde{w} = Hw^*$
 $\tilde{w} = (H + \alpha I)^{-1}Hw^*$ (1)

• When $\alpha = 0 \ \tilde{w} = w^*$.

- $H = Q \Lambda Q^T$ (spectral decomposition), where
 - Q is orthonormal basis of eigenvectors
 - $\bullet~\Lambda$ diagonal matrix with eigenvalues

- $H = Q \Lambda Q^T$ (spectral decomposition), where
 - Q is orthonormal basis of eigenvectors
 - Λ diagonal matrix with eigenvalues
- Substituting spectral decomposition into(1), we obtain:

$$\tilde{w} = (Q\Lambda Q^T + \alpha I)^{-1} Q\Lambda Q^T w^*$$
$$= \left[Q(\Lambda + \alpha I)Q^T\right]^{-1} Q\Lambda Q^T w^*$$
$$= Q(\Lambda + \alpha I)^{-1} \Lambda Q^T w^*$$

- $H = Q \Lambda Q^T$ (spectral decomposition), where
 - Q is orthonormal basis of eigenvectors
 - $\bullet~\Lambda$ diagonal matrix with eigenvalues
- Substituting spectral decomposition into(1), we obtain:

$$\tilde{w} = (Q\Lambda Q^T + \alpha I)^{-1} Q\Lambda Q^T w^*$$
$$= \left[Q(\Lambda + \alpha I)Q^T\right]^{-1} Q\Lambda Q^T w^*$$
$$= Q(\Lambda + \alpha I)^{-1} \Lambda Q^T w^*$$

- \tilde{w} is obtained by rescaling w^* along the eigenvectors.
 - along *i*-th eigenvector rescaling factor is $\frac{\lambda_i}{\lambda_i + \alpha}$
 - rescaling effect is
 - high for small λ_i
 - insignificant for large λ_i

Illustration of L_2 regularization effect

Notation

- Solid: iso-lines of J(w)
- Dashed: iso-lines of $\frac{\alpha}{2}w^Tw$
- \tilde{w} equiibrium point
- Eigenvectors of *H*:

•
$$v_1 = [1,0], \lambda_1 \text{ is small} => |w_1^* - \tilde{w}_1| \text{ - large}$$

• $v_2 = [0,1], \lambda_2 \text{ large} => |w_2^* - \tilde{w}_2| \text{ - small}$

Linear regression with L_2 regularization

$$y = x^T w$$
$$\widehat{w} = \arg\min_{w} \sum_{n=1}^{N} \left(x_n^T w - y_n \right)^2 + \frac{\alpha}{2} w^T w$$

Solution:

$$\widehat{\mathbf{w}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} + \alpha \mathbf{I} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Y}$$

For centered features: $X^T X \propto Ncov[x, x], X^T Y = Ncov[x, y]$ L_2 regularization «adds» α variance to each feature. this forces estimator to reduce weights (based on cov[x,y])

L_1 norm regularization

$$\begin{split} \tilde{J}(w) &= J(w) + \alpha \|w\|_1 \\ \nabla \tilde{J}(w) &= \nabla J(w) + \alpha \operatorname{sign}(w) \end{split}$$

When $\alpha > \sup_{w_i} |\nabla J(w)|$ SGD will force $w_i \to 0$.

Effect of L_1 regularization on solution

- To get analytical solution need to assume that Hessian is diagonal.
- Consider 2nd order Taylor approximation to $\widehat{J}(w)$:

$$\widehat{J}(w) = J(w^*) + \sum_{i} \left[\frac{1}{2} H_{i,i} (w_i - w_i^*)^2 + \alpha |w_i| \right]$$

• Solution²:

$$w_i = \operatorname{sign}(w_i^*) \max \left\{ \left| w_i^* - \frac{\alpha}{H_{i,i}}, 0 \right| \right\}$$

- Analysis:
 - solution is sparse (many w_i may be 0)
 - shift in weights is smaller along directions with high $H_{i,i}$
 - $\frac{\alpha}{H_{i,i}} > w_i^*$: regularizer dominates J(w) improvements.

