Dimensionality reduction

Victor Kitov

Feature extraction

Table of Contents

Feature extraction

- Principal component analysis
- 3 SVD decomposition

Definition

Feature selection / Feature extraction

Feature extraction: find transformation of original data which extracts most relevant information for machine learning task.

We will consider unsupervised dimensionality reduction methods, which try to preserve geometrical properties of the data.

Applications of dimensionality reduction

Applications:

- visualization in 2D or 3D
- reduce operational costs (less memory, disc, CPU usage on data transfer)
- remove multi-collinearity to improve performance of machine-learning models

Supervision in dimensionality reduction:

- supervised (such as Fisher's direction)
- unsupervied

Mapping to reduced space:

- linear
- non-linear

Feature extraction

Supervised case

- We can find directions $w_1, w_2, ... w_D$, projections on which best separate classes.
- Ways to find w:
 - Fisher's LDA
 - Any linear classification ⟨w,x⟩ ≥ threshold gives valuable supervised 1-D dimension w.
- We can find an orthonormal basis of such directions.

Fisher's direction

- Classification between ω_1 and ω_2 .
- Define $C_1 = \{i: x_i \in \omega_1\}, \quad C_2 = \{i: x_i \in \omega_2\}$ and

$$m_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n, \quad m_2 = \frac{1}{N_1} \sum_{n \in C_2} x_n$$

$$\mu_1 = w^T m_1, \quad \mu_2 = w^T m_2$$

• Define projected within class variances:

$$s_1 = \sum_{n \in C_1} (w^T x_n - w^T m_1)^2, \quad s_2 = \sum_{n \in C_2} (w^T x_n - w^T m_2)^2$$

• Fisher's LDA criterion: $\frac{(\mu_1-\mu_2)^2}{s_1^2+s_2^2} \rightarrow \max_w$

Fisher's direction - solution

The solution to this problem is

$$w\propto \Sigma^{-1}(m_1-m_2)$$

where

$$\Sigma = \frac{N_1}{N} \Sigma_1 + \frac{N_2}{N} \Sigma_2 = \frac{N_1}{N} \sum_{n \in C_1} (x_n - m_1) (x_n - m_1)^T + \frac{N_2}{N} \sum_{n \in C_2} (x_n - m_2) (x_n - m_1)^T + \frac{N_2}{N} \sum_{n \in C_2} (x_n - m_2) (x$$

The same solution is obtained from Gaussian classification with equal covariance matrices:

$$p(x|y) = N(\mu_y, \Sigma).$$

Finding a basis of directions

Listing 1: Finding orthonormal basis of supervised directions

INPUT:

- * training set $(x_1, y_1), ...(x_N, y_N)$
- * algorithm, fitting w in linear classification $\hat{y} = sign[\langle w, x \rangle threshold]$

ALGORITHM:

<u>**OUTPUT**</u>: $w_1, w_2, ..., w_D$.

Degenerate case

- On step d (x₁, y₁), ...(x_N, y_N) may become degenerate:
- In such case we can select arbitrary w_d from orthogonal complement to $w_1, \dots w_{d-1}$.
- Constructive way to augment w₁, ...w_{d-1} with orthogonal complement:
 - We can use QR decomposition:
 - any $A \in \mathbb{R}^{D \times M}$ can be decomposed as A = QR, where $Q \in \mathbb{R}^{D \times D}$ is orthogonal $(QQ^T = Q^TQ = I)$ and $R \in \mathbb{R}^{D \times M}$ is upper-triangular.
 - for *I* ∈ *R*^{DxD} set *A* = [*w*₁,...*w*_{d-1}, *I*]. From QR-decomposition of *A* columns of *Q* will give required *D* directions.

