Dimensionality reduction

Victor Kitov

Table of Contents

(1) Feature extraction
(2) Principal component analysis
(3) SVD decomposition

Definition

Feature selection / Feature extraction

(a) feature selector

(b) feature extractor

Feature extraction: find transformation of original data which extracts most relevant information for machine learning task.

We will consider unsupervised dimensionality reduction methods, which try to preserve geometrical properties of the data.

Applications of dimensionality reduction

Applications:

- visualization in 2D or 3D
- reduce operational costs (less memory, disc, CPU usage on data transfer)
- remove multi-collinearity to improve performance of machine-learning models

Categorization

Supervision in dimensionality reduction:

- supervised (such as Fisher's direction)
- unsupervied

Mapping to reduced space:

- linear
- non-linear

Supervised case

- We can find directions $w_{1}, w_{2}, \ldots w_{D}$, projections on which best separate classes.
- Ways to find w :
- Fisher's LDA
- Any linear classification $\langle w, x\rangle \gtrless$ threshold gives valuable supervised 1-D dimension w.
- We can find an orthonormal basis of such directions.

Fisher's direction

- Classification between ω_{1} and ω_{2}.
- Define $C_{1}=\left\{i: x_{i} \in \omega_{1}\right\}, \quad C_{2}=\left\{i: x_{i} \in \omega_{2}\right\}$ and

$$
\begin{gathered}
m_{1}=\frac{1}{N_{1}} \sum_{n \in C_{1}} x_{n}, \quad m_{2}=\frac{1}{N_{1}} \sum_{n \in C_{2}} x_{n} \\
\mu_{1}=w^{\top} m_{1}, \quad \mu_{2}=w^{\top} m_{2}
\end{gathered}
$$

- Define projected within class variances:

$$
s_{1}=\sum_{n \in C_{1}}\left(w^{\top} x_{n}-w^{\top} m_{1}\right)^{2}, \quad s_{2}=\sum_{n \in C_{2}}\left(w^{\top} x_{n}-w^{\top} m_{2}\right)^{2}
$$

- Fisher's LDA criterion: $\frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}} \rightarrow \max _{w}$

Fisher's direction - solution

The solution to this problem is

$$
w \propto \Sigma^{-1}\left(m_{1}-m_{2}\right)
$$

where
$\Sigma=\frac{N_{1}}{N} \Sigma_{1}+\frac{N_{2}}{N} \Sigma_{2}=\frac{N_{1}}{N} \sum_{n \in C_{1}}\left(x_{n}-m_{1}\right)\left(x_{n}-m_{1}\right)^{T}+\frac{N_{2}}{N} \sum_{n \in C_{2}}\left(x_{n}-m_{2}\right)\left(x_{n}-\right.$
and $N_{1}=\left|C_{1}\right|, N_{2}=\left|C_{2}\right|$.
The same solution is obtained from Gaussian classification with equal covariance matrices:

$$
p(x \mid y)=N\left(\mu_{y}, \Sigma\right)
$$

Finding a basis of directions

Listing 1: Finding orthonormal basis of supervised directions

INPUT:

* training $\operatorname{set}\left(x_{1}, y_{1}\right), \ldots\left(x_{N}, y_{N}\right)$
* algorithm, fitting w in linear classification $\hat{y}=\operatorname{sign}[\langle w, x\rangle-$ threshold $]$

ALGORITHM:

for $d=1,2, \ldots D$:
w_{d} - classifier_direction $\left[\left(x_{1}, y_{1}\right), \ldots\left(x_{N}, y_{N}\right)\right]$
$w_{d}=\frac{w_{d}}{\left\|w_{d}\right\|}$
for $n=1,2, \ldots N$: \# project to orthogonal supplement of $w(d)$

$$
x_{n}=x_{n}-\left\langle x_{n}, w_{d}\right\rangle w_{d}
$$

OUTPUT: $w_{1}, w_{2}, \ldots w_{D}$.

