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1. DATA ANALYSIS PROBLEM

¥ Data analysis problem usually arises in early stages of investigations, when a model of a
phenomenon in researching has not been developed yet. Hence, it is too early to introduce a
problem of a model identification. It needs to collect and study a lot of miscellaneous
information about most significant characteristics of a phenomenon under investigation in this
case.

®  Such a situation forces us to use inconsistent approach, since we do not know what
characteristics are important, and what knowledge needs to be collected.

" Therefore, data analysis methods must resolve the contradiction and focus on the correct
description of the phenomenon.

" Specifically, the problem of informal interpretation of factors and groups arises in the
grouping problem. Factors are synthetic features and difficulties can arise in informal
interpretation of them. Therefore, after groups and corresponding factors have been built the
representative usually is defined for each group as a feature, the most correlated with the
group factor. As a result, it is possible to denote groups informally as such initial features.



2. FEATURE GROUPING

= let X(N,n) be a data matrix with N measurements of #n features. With lines x, =(x;

i1

x.,) and
columns Xj=(Jclj,...xM)T it can be represented as a table of lines-objects X(N,n)=(x,,...X,) and
columns-features X(N,n)=(X,,... X,).

= |t is supposed all objects are concentrated in K clusters, and all features are depended on L hidden
factors F.,i=1,...L.

= |t is supposed factors are statistically independent each from other. Factors form a system of orthogonal
axes. According to hidden factors, all features are divided in groups G,,i=1,...L.

= |t is the problem to get orthogonal common factors with so-called “simple structure” by orthogonal
rotation. On the contrary, the oblique rotations allow to get correlated factors.

= |f features are divided in groups first, then each group factor is defined as the most correlated with
features in group. As a result, the system of generally correlated factors is naturally defined. This result can be
improved to get less correlated factors by re-grouping features again relative to factors, etc.



2. FEATURE GROUPING

= The special algorithms of Extreme Grouping were developed previously for principal (Square) and
centroid (Module) factors. First of them is known as LPCA (local principal component analysis) or LPF (local
principal factors). Second can be denote as LCF (local centroid factors).

= Unfortunately, factors are synthetic essences or artificial features. It is the well-known problem to get
interpretation of them. Usually, the feature, most correlated with group factor, can be well interpreted as the
group representative. Group representatives are usually used instead of factors itself. As a result, we can get a
system of less correlated initial features as a system of well interpreted features relevant to system of hidden
factors.

= According to this approach, based on factor model we produce some intermediate transformations to
reduce the initial set of features to the set of less correlated representatives.

= Can we group features or reduce dimensionality based on some other idea without calculating principal
or centroid factors themselves as intermediate steps?



3. METRIC CONFIGURATION AND VIOLATIONS

¥ Let data be directly presented by paired comparisons between elements (objects or features) of the
limited set in the form of a square matrix of similarities or dissimilarities.

" This is the usual situation in modern intelligent data processing (data mining, expert’s evaluations,
decision problem, qualitative data, etc.).

" Usually, we would like similarities to be scalar products or correlations in the positive quadrant of a
metric space, and dissimilarities to be distances. In this case set elements can be immersed in a metric
space as a correct configuration. But usually this is not so. We denote it as “metric violations”.

¥ |t seems this is not a problem for a data matrix X(N,n) , given b\é correct measurements. Distances
D(N,N) weighed scalar productsR(”’”) _similarities S (,711) = R*(n,n) usually can be calculated
correctly, if no errors in calculations.



3. METRIC CONFIGURATION AND VIOLATIONS

R(n,n)
R(n,n)
W Let the matr%of wggﬁe%(&ormahzed) scalar products of features be given (correlations). In a case

of a correct feature conflguratlon appears to be the positively definite one with a sequence of

eigenvalues R(n,n) q<n

A>>A,,  >0>4 L >..>4
" In a case of metric violations appears to be the non- p05|t|vely definite one with last negative

eigenvalues in the sequence of them . build X(N,n)
m=n-—q A>.>A >0
®  Usually it is not the problem in PCA baig&\pn Bhe Karhunen-Loeve transform to built a projection of

in the space of first eigenvectors with corresponded positive eigenvalues to

get so caIIed calculated (and correct) data Rq—(”’”) : r,>1Li=1.n

e _n>n n
® |n this case we get the correlation matrix of residuals. But it is non-correct one with

and . As a result, we have got additional to  dispersion in data “from nowhere”. Of course,
we can correct it immediately by normalizing, but later (or without data matrix X ) we can’t control this
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3. METRIC CONFIGURATION AND VIOLATIONS

In other case metric violations can arise in transformations according to factor models. Here we need to
define communalities for the correlation matrix to reduce it according to principal or centroid factor

models. The correlation matrix R(n,n) of residuals appears to be non-normalized with r, <L i=1,..n to

"
explain dispersion Z r; < n of common factors.
i=1

Communalities are usually defined based on some empirical recommendations, since it is the complicated
theoretical problem. But in the most of real situation we take the risk to get the non-positively definite

residual matrix R(n,n), that is the metric violation.