Principal component analysis

Table of Contents

Feature extraction

2 Principal component analysis

- Definition
- Derivation
- Application details

3 SVD decomposition

Principal component analysis

Definition

- Definition
- Derivation
- Application details

Principal component analysis

Definition

Definition of PCA

• Linear transformation of data, using orthogonal matrix $A = [a_1; a_2; ... a_D] \in \mathbb{R}^{D \times D}$, $a_i \in \mathbb{R}^D$:

$$\xi = A^T x$$

- We find orthogonal transform A yielding new variables ξ_i having maximal variance values and mutually uncorrelated.
- Properties:
 - Not invariant to translation:
 - Before applying PCA, we replace $x \leftarrow x \mu$, where $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$.
 - Further we assume that $\mathbb{E}x = 0$.
 - Not invariant to scaling:
 - need to standardize eah feature

Principal component analysis

Definition

Linear transformation properties

• Linear transformation $A = [a_1; a_2; ... a_D] \in \mathbb{R}^{D \times D}$, $a_i \in \mathbb{R}^D$ is found:

$$\xi = A^T x$$

•
$$\xi_i = a_i^T x = x^T a_i$$

• Define covariance matrix $cov[x] = \Sigma = \mathbb{E}[(x - \mathbb{E}x)(x - \mathbb{E}x)^T] = \mathbb{E}xx^T.$

Principal component analysis

Definition

Linear transformation properties

•
$$\mathbb{E}\xi_i = \mathbb{E}\left(a_i^T x\right) = a_i^T \mathbb{E}x = 0$$

• Covariance is equal:

$$cov[\xi_i,\xi_j] = \mathbb{E}\left[\left(\xi_i - \mathbb{E}\xi_i\right)\left(\xi_i - \mathbb{E}\xi_i\right)^T\right] = \mathbb{E}\left[\xi_i\xi_j^T\right]$$
$$= \mathbb{E}\left[\left(a_i^T x\right)\left(a_j^T x\right)^T\right] = a_i^T \mathbb{E}xx^T a_j = a_i^T \Sigma \mathfrak{g}\mathfrak{l}$$

• In particular, variance is equal:

$$Var[\xi_i] = cov[\xi_i, \xi_i] = a_i^T \Sigma a_i$$
(2)

Principal component analysis

Definition

Covariance matrix properties

 $\Sigma = cov[x] \in \mathbb{R}^{D \times D}$ is symmetric positive semidefinite matrix $(A \succcurlyeq 0)$.

- has $\lambda_1, \lambda_2, ... \lambda_D$ eigenvalues, satisfying: $\lambda_i \in \mathbb{R}, \ \lambda_i \ge 0$.
 - Proof: $A \succcurlyeq 0 \Rightarrow x^T A x \ge 0 \forall x$. In particular for eigenvector $v(Av = \lambda v)$: $0 < v^T A v = \lambda v^T v$

$$0 \leq v^T A v = \lambda \underbrace{v^T v}_{>0}$$

so $\lambda \geq 0$.

- for eigenvalues $\lambda_i \neq \lambda_j$ eigenvectors v_i and v_j are orthogonal.
 - Proof: $\lambda_j v_i^T v_j = v_i^T A v_j = (v_i^T A v_j)^T = v_j^T A v_i = \lambda_i v_j^T v_i$. Since $\lambda_i \neq \lambda_j$ this can hold only for $v_i^T v_j = 0$.
- if eigenvalues are unique, corresponding eigenvectors are also unique
- always exists a set of orthogonal eigenvectors $z_1, z_2, ... z_D$: $\Sigma z_i = \lambda_i z_i$.

Later we will assume that $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$. The process is continued while $\lambda_i > 0$.