 $^{2}L_{2}$ regularized solution would be here $w_{i} = \frac{H_{i,i}}{H_{i,i}+\alpha}w_{i}^{*}$

L_1 regularizer: feature selection

- $||w||_1$ regularizer will do feature selection.
- Consider

$$\tilde{J}(w) = J(w) + \alpha \sum_{d=1}^{D} |w_d|$$

• if $\alpha > \sup_{w} \left| \frac{\partial J(w)}{\partial w_{i}} \right|$, then it becomes optimal to set $w_{i} = 0$ • For higher α more weights will become zeroes.

L_2 regularizer: no feature selection

• Consider
$$R(w) = \frac{\alpha}{2} \|w\|_2^2 = \frac{\alpha}{2} \sum_d w_d^2$$

 $\tilde{J}(w) = J(w) + \frac{\alpha}{2} \sum_{d=1}^D w_d^2$

•
$$\frac{\partial R(w)}{\partial w_i} = \alpha w_i \to 0$$
 when $w_i \to 0$.

Illustration

Constrained optimization

$$\widetilde{J}(\theta) = J(\theta) + \alpha R(\theta) \to \min_{\theta}$$

is equivalent to constrained maximization task for some $\gamma = \gamma(\alpha)$:

$$\begin{cases} J(\theta) \to \min_{\theta} \\ R(\theta) \le \gamma \end{cases}$$
(2)

 $\begin{array}{l} \alpha \downarrow \Longleftrightarrow \gamma \uparrow \\ \text{To solve (2) repeat:} \\ \theta \leftarrow \theta - \varepsilon \nabla J(\theta) \text{ (or any other optimization update)} \\ \text{project } \theta \text{ onto region } \{\theta : R(\theta) \leq \gamma\} \end{array}$

When to use constrained optimization

- Penalty addition may force algorithm get stuck in local optima around zero:
 - causing «dead units» with very small weights
 - inefficient local solution
- Constrained maximization has no such problem
- Constrained maximization: more stable
 - weights cannot take arbitrary values
 - may use higher learning rate!

Constrained optimization

- We can impose constraints on:
 - all weights
 - all weights within each layer
 - all incoming weights to each neuron
- Bias weights are usually not constrained.

Dataset augmentation

- More data more accurate model.
- Using known invariant transformations can generate more data.
- Example for image classification:
 - translation
 - scaling
 - reflection
 - counterexample: b->d
 - rotation
 - not big, otherwise 6->9, p->d
 - cropping
 - adding small random noise

Adding noise

- Add noise to inputs
 - solution becomes robust to input noise
- Add noise to hidden unit inputs
 - this is dataset augmentation with different levels of abstraction
- Add noise to weights
 - pushes weights to «plateu» regions where small weight changes do not affect output

Add noise to gradient³

$$\nabla J(\theta) \leftarrow \nabla J(\theta) + N(0,\sigma_t)$$

Recommended schedule:

$$\sigma_t = \frac{\eta}{(1+t)^{\gamma}}$$

where $\eta \in \{ 0.01, \, 0.3, \, 1.0 \}$, $\gamma = 0.55.$

Improvements obtained:

- for networks with poor initialization (all zeroes)
- for very deep networks
- for memory networks

³Neelakantan, Arvind et al. Adding Gradient Noise Improves Learning for Very Deep Networks. 2015.