Degenerate case

- On step $d\left(x_{1}, y_{1}\right), \ldots\left(x_{N}, y_{N}\right)$ may become degenerate:
- In such case we can select arbitrary w_{d} from orthogonal complement to $w_{1}, \ldots w_{d-1}$.
- Constructive way to augment $w_{1}, . . w_{d-1}$ with orthogonal complement:
- We can use QR decomposition:
- any $A \in \mathbb{R}^{D \times M}$ can be decomposed as $A=Q R$, where $Q \in \mathbb{R}^{D \times D}$ is orthogonal ($Q Q^{T}=Q^{T} Q=I$) and $R \in \mathbb{R}^{D \times M}$ is upper-triangular.
- for $I \in R^{D \times D}$ set $A=\left[w_{1}, \ldots w_{d-1}, I\right]$. From QR-decomposition of A columns of Q will give required D directions.

Table of Contents

(1) Feature extraction

(2) Principal component analysis

- Definition
- Derivation
- Application details

(3) SVD decomposition

(2) Principal component analysis

- Definition
- Derivation
- Application details

Definition

Definition of PCA

- Linear transformation of data, using orthogonal matrix

$$
\begin{array}{r}
A=\left[a_{1} ; a_{2} ; \ldots a_{D}\right] \in \mathbb{R}^{D \times D}, a_{i} \in \mathbb{R}^{D}: \\
\xi=A^{T} x
\end{array}
$$

- We find orthogonal transform A yielding new variables ξ_{i} having maximal variance values and mutually uncorrelated.
- Properties:
- Not invariant to translation:
- Before applying PCA, we replace $x \leftarrow x-\mu$, where $\mu=\frac{1}{N} \sum_{n=1}^{N} x_{n}$.
- Further we assume that $\mathbb{E} x=0$.
- Not invariant to scaling:
- need to standardize eah feature

Definition

Linear transformation properties

- Linear transformation $A=\left[a_{1} ; a_{2} ; \ldots a_{D}\right] \in \mathbb{R}^{D \times D}, a_{i} \in \mathbb{R}^{D}$ is found:

$$
\xi=A^{T} x
$$

- $\xi_{i}=a_{i}^{T} x=x^{T} a_{i}$
- Define covariance matrix $\operatorname{cov}[x]=\Sigma=\mathbb{E}\left[(x-\mathbb{E} x)(x-\mathbb{E} x)^{T}\right]=\mathbb{E} x x^{T}$.

Definition

Linear transformation properties

- $\mathbb{E} \xi_{i}=\mathbb{E}\left(a_{i}^{T} x\right)=a_{i}^{T} \mathbb{E} x=0$
- Covariance is equal:

$$
\begin{aligned}
\operatorname{cov}\left[\xi_{i}, \xi_{j}\right] & =\mathbb{E}\left[\left(\xi_{i}-\mathbb{E} \xi_{i}\right)\left(\xi_{i}-\mathbb{E} \xi_{i}\right)^{T}\right]=\mathbb{E}\left[\xi_{i} \xi_{j}^{T}\right] \\
& \left.=\mathbb{E}\left[\left(a_{i}^{T} x\right)\left(a_{j}^{T} x\right)^{T}\right]=a_{i}^{T} \mathbb{E} x x^{T} a_{j}=a_{i}^{T} \Sigma \text { 电 }\right)
\end{aligned}
$$

- In particular, variance is equal:

$$
\begin{equation*}
\operatorname{Var}\left[\xi_{i}\right]=\operatorname{cov}\left[\xi_{i}, \xi_{i}\right]=a_{i}^{T} \Sigma a_{i} \tag{2}
\end{equation*}
$$

Definition

Covariance matrix properties

$\Sigma=\operatorname{cov}[x] \in \mathbb{R}^{D \times D}$ is symmetric positive semidefinite matrix ($A \succcurlyeq 0$).