Principal component analysis

Derivation

- Definition
- Derivation

Application details

Principal component analysis

Derivation

Derivation: 1st component

Consider first component:

$$\xi_1 = \mathbf{a}_1^T \mathbf{x}$$

Optimization problem:

$$\begin{cases} \operatorname{Var} \xi_1 \to \mathsf{max}_{\textit{a}} \\ |\textit{a}_1|^2 = \textit{a}_1^{\mathsf{T}}\textit{a}_1 = 1 \end{cases}$$

From (2):

$$Var[\xi_1] = a_1^T \Sigma a_1$$

Principal component analysis

Derivation

Derivation: 1st component

Optimization problem is equivalent to finding unconditional stationary value of

$$L(a_1, \nu) = a_1^T \Sigma a_1 - \nu(a_1^T a_1 - 1)
ightarrow extr_{a_1,
u}$$

$$\frac{\partial L}{\partial a_1} = \mathbf{0}: \, 2\Sigma a_1 - 2\nu a_1 = \mathbf{0}$$

 a_1 is selected from a set of eigenvectors of A. Since

$$Var[\xi_1] = a_1^T \Sigma a_1 = \lambda_i a_1^T a_1 = \lambda_i$$

 a_1 is the eigenvector, corresponding to largest eigenvalue λ_i . Eigenvector is not unique if λ_{max} is a repeated root of characteristic equation: $|\Sigma - \nu I| = 0$.

Principal component analysis

Derivation

Derivation: 2nd component

$$\xi_2 = a_2^T x$$

$$\begin{cases} \operatorname{Var}[\xi_2] = a_2^T \Sigma a_2 \to \max_{a_2} \\ a_2^T a_2 = |a_2|^2 = 1 \\ \operatorname{cov}[\xi_1, \xi_2] = a_2^T \Sigma a_1 = \lambda_1 a_2^T a_1 = 0 \end{cases}$$

Lagrangian (assuming $\lambda_1 > 0$)

$$L(\mathbf{a}_2,\nu,\eta) = \mathbf{a}_2^{\mathsf{T}} \Sigma \mathbf{a}_2 - \nu(\mathbf{a}_2^{\mathsf{T}} \mathbf{a}_2 - 1) - \eta \mathbf{a}_2^{\mathsf{T}} \mathbf{a}_1 \to extr_{\mathbf{a}_2,\nu,\eta}$$

$$\frac{\partial L}{\partial a_2} = 0: 2\Sigma a_2 - 2\nu a_2 - \eta a_1 = 0$$
(3)

$$a_1^T \frac{\partial L}{\partial a_2} = 2a_1^T \Sigma a_2 - 2\nu a_1^T a_2 - \eta a_1^T a_1 = 0$$

Principal component analysis

Derivation

Derivation: 2nd component

From optimization constraints $a_1^T \Sigma a_2 = a_2^T \Sigma a_1 = 0$ and $a_1^T a_2 = a_2^T a_1 = 0$, we obtain $\eta = 0$. Then from (3) we have that:

$$\Sigma a_2 = \nu a_2$$

so a_2 is eigenvector of Σ , and since we maximize

$$\operatorname{Var}[\xi_2] = \mathbf{a}_2^T \mathbf{\Sigma} \mathbf{a}_2 = \lambda_i \mathbf{a}_2^T \mathbf{a}_2 = \lambda_i$$

this should be eigenvector, corresponding to second largest eigenvalue λ_2 .

Principal component analysis

Derivation

Derivation: k-th component

$$\xi_k = a_k^T x$$

$$\begin{cases}
Var[\xi_k] = a_k^T \Sigma a_k \to \max_{a_k} \\
a_k^T a_k = |a_k|^2 = 1 \\
cov[\xi_k, \xi_j] = a_k^T \Sigma a_j = \lambda_j a_k^T a_j = 0, \quad j = 1, 2, ...k - 1.
\end{cases}$$
Lagrangian (assuming $\lambda_j > 0, j = 1, 2, ...k - 1$)

$$L(a_k,\nu,\eta) = a_k^T \Sigma a_k - \nu(a_k^T a_k - 1) - \sum_{i=1}^{k-1} \eta_i a_k^T a_i \to extr_{a_2,\nu,\eta}$$

$$\frac{\partial L}{\partial a_k} = \mathbf{0} : 2\Sigma a_k - 2\nu a_k - \sum_{i=1}^{k-1} \eta_i a_i = \mathbf{0}$$