Add noise to outputs

- When incorrect labels present overfitting.
- Instead of sampling objects with modified outputs we can
- For (x_n, y_n) replace hard targets with soft targets:

v = 1	hard target 0	soft target $\frac{\varepsilon}{c}$
	-	Ĺ
$y = y_n - 1$	0	$\frac{\varepsilon}{C}$
$y = y_n$	1	$1 - \frac{C-1}{C}\varepsilon$
$y = y_n + 1$	0	$\frac{\varepsilon}{C}$
	<u> </u>	c
y = C	0	$\frac{\tilde{c}}{C}$

• Smoothed likelihood:

$$\prod_{n=1}^{N} \prod_{y \neq y_n} p(y|x_n)^{\frac{\varepsilon}{C}} p(y_y|x_n)^{1-\frac{C-1}{C}\varepsilon} \to \max_{\theta}$$

Semi-supervised learning

- In semi-supervised learning we use:
 - labelled data $(x_1, y_1), ...(x_N, y_N)$
 - unlabelled data $x_{N+1}, \dots x_{N+M}$.
- Motivation:
 - labelling is expensive
 - N is small and $M \gg N$.
 - p(x) and p(y|x) have shared parametrization.

Semi-supervised learning - neural nets⁴

$$\mathcal{L}_{hybrid}(X, Y) = \mathcal{L}_{disc}(X, Y) + \gamma \mathcal{L}_{unsup}(X)$$

where

- $\mathcal{L}_{disc}(X, Y) = \sum_{n=1}^{N} \ln p(y_n | x_n)$ discriminative log-likelihood
- $\mathcal{L}_{unsup}(X,Y) = \sum_{n=1}^{N+M} \ln p(x_n)$ unsupervised log-likelihood
- $\bullet~\gamma$ trade-off hyperparameter (tuned on validation set)

Results:

- In article Bolzmann machines were used
- Significant reduction of error-rate on MNIST, 20 newsgroups.

⁴Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted Boltzmann machines. In ICML'2008.

Multi-task learning

- Applicable when several tasks have shared factors.
- Statistical benefit more accurate estimation

Early stopping

- Is similar to weight decay. Needs separate validation set.
- Parameters:
 - period of steps when validation performance is reevaluated
 - smaller period more accurate, but more computationally intensive
 - after how many «bad» evaluations (quality didn't improve) set to stop
 - if small may stop too early due to noisy performance estimation. 24/47

Early stopping - utilizing validation set

Early stopping returned:

- optimal number of steps *i**
- ullet optimal parameters $heta^*$
- performance on validation P_{val} and train P_{train}

Two approaches how to utilize validation set:

- reinitialize NN and run i^* steps using training+validation set.
 - use the same number of passes through objects or dataset (epochs)?
- 2 continue training NN with initialization θ^* on the validation set until quality on validation reaches P_{train} .
 - may not reach

Sparse representation

- Suppose
 - $\bullet~\theta$ is a vector of estimated model parameters
 - *h* is inner representation:
- Optimized criterion in sparse representation becomes:

$$\tilde{J}(\theta) = J(\theta) + \alpha R(h(\theta)) \to \min_{\theta}$$

where R(h) is sparsity provoking prior such as $R(h) = \sum_{i} |h_i|$.

Example of sparse representation: sparse coding

• Definitions:

- $X \in \mathbb{R}^{N \times D}$ design matrix
- $D \in \mathbb{R}$ dictionary matrix (rows-code words)
- $W \in \mathbb{R}$ representation matrix (rows-object representations)

• Sparse coding is found with optimization task:

$$\|X - WD\|_2^2 + \|W\|_1 \to \min_{D,W}$$
 (3)

where
$$\|A\|_{2}^{2} := \sum_{i,j} a_{i,j}^{2}$$
 and $\|A\|_{1} := \sum_{i,j} |a_{i,j}|$.

Example of sparse representation: sparse coding

• Definitions:

- $X \in \mathbb{R}^{N \times D}$ design matrix
- $D \in \mathbb{R}$ dictionary matrix (rows-code words)
- $W \in \mathbb{R}$ representation matrix (rows-object representations)
- Sparse coding is found with optimization task:

$$\|X - WD\|_{2}^{2} + \|W\|_{1} \to \min_{D,W}$$
 (3)

where $\|A\|_{2}^{2} := \sum_{i,j} a_{i,j}^{2}$ and $\|A\|_{1} := \sum_{i,j} |a_{i,j}|$.