4. OPTIMAL SEQUENCE OF FEATURES

We have developed before another idea of corrections to get positively definite correlation matrix and not
to change data dispersion. We don’t eliminate “layers” of eigenvectors corresponded to negative
eigenvalues, but correct individually only some correlations in the matrix.

According to Silvester’s criterion, the symmetric matrix S(m, #) of quadratic form is positively definite, if all
its principal (upper left) minors are positive S, = S(k.k),k=1,..n, detS, >0, where § =5(1.1)=s,, =1

for normalized S(#,#) with the diagonal of units.

According to Silvester's law of inertia, the number g of negative eigenvalues is equal to sign changes of
principal minors decreasing from detS; =1 in the sequence §,=1,5,.5,....5_=S8(n.n).



4. OPTIMAL SEQUENCE OF FEATURES

" There are arbitrary places of sign changes in such the sequence of minors. Let us permute elements in the
set to concentrate sign changes at the end of the sequence of minors §,.k=1,...n. Therefore, in ideal

case the principal minor S, 4«1 appears to be the first time negative one with det Seg1<0, and signs of

other g —1 minors alternate. Hence, not more than g elements violate metrics. We denoted such idea as
a localization of negative eigenvalues in the non-positively definite similarity matrix.

»  let u be the number of additional steps without the sign change for all g negative eigenvalues. Hence,
we correct not more than g+u last elements (corresponded pair correlations) in the optimal sequence of

set elements. As a result, violating elements, collected at the end of the sequence, decrease additional
violations from other elements and total deviation of corrected matrix from the initial similarity matrix.

* |f no violations, we get the suboptimal sequence of principal minors S,,k=1,...n with the most slowly

decreasing positive values of determinants detS, > 0.



4. OPTIMAL SEQUENCE OF FEATURES

» The detR of the correlation matrix R(m,n) depends on the mutual orthogonality of the feature set. The
more orthogonality — the more closed to 1 determinant, and otherwise. It is clear for n=2, since
det R=1-7". It can be showed for n=3, since det R=1+2r,rshs —15—1p—r5 for different cases

without metric violations.

" Hence, the correct correlation matrix R(m,#) defines the suboptimal sequence of principal minors and, as

a result, defines the suboptimal sequence of nested sets of most orthogonal features. In other words, it is
the sequence of the most orthogonal features at the beginning, and the least orthogonal ones at the end
of the sequence.

" Therefore, we can define first m optimal representatives of m groups without calculating principal (for
squared correlations) or centroid (for modules of correlations) factors.

" The optimal sequence can be used for initial partition in algorithms of Extreme Grouping (Square and
Maodule), or independently as a result of grouping.
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5. EXPERIMENTS

* Let L be anumber of groups G, =1....L with |G, |=n, Z;ﬂj =n, and r(X,,F,) be correlation of a factor

F = (fiin- fiu)' with a feature X, = (x,,,...x,)" .

L L
* Let us use criteria J,=>»" Zrz (X;,F) and I,, => »'|r(X,,F)| for Square and Module to evaluate
i=1 jeG, i=1 jeG,

the quality of the grouping.
= Different types of initial partitions are investigated for Square and Module algorithms based on criteria I,
and I, :
o First L features according to Optimal Sequence
o L features with minimal mutual correlations
o First L features (asis) — bad quality

o Random L features — bad quality
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5. EXPERIMENTS

" |t is used a heuristic idea (like the well-known one in cluster-analysis) to evaluate the number L: for
Optimal Sequence of positive principal minors §..k=1,...n(after correction, if it was necessary) the

optimal L corresponds to interval of sharp decreasing of determinants detsS, .