1 -

-1

$$\forall j = 1, 2, \dots k - 1: a_j^T \frac{\partial L}{\partial a_2} = 2a_j^T \Sigma a_k - 2\nu a_j^T a_k - \sum_{i=1}^{k-1} \eta_i a_j^T a_i = 0$$

Principal component analysis

Derivation

Derivation: k-th component

Since
$$a_j^T \Sigma a_k = a_k^T \Sigma a_j = 0$$
, $a_j^T a_i \forall j \neq i$ and $a_j^T a_j = 1$ we obtain $\eta_j = 0$. This holds for $j = 1, 2, ...k - 1$, so

$$\Sigma a_k = \nu a_k$$

 a_k is then the eigenvector. Variance of ξ_i is

$$Var[\xi_k] = a_k^T \Sigma a_k = \lambda_i a_k^T a_k = \lambda_i$$

so a_k should be the eigenvector corresponding to the k-th largest eigenvalue λ_k .

Principal component analysis

Application details

2 Principal component analysis

- Definition
- Derivation
- Application details

Principal component analysis Application details

Number of components

- Data visualization: 2 or 3 components.
- Take most significant components until their variance falls sharply down:

Principal component analysis Application details

Number of components

Remind that
$$A = [a_1|a_2|...|a_D], A^T A = I, \xi = A^T x.$$

Denote $S_k = [\xi_1, \xi_2, ..., \xi_k, 0, 0, ..., 0] \in \mathbb{R}^D$

$$\mathbb{E}[\|S_k\|^2] = \mathbb{E}[\xi_1^2 + \xi_2^2 + \dots + \xi_k^2] = \sum_{i=1}^k \operatorname{var} \xi_i = \sum_{i=1}^k \lambda_i$$

$$\mathbb{E}[\|S_D\|^2] = \mathbb{E}[\xi^T \xi] = \\ = \mathbb{E}x^T A A^T x = \mathbb{E}\left[x^T x\right] = \mathbb{E}[\|x\|^2]$$

Select such k^* that

$$\frac{\mathbb{E}[\|S_k\|^2]}{\mathbb{E}[\|x\|^2]} = \frac{\mathbb{E}[\|S_k\|^2]}{\mathbb{E}[\|S_D\|^2]} = \frac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^D \lambda_i} > \text{threshold}$$

We may select k^* to account for 90%, 95% or 99% of total variance.

Principal component analysis Application details

Transformation $\xi \rightleftharpoons x$

Dependence between original and transformed features:

$$\xi = A^T (x - \mu), \, x = A\xi + \mu,$$

where $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$. Taking first r components - $A_r = [a_1|a_2|...|a_r]$, we get the image of the reduced transformation:

$$\xi_r = A_r^T (x - \mu)$$

 ξ_r will correspond to

$$x_r = A \left(\begin{array}{c} \xi_r \\ 0 \end{array}\right) + \mu = A_r \xi_r + \mu$$

$$x_r = A_r A_r^T (x - \mu) + \mu$$

 $A_r A_r^T$ is projection matrix with rank r(follows from the property rank $[AA^T] = rank [A^TA]$ for any A).

Principal component analysis

Application details

Properties of PCA

- Depends on scaling of individual features.
- Assumes that each feature has zero mean.
- Covariance matrix replaced with sample-covariance.
- Does not require distribution assumptions about x.

Principal component analysis

Application details

PCA for visualization

Remark: here, as always, projections ξ_i are uncorrelated. But it does not mean independence - we can still extract their valuable interrelationship.

Principal component analysis

Application details

Application - data filtering

Local linear projection method:

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October. http://www.gensips.gatech.edu/proceedings/.

Principal component analysis Application details

Example

Faces database:

Principal component analysis Application details

Eigenfaces

Eigenvectors are called eigenfaces. Projections on first several eigenfaces describe most of face variability.