- has $\lambda_{1}, \lambda_{2}, \ldots \lambda_{D}$ eigenvalues, satisfying: $\lambda_{i} \in \mathbb{R}, \lambda_{i} \geq 0$.
- Proof: $A \succcurlyeq 0=>x^{T} A x \geq 0 \forall x$. In particular for eigenvector $v(A v=\lambda v)$:

$$
0 \leq v^{\top} A v=\lambda \underbrace{v^{\top} v}_{>0}
$$

$$
\text { so } \lambda \geq 0 \text {. }
$$

- for eigenvalues $\lambda_{i} \neq \lambda_{j}$ eigenvectors v_{i} and v_{j} are orthogonal.
- Proof: $\lambda_{j} v_{i}^{T} v_{j}=v_{i}^{T} A v_{j}=\left(v_{i}^{T} A v_{j}\right)^{T}=v_{j}^{T} A v_{i}=\lambda_{i} v_{j}^{T} v_{i}$. Since $\lambda_{i} \neq \lambda_{j}$ this can hold only for $v_{i}^{\top} v_{j}=0$.
- if eigenvalues are unique, corresponding eigenvectors are also unique
- always exists a set of orthogonal eigenvectors $z_{1}, z_{2}, \ldots z_{D}$:

$$
\Sigma z_{i}=\lambda_{i} z_{i}
$$

Later we will assume that $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{D} \geq 0$. The process is continued while $\lambda_{i}>0$.
(2) Principal component analysis

- Definition
- Derivation
- Application details

Derivation

Derivation: 1st component

Consider first component:

$$
\xi_{1}=a_{1}^{T} x
$$

Optimization problem:

$$
\left\{\begin{array}{l}
\operatorname{Var} \xi_{1} \rightarrow \max _{a} \\
\left|a_{1}\right|^{2}=a_{1}^{T} a_{1}=1
\end{array}\right.
$$

From (2):

$$
\operatorname{Var}\left[\xi_{1}\right]=a_{1}^{T} \Sigma a_{1}
$$

Derivation

Derivation: 1st component

Optimization problem is equivalent to finding unconditional stationary value of

$$
\begin{gathered}
L\left(a_{1}, \nu\right)=a_{1}^{T} \Sigma a_{1}-\nu\left(a_{1}^{T} a_{1}-1\right) \rightarrow \operatorname{extr}_{a_{1}, \nu} \\
\frac{\partial L}{\partial a_{1}}=0: 2 \Sigma a_{1}-2 \nu a_{1}=0
\end{gathered}
$$

a_{1} is selected from a set of eigenvectors of A. Since

$$
\operatorname{Var}\left[\xi_{1}\right]=a_{1}^{T} \Sigma a_{1}=\lambda_{i} a_{1}^{T} a_{1}=\lambda_{i}
$$

a_{1} is the eigenvector, corresponding to largest eigenvalue λ_{i}. Eigenvector is not unique if $\lambda_{\text {max }}$ is a repeated root of characteristic equation: $|\Sigma-\nu \||=0$.

Derivation

Derivation: 2nd component

$$
\begin{gathered}
\xi_{2}=a_{2}^{T} x \\
\left\{\begin{array}{l}
\operatorname{Var}\left[\xi_{2}\right]=a_{2}^{T} \Sigma a_{2} \rightarrow \max _{a_{2}} \\
a_{2}^{T} a_{2}=\left|a_{2}\right|^{2}=1 \\
\operatorname{cov}\left[\xi_{1}, \xi_{2}\right]=a_{2}^{T} \Sigma a_{1}=\lambda_{1} a_{2}^{T} a_{1}=0
\end{array}\right.
\end{gathered}
$$

Lagrangian (assuming $\lambda_{1}>0$)

$$
\begin{gather*}
L\left(a_{2}, \nu, \eta\right)=a_{2}^{T} \Sigma a_{2}-\nu\left(a_{2}^{T} a_{2}-1\right)-\eta a_{2}^{T} a_{1} \rightarrow e \operatorname{ext} r_{a_{2}, \nu, \eta} \\
\frac{\partial L}{\partial a_{2}}=0: 2 \Sigma a_{2}-2 \nu a_{2}-\eta a_{1}=0 \tag{3}\\
a_{1}^{T} \frac{\partial L}{\partial a_{2}}=2 a_{1}^{T} \Sigma a_{2}-2 \nu a_{1}^{T} a_{2}-\eta a_{1}^{T} a_{1}=0
\end{gather*}
$$