1,2
10 5 1 Physiology Dataset n=11
0,8 * _
The optimal number of groups
0,6 - iS:

[ =3+5 for Economics Dataset
0,4 - Economics Dataset L=4+5 for Physiology Dataset

(OECD) n =13
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6. ECONOMICS DATASET

The Dataset of Organization for Economic Cooperation and Development (OECD) is extracted from the
Fastbook Country Statistical Profiles — 2013 Edition for 13 economic characteristics of 13 countries:
Australia, France, Germany, Italy, Japan, Korea, Mexico, Turkey, US, China, Indonesia, RF, and South Africa
(http://stats.oecd.org/).

Economics activities are showed in following subjects as features:

Gross Domestic Product per capita (S)

Real GDP growth (%)

Value added in agriculture, hunting, forestry, fishing (%)

Value added in industry, including energy (%)

Value added in wholesale and retail trade, repairs, hotels and restaurants, transport (%)
Value added in financial intermediation, real estate, renting and business activities (%)

Real value added in agriculture, hunting, forestry, fishing (%)

Real value added in industry, including energy (%)

Real value in wholesale and distributive trade, repairs, transport, food service, communication (%)
10.Real value in financial and insurance activities, real estate, professional support activities (%)
11.Total primary energy supply (TW/h)

12.Nuclear electricity generation (TW/h)

13.Nuclear electricity generation as percentage of total electricity (%)

o RN IR N
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6. ECONOMICS DATASET

»  Correlations of 13 features are presented in the matrix

Casnkry
DAmsralia 40730 208 2m .. 2024 WA R EaTa 154 14 1247 ] o
1France MIseIT il ] 1.6 jFd] 23,38 i -5.74 ) 158 1.7 223 re T4
2 Garmany ITa0 08 34 0,84 M2 19,17 IR 14,76 158 1.28 0,5 3374 133 45
3lialy SRR 12 1.8 M 24,50 e e | .27 (1] a5 (1] 12 ) f
4 Japan TS24 444 1,16 29 2388 1558 7,30 17,2 132 1,24 4068 s 2.2
B Korea 23T A o M 3307 032 bk RN 1285 T 215 | 142 23
£ Masico 15185 555 3,45 oS 2855 1872 3,92 762 931 3,55 178.1 55 26
'i'Tur.hrr L TR ] R Fil-] 08T -] P 1354 (A 573 5.1 ] 1
BUsibed States SRET A2 a0 1,14 125 LE 21 el ol E32 &2 116 gl Bi3 203
BCking 518,12 W3 1.1 o0, 1558 hrks] 4,27 1206 1233 B 47 171 71 18
10 indanezia 439413 (311 15,34 *TE 20,22 731 2,86 4% 10,32 5,65 78 i 0
11 Reszsian Federmoon ] 44 L] amn 2058 e B 106 £38 a5t TS 1584 7
12 soarh Afvica 1049758 ) 243 2,16 2285 2164 0,87 49 2,40 187 136.9 el g2
1. -0.631314 | -0,755342 | -0.73532 | -0.197068 | 0.826446 |-0.373009 | 0.04B5879 [-0.677639 | -0.717759 [ 0.054028¢ | 0.609238 | 0.447194
0. 89 014 1. O.Bo009% | U.ASE BE [-0.04 EJaC | -C.ETIESE | J.240508 | O.25.9EE | 0.960R28 | U.HZ:ZGSE | 0. 2BERT |-0.ZCGLGE | -0.353514
-0.755342 | 0.EEBLES 1. U.693226 |-0.0580962 | -0, 731288 | D.496067E |-0.0956057 | 0. 783915 | U.0492498 | 0,102208 |-0.4900B57 | -0.44493
-0.T383F | 0.89ETES | (O.bh43128 1. 0. 283085 | -0.BB21A2 0.19321 0.211233 [ 0.820728 | 0.G€4343 D.z08%68 [-0,98€317 | -0.434564
-0,.1970€8 |-0.0375245 | -0.03903€62 |-0.269065 1. -0.0188287 |-0.0950%6% [-0.0607€ 6 |0.0533698 | -0.0E4 9028 | -0.3220829 |-0.270569 |-0.0773967
LH2pdds | -0 aT1d2Y | -0 T30EET |-0.Eedlnd |- 0, 0188280 1. =0, 162600 | -0, 211680 [-D.60EI3T | -D. 83713 -0, 0577581 | 0. 265026 | 0.336243
il [=0.3713000 | 0.£9BE09 | C.460678 | 0.1532L [-0.0400584 [ -0, 162658 1. -0.CJUBGE | U.41R948 | 0.BELi7d |C.0050327 |-0.811EL7 | -0.552548
0.0489879 | 0.2ELESE |-0.0996057 | 0.211233 |-0.0B0I67E| -0. 211685 | -0.520658 1. 0.116658 |-0.05.0278 | 0.191956 |0.0315311 | J.08895969
0.5, 7830 | 0.BEDEZE | O.7B491E | D.620 20 | 0.0E53606 | -0, 608037 | 0.41E94% | O.11655% 1. 0.834085 0,553799 |[-0,184598 | -0,382621
0717739 | 0.8425%9 | O.23492439 | O.e84343 [-0.0eq9%26| -0, ek271e | D.55112¢ |-0.0910273 | 0.334035 i Dezdagss [-0.3Ve2ds | -0, 925136
O.05L025E | 0.328C8T | 0.004208 | U.Z0C€360 | -0.5230820 |-0. 00T 960 | C.0O0%0928 | 0.10.958 | 0.353750 | U.335608 1. B.CE3T % |-0.08 7116
0. E05238 | =0.250195 | -0.400E5T [-0.8B43.7 | =0,270360 | 0.468046 | -0.4..617 | J.09LC3L1 [-0.106599 | -D0.37hz29 | 0.C55774 1. (NTEE
J.297159 | -0.353518 | -0.2249% |-0.234564 [-0.0770967 | 0.3:6295 | -0.592940 | J.0BBCGRY |-0.3B2621 | -D.4925138 [-0.C4L716R7| 0.565010 1.
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6. ECONOMICS DATASET