32/52

Principal component analysis

Application details

Alternative definitions of PCA

- Find line of best fit, plane of best fit, etc.
 - fit is the sum of squares of perpendicular distances.
- Find line, plane, etc. preserving most of the variability of the data.
 - variability is a sum of squared projections

Principal component analysis

Application details

Example: line of best fit

• In PCA sum of squared of perpendicular distances to line is minimized.

• What is the difference with least squares minimization in regression?

Principal component analysis

Application details

Best hyperplane fit

Subspace L_k or rank k best fits points $x_1, x_2, ... x_D$ if sum of squared distances of these points to this plane is maximized over all planes of rank k.

Principal component analysis

Application details

Best hyperplane fit

For point x_i denote p_i the projection on plane L_k and h_i orthogonal component. Then $||x_i||^2 = ||p_i||^2 + ||h_i||^2$. For set of points:

$$\sum_{i} \|x_{i}\|^{2} = \sum_{i} \|p_{i}\|^{2} + \sum_{i} \|h_{i}\|^{2}$$

Since sum of squares is constant, minimization of $\sum_{i} \|h_{i}\|^{2}$ is equivalent to maximization of $\sum_{i} \|p_{i}\|^{2}$.

Principal component analysis Application details

Another view on PCA directions

k-th step optimization problem for $\xi_k = a_k^T x$:

$$\begin{cases} Var[\xi_k] = a_k^T \Sigma a_k \to \max_{a_k} \\ a_k^T a_k = |a_k|^2 = 1 \\ cov[\xi_k, \xi_j] = a_k^T \Sigma a_j = \lambda_j a_k^T a_j = 0, \quad j = 1, 2, ...k - 1. \end{cases}$$

can be equivalently represented as:

$$\begin{cases} \|Xa_k\|^2 \to \max_{a_k} \\ \|a_k\| = 1 \\ a_k \perp a_1, a_k \perp a_2, \dots a_k \perp a_{k-1} \text{ if } k \ge 2 \end{cases}$$
(4)

since maximization of $||Xa_k||^2$ is equivalent to maximization of $\frac{1}{N} ||Xa_k||^2 = \frac{1}{N} (Xa_k)^T (Xa_k) = \frac{1}{N} a_k^T X^T Xa_k = a_k^T \Sigma a_k.$

Principal component analysis

Application details

Property of PCA

Theorem 1

For $1 \le k \le r$ let L_r be the subspace spanned by $a_1, a_2, ...a_r$. Then for each k L_k is the best-fit k-dimensional subspace for X.

Proof: use induction. For r = 1 the statement is true by definition since projection maximization is equivalent to distance minimization.

Suppose theorem holds for r-1. Let L_r be the plane of best-fit of dimension with dim L = r. We can always choose a orthonormal basis of L_r b_1 , b_2 , ..., b_r so that

$$\begin{cases} \|b_r\| = 1 \\ b_r \perp a_1, b_r \perp a_2, \dots b_r \perp a_{r-1} \end{cases}$$
(5)

by setting b_r perpendicular to projections of $a_1, a_2, ..., a_{r-1}$ on L_r .

Principal component analysis Application details

Property of PCA

Consider the sum of squared projections:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{r-1}||^2 + ||Xb_r||^2$$

By induction proposition $L[a_1, a_2, ..., a_{r-1}]$ is space of best fit of rank r-1 and $L[b_1, ..., b_{r-1}]$ is some space of same rank, so sum of squared projections on it is smaller:

$$\|Xb_1\|^2 + \|Xb_2\|^2 + ... + \|Xb_{r-1}\|^2 \le \|Xa_1\|^2 + \|Xa_2\|^2 + ... + \|Xa_{r-1}\|^2$$

and

$$\|Xb_r\|^2 \le \|Xa_r\|^2$$

since b_r by (5) satisfies constraints of optimization problem (4) and a_r is its optimal solution.