Derivation: 2nd component

From optimization constraints $a_{1}^{T} \Sigma a_{2}=a_{2}^{T} \Sigma a_{1}=0$ and $a_{1}^{T} a_{2}=a_{2}^{T} a_{1}=0$, we obtain $\eta=0$. Then from (3) we have that:

$$
\Sigma a_{2}=\nu a_{2}
$$

so a_{2} is eigenvector of Σ, and since we maximize

$$
\operatorname{Var}\left[\xi_{2}\right]=a_{2}^{T} \Sigma a_{2}=\lambda_{i} a_{2}^{T} a_{2}=\lambda_{i}
$$

this should be eigenvector, corresponding to second largest eigenvalue λ_{2}.

Derivation

Derivation: k-th component

$$
\xi_{k}=a_{k}^{T} x
$$

$$
\left\{\begin{array}{l}
\operatorname{Var}\left[\xi_{k}\right]=a_{k}^{T} \Sigma a_{k} \rightarrow \max _{a_{k}} \\
a_{k}^{T} a_{k}=\left|a_{k}\right|^{2}=1 \\
\operatorname{cov}\left[\xi_{k}, \xi_{j}\right]=a_{k}^{T} \Sigma a_{j}=\lambda_{j} a_{k}^{T} a_{j}=0, \quad j=1,2, \ldots k-1 .
\end{array}\right.
$$

Lagrangian (assuming $\lambda_{j}>0, j=1,2, \ldots k-1$)

$$
\begin{gathered}
L\left(a_{k}, \nu, \eta\right)=a_{k}^{T} \Sigma a_{k}-\nu\left(a_{k}^{T} a_{k}-1\right)-\sum_{i=1}^{k-1} \eta_{i} a_{k}^{T} a_{i} \rightarrow \operatorname{extr} r_{a}, \nu, \eta \\
\frac{\partial L}{\partial a_{k}}=0: 2 \Sigma a_{k}-2 \nu a_{k}-\sum_{i=1}^{k-1} \eta_{i} a_{i}=0 \\
\forall j=1,2, \ldots k-1: a_{j}^{T} \frac{\partial L}{\partial a_{2}}=2 a_{j}^{T} \Sigma a_{k}-2 \nu a_{j}^{T} a_{k}-\sum_{i=1}^{k-1} \eta_{i} a_{j}^{T} a_{i}=0
\end{gathered}
$$

Derivation

Derivation: k-th component

Since $a_{j}^{T} \Sigma a_{k}=a_{k}^{T} \Sigma a_{j}=0, a_{j}^{T} a_{i} \forall j \neq i$ and $a_{j}^{T} a_{j}=1$ we obtain $\eta_{j}=0$. This holds for $j=1,2, \ldots k-1$, so

$$
\Sigma a_{k}=\nu a_{k}
$$

a_{k} is then the eigenvector.
Variance of ξ_{i} is

$$
\operatorname{Var}\left[\xi_{k}\right]=a_{k}^{T} \Sigma a_{k}=\lambda_{i} a_{k}^{T} a_{k}=\lambda_{i}
$$

so a_{k} should be the eigenvector corresponding to the k-th largest eigenvalue λ_{k}.
(2) Principal component analysis

- Definition
- Derivation
- Application details

Number of components

- Data visualization: 2 or 3 components.
- Take most significant components until their variance falls sharply down:

Number of components

Remind that $A=\left[a_{1}\left|a_{2}\right| \ldots \mid a_{D}\right], A^{T} A=I, \xi=A^{T} x$.
Denote $S_{k}=\left[\xi_{1}, \xi_{2}, \ldots \xi_{k}, 0,0, \ldots, 0\right] \in \mathbb{R}^{D}$

$$
\begin{aligned}
& \mathbb{E}\left[\left\|S_{k}\right\|^{2}\right]=\mathbb{E}\left[\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{k}^{2}\right]=\sum_{i=1}^{k} \operatorname{var} \xi_{i}=\sum_{i=1}^{k} \lambda_{i} \\
& \begin{aligned}
\mathbb{E}\left[\left\|S_{D}\right\|^{2}\right] & =\mathbb{E}\left[\xi^{T} \xi\right]= \\
& =\mathbb{E} x^{\top} A A^{T} x=\mathbb{E}\left[x^{\top} x\right]=\mathbb{E}\left[\|x\|^{2}\right]
\end{aligned}
\end{aligned}
$$