• Task (3) is not convex with respect to D, W but is convex with respect to D or W only (holding another matrix fixed).

Sparse coding: algorithm

```
INPUT: design matrix X
initialize D randomly
while stop condition not met:
W = \arg\min_{W} ||X - WD||_{2}^{2} + ||W||_{1}D = \arg\min_{D} ||X - WD||_{2}^{2} + ||W||_{1}
```

<u>OUTPUT</u>: dictionary D and sparse representation W

Regularization - Victor Kitov

Dropout

Table of Contents

2 Batch normalization

Dropout idea

Each node in the neural network is removed with probability 1 - p independently from decisions about other nodes:

Comparison neural net without/with dropout

- Output layer nodes are never removed.
- Recommended parameters:
 - p = 0.5 for inner layer nodes
 - p = 0.8 for input layer nodes (feature subsampling)

Dropout

Dropout motivation

- Motivation from genetic theory of evolution:
 - sexual reproduction involves taking half the genes of one parent and half of the other.
 - best fit genes get mixed with 0.5 probabilities
 - best genes should learn "by themselves", not relying on complex outer gene structure
 - less ovefitting
- In dropout network:
 - nodes rely less on outputs of other nodes
 - try more to learn something by themselves
 - behave in a more robust way
 - resulting network becomes less overfitted.

Regularization - Victor Kitov

Dropout

Dropout algorithm

Comparison of usual and dropout network for one node

(a) Standard network

Dropout

Definitions

Define:

- f(x) an activation function.
- y^{I} vector of outputs at layer I
- z^{l} vector of inputs to layer l
- *a* * *b* defines element-wise product of elements.
- L number of layers in neural network
- $y^{(0)} = x$ input feature vector
- *Bernoulli(p)* returns a vector of independent Bernoulli random variables with parameter *p*.

Dropout

Forward propagation algorithm

We need to repeat forward propagation recurrently for l = 0, 1, ...L - 1.

1 Usual feed-forward neural network:

$$z_i^{(l+1)} = w_i^{(l+1)} y^l + b_i^{(l+1)} y_i^{(l+1)}$$
$$y_i^{(l+1)} = f(z_i^{(l+1)})$$

Peed-forward network with dropout:

$$\begin{aligned} r_{j}^{(l)} &\sim Bernoulli(p) \\ \tilde{y}^{l} &= r^{(l)} * y^{(l)} \\ z_{i}^{(l+1)} &= w_{i}^{(l+1)} \tilde{y}^{l} + b_{i}^{(l+1)} \\ y_{i}^{(l+1)} &= f(z_{i}^{(l+1)}) \end{aligned}$$

Regularization - Victor Kitov

Dropout

Application of dropout

Learning

- while weights not converge:
 - sample random subnetwork ("thinned network") with dropout
 apply one step of stochastic gradient descent to thinned network

Comment: due to weights sharing across all thinned networks the number of parameters is the same as in original network.

Regularization - Victor Kitov

Dropout

Application of dropout

Prediction

- use full networks with all nodes, but multiply each weight by p^5 .
- such scaling will yield the same output as average thinned network.

⁵precise for networks without non-linearities. With non-linearities Monte-Carlo sampling may work better.

Dropout

Complexity

- O(W) operations during each step to generate binary mask.
- O(W) memory to store the mask
- Complexity of forward and backward pass the same
- BUT: total number of steps until convergence may increase
 - dropout shrinks model capacity
 - to offset this, need to increase the network, make more optimization steps

Dropout

Modifications

• Additive Gaussian noise:

•
$$h_i \leftarrow h_i * N(1,1)$$

- at test time: no scaling needed
- Dropconnect

Regularization - Victor Kitov Dropout

Conclusion

- Dropout behaves similar to generating 2^W networks and taking weighted average of their predictions (*W* is the number of weights in the original neural network).
- Dropout performes intelligent high-level information destruction
 - model becomes more robust (at high levels of abstraction as well)
- Properties:
 - number of parameters is the same
 - training complexity is reduced
 - complexity of prediction is the same
- Dropout provides accuracy improvement in many domains.
- More details in: "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov. Journal of Machine Learning/Research 15 (2014) 1929-1958.