Dimensionality reduction - Victor Kitov SVD decomposition

Table of Contents

1 Feature extraction

- Principal component analysis
- SVD decomposition

SVD decomosition

Every matrix $X \in \mathbb{R}^{N \times D}$ of rank R can be decomposed into the product of three matrices:

$$X = U \Sigma V^T$$

where $U \in \mathbb{R}^{N \times R}$, $\Sigma \in \mathbb{R}^{R \times R}$, $V^T \in \mathbb{R}^{R \times D}$, and $\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_R\}$, $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_R \ge 0$, $U^T U = I$, $V^T V = I$. $I \in \mathbb{R}^{D \times D}$ denotes identity matrix.

Dimensionality reduction - Victor Kitov SVD decomposition

Applications of SVD

For square matrix X:

- U, V^T represent rotations-projections, Σ represents scaling (with projection and reflection), every square matrix may be represented as superposition of rotation-projection, scaling and another rotation-projection.
- For full rank X:

$$X^{-1} = V \Sigma^{-1} U^T,$$

since $XX^{-1} = U\Sigma V^T V \Sigma^{-1} U^T = I$.

SVD decomposition

Interpretation of SVD

For X_{ij} let *i* denote objects and *j* denote properties.

- U represents standardized coordinates of concepts
- V^T represents standardized concepts representations
- Σ shows the magnitudes of presence of standardized concepts in X.

SVD decomposition

Example

	Terminator	Gladiator	Rambo	Titanic	Love story	A walk to remember
Andrew	4	5	5	0	0	0
John	4	4	5	0	0	0
Matthew	5	5	4	0	0	0
Anna	0	0	0	5	5	5
Maria	0	0	0	5	5	4
Jessika	0	0	0	4	5	4

Dimensionality reduction - Victor Kitov SVD decomposition

Example

$$U = \begin{pmatrix} 0. & 0.6 & -0.3 & 0. & 0. & -0.8 \\ 0. & 0.5 & -0.5 & 0. & 0. & 0.6 \\ 0. & 0.6 & 0.8 & 0. & 0. & 0.2 \\ 0.6 & 0. & 0. & -0.8 & -0.2 & 0. \\ 0.6 & 0. & 0. & 0.2 & 0.8 & 0. \\ 0.5 & 0. & 0. & 0.6 & -0.6 & 0. \end{pmatrix}$$
$$\Sigma = \text{diag}\{(14. \quad 13.7 \quad 1.2 \quad 0.6 \quad 0.6 \quad 0.5)\}$$
$$V^{T} = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \\ 0.5 & 0.3 & -0.8 & 0. & 0. & 0. \\ 0. & 0. & 0. & -0.2 & 0.8 & -0.6 \\ -0. & -0. & -0. & 0.8 & -0.2 & -0.6 \\ 0.6 & -0.8 & 0.2 & 0. & 0. & 0. \end{pmatrix}$$

SVD decomposition

Example (excluded insignificant concepts)

$$U_{2} = \begin{pmatrix} 0. & 0.6\\ 0. & 0.5\\ 0. & 0.6\\ 0.6 & 0.\\ 0.5 & 0. \end{pmatrix}$$

$$\Sigma_{2} = \text{diag}\{(14. \quad 13.7)\}$$

$$T_{-}(0. \quad 0. \quad 0. \quad 0.6 \quad 0.6 \quad 0.$$

$$V_2^{T} = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \end{pmatrix}$$

Concepts may be

- patterns among movies (along j) action movie / romantic movie
- patterns among people (along *i*) boys / girls

Dimensionality reduction case: patterns along *j* axis.