Select such k^{*} that

$$
\frac{\mathbb{E}\left[\left\|S_{k}\right\|^{2}\right]}{\mathbb{E}\left[\|x\|^{2}\right]}=\frac{\mathbb{E}\left[\left\|S_{k}\right\|^{2}\right]}{\mathbb{E}\left[\left\|S_{D}\right\|^{2}\right]}=\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{D} \lambda_{i}}>\text { threshold }
$$

We may select k^{*} to account for $90 \%, 95 \%$ or 99% of total variance.

Application details

Transformation $\xi \rightleftarrows x$

Dependence between original and transformed features:

$$
\xi=A^{T}(x-\mu), x=A \xi+\mu
$$

where $\mu=\frac{1}{N} \sum_{n=1}^{N} x_{n}$.
Taking first r components $-A_{r}=\left[a_{1}\left|a_{2}\right| \ldots \mid a_{r}\right]$, we get the image of the reduced transformation:

$$
\xi_{r}=A_{r}^{T}(x-\mu)
$$

ξ_{r} will correspond to

$$
\begin{gathered}
x_{r}=A\binom{\xi_{r}}{0}+\mu=A_{r} \xi_{r}+\mu \\
x_{r}=A_{r} A_{r}^{T}(x-\mu)+\mu
\end{gathered}
$$

$A_{r} A_{r}^{T}$ is projection matrix with rank r (follows from the property $\operatorname{rank}\left[A A^{T}\right]=\operatorname{rank}\left[A^{T} A\right]$ for any A).

Properties of PCA

- Depends on scaling of individual features.
- Assumes that each feature has zero mean.
- Covariance matrix replaced with sample-covariance.
- Does not require distribution assumptions about x.

Application details

PCA for visualization

Remark: here, as always, projections ξ_{i} are uncorrelated. But it does not mean independence - we can still extract their valuable interrelationship.

Application - data filtering

Local linear projection method:

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October. http://www.gensips.gatech.edu/proceedings/.

Application details

Example

Faces database:

Eigenfaces

Eigenvectors are called eigenfaces. Projections on first several eigenfaces describe most of face variability.

Alternative definitions of PCA

(1) Find line of best fit, plane of best fit, etc.

- fit is the sum of squares of perpendicular distances.
(2) Find line, plane, etc. preserving most of the variability of the data.
- variability is a sum of squared projections

Application details

Example: line of best fit

- In PCA sum of squared of perpendicular distances to line is minimized.

- What is the difference with least squares minimization in regression?

Best hyperplane fit

Subspace L_{k} or rank k best fits points $x_{1}, x_{2}, \ldots x_{D}$ if sum of squared distances of these points to this plane is maximized over all planes of rank k.

Best hyperplane fit

For point x_{i} denote p_{i} the projection on plane L_{k} and h_{i} orthogonal component. Then $\left\|x_{i}\right\|^{2}=\left\|p_{i}\right\|^{2}+\left\|h_{i}\right\|^{2}$.
For set of points:

$$
\sum_{i}\left\|x_{i}\right\|^{2}=\sum_{i}\left\|p_{i}\right\|^{2}+\sum_{i}\left\|h_{i}\right\|^{2}
$$

Since sum of squares is constant, minimization of $\sum_{i}\left\|h_{i}\right\|^{2}$ is equivalent to maximization of $\sum_{i}\left\|p_{i}\right\|^{2}$.