Optimal Sequence for correlations squared is [8,5,13,9,11,4,7,12,3,1,10,6, 2].

Quality of groups based on I,

Group min Represent Groups OptSeq Represent Groups
number corr by by
3 7 7 OB «— & D> 28 venybas
11 11 51112 — 5 5 511 e
§ 10 1@346910 13 3 134679101213
5 8 8 8 8 8 8 oK
D 5! 51 D 5 5
7 7 713 13 13 71213
6 10 12346910 9 10 12346910
11 11 11 12 11 11 11
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6. ECONOMICS DATASET

»  Optimal Sequence for modules of correlations is [10,8,5,13,12,4,11,9,2,7,3,6,1].

* Quality of groups based on I,

Group  min Represent  Groups OptSeq Represent  Groups
number corr by by

3 G 10 12346910 10 1 123469101213
7 7 783 8 7 78 Not s0 good
11 11 511 12 5 D o 11

4 G 10 12346910 10 10 12346910
7 7 7813 8 8 8 Very bad,
5 5 p— —> unacceptable
11 11 @iz 13 13 71213

5 6 10 12346910 10 10 12346910
8 8 8 3 3 8
5 5 5 5 5 5 OK
7 7 713 13 7 713
11 11 11 12 12 11 11 12
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6. ECONOMICS DATASET

¥ Results for both criteria are the same for L=5

" @Group interpretation is: Group min  Represent Groups OptSeq  Represent Groups
number corr by by
1. Real value added in industry, including energy (8) 5 3 8 8 3 3 8
5 5 5 5 5 5
2. Value added in trade service and transport (5) 7 7 713 13 13 71213
6 10 12346910 9 10 12346910
3. Value added in natural production with power inputs 11 11 11 12 11 11 11
(7 13)
5 6 10 12346910 10 10 12346910
. . 8 8 8 8 8
4. GDP and value added in all activities (123469 10) . 5 5 . 5 5
5. Total ori v (11 T 7 713 13 7 713
- Total primary energy supply (11) 11 11 11 12 12 11 11 12




6. ECONOMICS DATASET

Quality I
by
Group MinCorr OptSeq
number | itial Final Initial Final
3 BEI Y . Lauds Do 1L . 4auU4 ) . .
5 7.0055 8.8924 7.1196 R.8002 OptSeq is improved by Square
Quality [y
by
Group MinCorr OptSeq
number nitial Final Initial Final
3 b L U IS ) b I L S o) O L UL oM alAU] B
4 9.7296 9.7296 9.9426 9.9426

OptSeq and Module are the same
5 10.521 10.521 10.521 10.521




CONCLUSION

The correct correlation matrix defines the suboptimal sequence of principal minors and the suboptimal
sequence of nested sets of most orthogonal features.

It is the sequence of the most orthogonal features at the beginning, and the least orthogonal ones at the
end of the sequence.

We can define first m optimal representatives of m groups without calculating principal (for squared
correlations) or centroid (for modules of correlations) factors.

The optimal sequence can be used for initial partition in algorithms of Extreme Grouping (Square and
Module), or independently as a result of grouping.
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	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20