46/52

Applications

• Example: new movie rating by new person

$$x = \begin{pmatrix} 5 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• **Dimensionality reduction:** map x into concept space:

$$y = V_2^T x = \begin{pmatrix} 0 & 2.7 \end{pmatrix}$$

• **Recommendation system:** map y back to original movies space:

$$\widehat{x} = yV_2^T = (1.5 \quad 1.6 \quad 1.6 \quad 0 \quad 0 \quad 0)$$

Fronebius norm

- Fronebius norm of matrix X is $||X||_F \stackrel{df}{=} \sqrt{\sum_{n=1}^N \sum_{d=1}^D x_{nd}^2}$
- Using properties $||X||_F = \operatorname{tr} XX^T$ and $\operatorname{tr} AB = \operatorname{tr} BA$, we obtain:

$$|X||_{F} = \operatorname{tr}[U\Sigma V^{T} V\Sigma U^{T}] = \operatorname{tr}[U\Sigma^{2} U^{T}] =$$

= $\operatorname{tr}[\Sigma^{2} U^{T} U] = \operatorname{tr}[\Sigma^{2}] = \sum_{r=1}^{R} \sigma_{r}^{2}$ (6)

Matrix approximation

Consider approximation $X_k = U \Sigma_k V^T$, where $\Sigma_k = \text{diag}\{\sigma_1, \sigma_2, ... \sigma_k, 0, 0, ..., 0\} \in \mathbb{R}^{R \times R}$.

Theorem 2

 X_k is the best approximation of X retaining k concepts.

Proof: consider matrix $Y_k = U\Sigma'V^T$, where Σ' is equal to Σ except some R - k elements set to zero: $\sigma'_{i_1} = \sigma'_{i_2} = ... = \sigma'_{i_{R-k}} = 0$. Then, using (6)

$$\|X - Y_k\|_F = \|U(\Sigma - \Sigma')V^T\|_F = \sum_{p=1}^{R-k} \sigma_{i_p}^2 \le \sum_{p=1}^{R-k} \sigma_p^2 = \|X - X_k\|_F$$

since $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_R \geq 0$.

Matrix approximation

How many components to retain?

General case: Since

$$\|X - X_k\|_F = \left\| U(\Sigma - \Sigma_k) V^T \right\|_F = \sum_{i=k+1}^R \sigma_i^2$$

a reasonable choice is k^* such that

$$\frac{\|X - X_{k^*}\|_F}{\|X\|_F} = \frac{\sum_{i=k^*+1}^R \sigma_i^2}{\sum_{i=1}^R \sigma_i^2} \ge \text{threshold}$$

Visualization: 2 or 3 components.

Theorem 3

For any matrix Y_k with rank $Y_k = k$: $\|X - X_k\|_F \le \|X - Y_k\|_F$

Finding U and V

• Finding V

 $X^T X = (U \Sigma V^T)^T U \Sigma V^T = (V \Sigma U^T) U \Sigma V^T = V \Sigma^2 V^T$. It follows that

$$X^{\mathsf{T}}XV = V\Sigma^2 V^{\mathsf{T}}V = V\Sigma^2$$

So V consists of eigenvectors of $X^T X$ with corresponding eignvalues $\sigma_1^2, \sigma_2^2, ..., \sigma_R^2$.

• Finding U: $XX^T = U\Sigma V^T (U\Sigma V^T)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$. So $XX^T U = U\Sigma^2 U^T U = U\Sigma^2$.

So U consists of eigenvectors of XX^T with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ..., \sigma_R^2$.

Comments

- Denote the average $ar{X} \in \mathbb{R}^D$: $ar{X}_j = \sum_{i=1}^N x_{ij}$
- Denote the n-th row of X be $X_n \in \mathbb{R}^D$: $X_{nj} = x_{nj}$
- For centered X sample covariance matrix $\widehat{\Sigma}$ equals:

$$\widehat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X}) (X_n - \bar{X})^T = \frac{1}{N} \sum_{n=1}^{N} X_n X_n^T$$
$$= \frac{1}{N} X^T X$$

- V consists of principal components since
 - V consists of eigenvectors of $X^T X$,
 - principal components are eignevectors of $\widehat{\Sigma}$ and
 - $\widehat{\Sigma} \propto X^T X$.