Another view on PCA directions

k-th step optimization problem for $\xi_{k}=a_{k}^{T} x$:

$$
\left\{\begin{array}{l}
\operatorname{Var}\left[\xi_{k}\right]=a_{k}^{T} \Sigma a_{k} \rightarrow \max _{a_{k}} \\
a_{k}^{T} a_{k}=\left|a_{k}\right|^{2}=1 \\
\operatorname{cov}\left[\xi_{k}, \xi_{j}\right]=a_{k}^{T} \Sigma_{j}=\lambda_{j} a_{k}^{T} a_{j}=0, \quad j=1,2, \ldots k-1 .
\end{array}\right.
$$

can be equivalently represented as:

$$
\left\{\begin{array}{l}
\left\|X_{a_{k}}\right\|^{2} \rightarrow \max _{a_{k}} \tag{4}\\
\left\|a_{k}\right\|=1 \\
a_{k} \perp a_{1}, a_{k} \perp a_{2}, \ldots a_{k} \perp a_{k-1} \text { if } k \geq 2
\end{array}\right.
$$

since maximization of $\left\|X_{a_{k}}\right\|^{2}$ is equivalent to maximization of $\frac{1}{N}\left\|X a_{k}\right\|^{2}=\frac{1}{N}\left(X a_{k}\right)^{T}\left(X a_{k}\right)=\frac{1}{N} a_{k}^{T} X^{T} X a_{k}=a_{k}^{T} \sum a_{k}$.

Application details

Property of PCA

Theorem 1

For $1 \leq k \leq r$ let L_{r} be the subspace spanned by $a_{1}, a_{2}, \ldots a_{r}$. Then for each $k L_{k}$ is the best-fit k-dimensional subspace for X.

Proof: use induction. For $r=1$ the statement is true by definition since projection maximization is equivalent to distance minimization.
Suppose theorem holds for $r-1$. Let L_{r} be the plane of best-fit of dimension with $\operatorname{dim} L=r$. We can always choose a orthonormal basis of $L_{r} b_{1}, b_{2}, \ldots b_{r}$ so that

$$
\left\{\begin{array}{l}
\left\|b_{r}\right\|=1 \tag{5}\\
b_{r} \perp a_{1}, b_{r} \perp a_{2}, \ldots b_{r} \perp a_{r-1}
\end{array}\right.
$$

by setting b_{r} perpendicular to projections of $a_{1}, a_{2}, \ldots a_{r-1}$ on L_{r}.

Property of PCA

Consider the sum of squared projections:

$$
\left\|X b_{1}\right\|^{2}+\left\|X b_{2}\right\|^{2}+\ldots+\left\|X b_{r-1}\right\|^{2}+\left\|X b_{r}\right\|^{2}
$$

By induction proposition $L\left[a_{1}, a_{2}, \ldots a_{r-1}\right]$ is space of best fit of rank $r-1$ and $L\left[b_{1}, \ldots b_{r-1}\right]$ is some space of same rank, so sum of squared projections on it is smaller:

$$
\left\|X b_{1}\right\|^{2}+\left\|X b_{2}\right\|^{2}+\ldots+\left\|X b_{r-1}\right\|^{2} \leq\left\|X a_{1}\right\|^{2}+\left\|X a_{2}\right\|^{2}+\ldots+\left\|X a_{r-1}\right\|^{2}
$$

and

$$
\left\|X b_{r}\right\|^{2} \leq\left\|X a_{r}\right\|^{2}
$$

since b_{r} by (5) satisfies constraints of optimization problem (4) and a_{r} is its optimal solution.

Table of Contents

(1) Feature extraction

(2) Principal component analysis
(3) SVD decomposition

SVD decomosition

Every matrix $X \in \mathbb{R}^{N \times D}$ of rank R can be decomposed into the product of three matrices:

$$
X=U \Sigma V^{T}
$$

where $U \in \mathbb{R}^{N \times R}, \Sigma \in \mathbb{R}^{R \times R}, V^{T} \in \mathbb{R}^{R \times D}$, and $\Sigma=$ $\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{R}\right\}, \sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{R} \geq 0, U^{T} U=I, V^{T} V=I$. $I \in \mathbb{R}^{D \times D}$ denotes identity matrix.

Applications of SVD

For square matrix X :

- U, V^{T} represent rotations-projections, Σ represents scaling (with projection and reflection),
every square matrix may be represented as superposition of rotation-projection, scaling and another rotation-projection.
- For full rank X :

$$
X^{-1}=V \Sigma^{-1} U^{T}
$$

since $X X^{-1}=U \Sigma V^{T} V \Sigma^{-1} U^{T}=I$.