Regularization - Victor Kitov

Batch normalization

Table of Contents

Batch normalization⁶

- Learning by minibatches
 - more accurate gradient
 - faster by using parallelizm
- Problems of deep networks:
 - all parameters change simultaneously
 - this change gets amplified in deep networks
 - for each neuron its input distribution changes
 - neuron such as sigmoid may saturate

⁶Sergey loffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015.

Regularization - Victor Kitov

Batch normalization

Batch normalization

- Standardizes outputs
- Gradient becomes scale invariant
- Can ensure staying away from neuron saturation regions
- May use higher learning rates
- Approach has beaten state-of-the-art ImageNet model (inception network)

Batch normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \qquad // \text{ mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{ mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

Normalization propagation

$$\begin{split} \frac{\partial \ell}{\partial \hat{x}_i} &= \frac{\partial \ell}{\partial y_i} \cdot \gamma \\ \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} &= \sum_{i=1}^m \frac{\partial \ell}{\partial \hat{x}_i} \cdot \left(x_i - \mu_{\mathcal{B}} \right) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^2 + \epsilon)^{-3/2} \\ \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} &= \left(\sum_{i=1}^m \frac{\partial \ell}{\partial \hat{x}_i} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{\sum_{i=1}^m -2(x_i - \mu_{\mathcal{B}})}{m} \\ \frac{\partial \ell}{\partial x_i} &= \frac{\partial \ell}{\partial \hat{x}_i} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{2(x_i - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m} \\ \frac{\partial \ell}{\partial \gamma} &= \sum_{i=1}^m \frac{\partial \ell}{\partial y_i} \cdot \hat{x}_i \\ \frac{\partial \ell}{\partial \beta} &= \sum_{i=1}^m \frac{\partial \ell}{\partial y_i} \end{split}$$

Batch normalization: algorithm

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^{K}$ **Output:** Batch-normalized network for inference, $N_{\rm BN}^{\rm inf}$ 1: $N_{\text{BN}}^{\text{tr}} \leftarrow N$ // Training BN network 1: $N_{\text{BN}} \leftarrow 1$ 2: for $k = 1 \dots K$ do 3: Add transformation $y^{(k)} = \text{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to 4: Modify each layer in N_{BN}^{tr} with input $x^{(k)}$ to take $y^{(k)}$ instead 5: end for 6: Train N_{BN}^{tr} to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$ 7: $N_{BN}^{inf} \leftarrow N_{BN}^{tr}$ // Inference BN network with frozen // parameters

Regularization - Victor Kitov

Batch normalization

-

Batch normalization: algorithm

8: for
$$k = 1 \dots K$$
 do
9: // For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
10: Process multiple training mini-batches \mathcal{B} , each of size m , and average over them:
 $E[x] \leftarrow E_{\mathcal{B}}[\mu_{\mathcal{B}}]$
 $Var[x] \leftarrow \frac{m}{m-1}E_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$
11: In $N_{\text{BN}}^{\text{inf}}$, replace the transform $y = \text{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\text{Var}[x] + \epsilon}} \cdot x + (\beta - \frac{\gamma E[x]}{\sqrt{\text{Var}[x] + \epsilon}})$
12: end for

Algorithm 2: Training a Batch-Normalized Network

Regularization - Victor Kitov

Batch normalization

Weights initialization

- random with distribution $w_i \sim F(0, \sigma^2)$, having
 - zero mean
 - \bullet varaince equal to $\frac{1}{n_{in}}$ or $\frac{2}{n_{in}+n_{out}}$ where
 - *n_{in}* is the number of incoming connections for neuron *i*.
 - *n_{out}* is the number of outgoing connections for neuron *i*.
- Unsupervised pretraining
 - obtain initial weights from solving data-representation problem with autoencoder