Interpretation of SVD

For $X_{i j}$ let i denote objects and j denote properties.

- U represents standardized coordinates of concepts
- V^{T} represents standardized concepts representations
- Σ shows the magnitudes of presence of standardized concepts in X.

Example

		$\begin{aligned} & \frac{\vdots}{0} \\ & \frac{\pi}{0} \\ & \frac{\pi}{v} \end{aligned}$		-	$\begin{aligned} & 2 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
Andrew	4	5	5	0	0	0
John	4	4	5	0	0	0
Matthew	5	5	4	0	0	0
Anna	0	0	0	5	5	5
Maria	0	0	0	5	5	4
Jessika	0	0	0	4	5	4

Example

$$
\left.\left.\left.\left.\begin{array}{rl}
U & =\left(\begin{array}{cccccc}
0 . & 0.6 & -0.3 & 0 . & 0 . & -0.8 \\
0 . & 0.5 & -0.5 & 0 . & 0 . & 0.6 \\
0 . & 0.6 & 0.8 & 0 . & 0 . & 0.2 \\
0.6 & 0 . & 0 . & -0.8 & -0.2 & 0 . \\
0.6 & 0 . & 0 . & 0.2 & 0.8 & 0 . \\
0.5 & 0 . & 0 . & 0.6 & -0.6 & 0 .
\end{array}\right) \\
\Sigma & =\operatorname{diag}\{(14 . \\
13.7 & 1.2
\end{array}\right) 0.6 \quad 0.6 \quad 0.5\right)\right\}, 1 \begin{array}{ccccccc}
0 . & 0 . & 0 . & 0.6 & 0.6 & 0.5 \\
0.5 & 0.6 & 0.6 & 0 . & 0 . & 0 . \\
0.5 & 0.3 & -0.8 & 0 . & 0 . & 0 . \\
0 . & 0 . & 0 . & -0.2 & 0.8 & -0.6 \\
-0 . & -0 . & -0 . & 0.8 & -0.2 & -0.6 \\
0.6 & -0.8 & 0.2 & 0 . & 0 . & 0 .
\end{array}\right) .
$$

Example (excluded insignificant concepts)

$$
\begin{gathered}
U_{2}=\left(\begin{array}{cc}
0 . & 0.6 \\
0 . & 0.5 \\
0 . & 0.6 \\
0.6 & 0 . \\
0.6 & 0 . \\
0.5 & 0 .
\end{array}\right) \\
\Sigma_{2}=\operatorname{diag}\{(14 . \\
13.7)\} \\
V_{2}^{T}=\left(\begin{array}{cccccc}
0 . & 0 . & 0 . & 0.6 & 0.6 & 0.5 \\
0.5 & 0.6 & 0.6 & 0 . & 0 . & 0 .
\end{array}\right)
\end{gathered}
$$

Concepts may be

- patterns among movies (along j) - action movie / romantic movie
- patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.

Applications

- Example: new movie rating by new person

$$
x=\left(\begin{array}{llllll}
5 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Dimensionality reduction: map x into concept space:

$$
y=V_{2}^{T} x=\left(\begin{array}{ll}
0 & 2.7
\end{array}\right)
$$

- Recommendation system: map y back to original movies space:

$$
\widehat{x}=y V_{2}^{T}=\left(\begin{array}{llllll}
1.5 & 1.6 & 1.6 & 0 & 0 & 0
\end{array}\right)
$$

Fronebius norm

- Fronebius norm of matrix X is $\|X\|_{F} \stackrel{d f}{=} \sqrt{\sum_{n=1}^{N} \sum_{d=1}^{D} x_{n d}^{2}}$
- Using properties $\|X\|_{F}=\operatorname{tr} X X^{T}$ and $\operatorname{tr} A B=\operatorname{tr} B A$, we obtain:

$$
\begin{align*}
\|X\|_{F} & =\operatorname{tr}\left[U \Sigma V^{T} V \Sigma U^{T}\right]=\operatorname{tr}\left[U \Sigma^{2} U^{T}\right]= \\
& =\operatorname{tr}\left[\Sigma^{2} U^{T} U\right]=\operatorname{tr}\left[\Sigma^{2}\right]=\sum_{r=1}^{R} \sigma_{r}^{2} \tag{6}
\end{align*}
$$

Matrix approximation

Consider approximation $X_{k}=U \Sigma_{k} V^{T}$, where $\Sigma_{k}=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{k}, 0,0, \ldots, 0\right\} \in \mathbb{R}^{R \times R}$.

Theorem 2

X_{k} is the best approximation of X retaining k concepts.
Proof: consider matrix $Y_{k}=U \Sigma^{\prime} V^{T}$, where Σ^{\prime} is equal to Σ except some $R-k$ elements set to zero: $\sigma_{i_{1}}^{\prime}=\sigma_{i_{2}}^{\prime}=\ldots=\sigma_{i_{R-k}}^{\prime}=0$. Then, using (6)
$\left\|X-Y_{k}\right\|_{F}=\left\|U\left(\Sigma-\Sigma^{\prime}\right) V^{T}\right\|_{F}=\sum_{p=1}^{R-k} \sigma_{i_{p}}^{2} \leq \sum_{p=1}^{R-k} \sigma_{p}^{2}=\left\|X-X_{k}\right\|_{F}$
since $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{R} \geq 0$.

Matrix approximation

How many components to retain?

General case: Since

$$
\left\|X-X_{k}\right\|_{F}=\left\|U\left(\Sigma-\Sigma_{k}\right) V^{T}\right\|_{F}=\sum_{i=k+1}^{R} \sigma_{i}^{2}
$$

a reasonable choice is k^{*} such that

$$
\frac{\left\|X-X_{k^{*}}\right\|_{F}}{\|X\|_{F}}=\frac{\sum_{i=k^{*}+1}^{R} \sigma_{i}^{2}}{\sum_{i=1}^{R} \sigma_{i}^{2}} \geq \text { threshold }
$$

Visualization: 2 or 3 components.

Theorem 3

For any matrix Y_{k} with rank $Y_{k}=k:\left\|X-X_{k}\right\|_{F} \leq\left\|X-Y_{k}\right\|_{F}$

Finding U and V

- Finding V
$X^{T} X=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=\left(V \Sigma U^{T}\right) U \Sigma V^{T}=V \Sigma^{2} V^{T}$. It follows that

$$
X^{T} X V=V \Sigma^{2} V^{T} V=V \Sigma^{2}
$$

So V consists of eigenvectors of $X^{\top} X$ with corresponding eignvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots \sigma_{R}^{2}$.

- Finding U :

$$
\begin{gathered}
X X^{T}=U \Sigma V^{T}\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T} . \text { So } \\
X X^{T} U=U \Sigma^{2} U^{T} U=U \Sigma^{2} .
\end{gathered}
$$

So U consists of eigenvectors of $X X^{T}$ with corresponding eigenvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots \sigma_{R}^{2}$.

Comments

- Denote the average $\bar{X} \in \mathbb{R}^{D}: \bar{X}_{j}=\sum_{i=1}^{N} x_{i j}$
- Denote the n-th row of X be $X_{n} \in \mathbb{R}^{D}: X_{n j}=x_{n j}$
- For centered X sample covariance matrix $\widehat{\Sigma}$ equals:

$$
\begin{aligned}
\widehat{\Sigma} & =\frac{1}{N} \sum_{n=1}^{N}\left(X_{n}-\bar{X}\right)\left(X_{n}-\bar{X}\right)^{T}=\frac{1}{N} \sum_{n=1}^{N} X_{n} X_{n}^{T} \\
& =\frac{1}{N} X^{\top} X
\end{aligned}
$$

- V consists of principal components since
- V consists of eigenvectors of $X^{T} X$,
- principal components are eignevectors of $\widehat{\Sigma}$ and
- $\widehat{\Sigma} \propto X^{\top} X$.

