Spirin Nikita

Dorodnicyn Computing Center of the Russian Academy of Sciences 03.24.2010, Moscow

Packages covered

- SAS
- MySQL
- Python
- Mathematica
- ► R

Agenda

- R programming language and R Paradigm
- Basic operations in R
- Graphics with R
- Statistics with R
- Multilevel Models and ML with R

8 min. times 5 equals 40 min.

Overview

- Free and commercialized
- GNU GPL
- R core team
- http://cran.r-project.org
- Interpreter

Concepts

- Actions with in-memory objects
- function()
- function
- library

Basic Notation

object	modes	several modes possible in the same object?
vector	numeric, character, complex or logical	No
factor	numeric <i>or</i> character	No
array	numeric, character, complex or logical	No
matrix	numeric, character, complex or logical	No
data frame	numeric, character, complex or logical	Yes
ts	numeric, character, complex or logical	No
list	numeric, character, complex, logical, function, expression,	Yes

Basic Notation

A-Z and a-z

- ▶ 0-9
- Case Sensitive

Basic operations in R

"assign" operator

> n <- 10 + 2

> n

[1] 12

- > n <- 3 + rnorm(1)
- > n

[1] 2.208807

Basic operations in R

Is() function

- > name <- "Carmen"; n1 <- 10; n2 <- 100; m <- 0.5
 > ls()
- [1] "m" "n1" "n2" "name"
- > ls(pat = "m") [1] "m" "name"

> ls(pat = "^m")
[1] "m"

Basic operations in R

HELP

- > ?lm
- help(lm)
- help("lm")
- help.search("tree")
- > apropos(help)
- [1] "help" ".helpForCall" "help.search"
- [4] "help.start"

Reading Data

- getwd()setwd()
- readtable()
- > scan()
- read.fwf()
- ASCII
- Excel, SAS, SPSS, SQL-type databases

5 C 1.70 1.6

6 C 1.75 1.7

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".", fill = TRUE, ...)

C1.751.7

> mydata <- scan("data.dat", what = list("", 0, 0))</pre>

Saving Data

save.image()

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ", eol = "\n", na = "NA", dec = ".", row.names = TRUE, col.names = TRUE, qmethod = c("escape", "double"))

> 1:10-1
[1] 0 1 2 3 4 5 6 7 8 9
> 1:(10-1)
[1] 1 2 3 4 5 6 7 8 9

> seq(1, 5, 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

```
> seq(length=9, from=1, to=5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
```

```
> rep(1, 30)
> sequence(4:5)
[1] 1 2 3 4 1 2 3 4 5
> sequence(c(10,5))
[1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5
> g1(3, 5)
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Levels: 1 2 3
> gl(3, 5, length=30)
Levels: 123
> gl(2, 6, label=c("Male", "Female"))
[1] Male Male Male Male Male
                         Male
```

Cartesian product

> expand.grid(h=c(60,80), w=c(100, 300), sex=c("Male", "Female"))

- hwsex160100Male280100Male360300Male480300Male560100Female680100Female760300Female
- 8 80 300 Female

	1	6
rfunc(n, p1, p2,)	law	Iunction
	Gaussian (normal)	<pre>rnorm(n, mean=0, sd=1)</pre>
	exponential	<pre>rexp(n, rate=1)</pre>
	gamma	rgamma(n, shape, scale=1)
	Poisson	rpois(n, lambda)
	Weibull	rweibull(n, shape, scale=1)
	Cauchy	<pre>rcauchy(n, location=0, scale=1)</pre>
	beta	rbeta(n, shape1, shape2)
	'Student' (t)	rt(n, df)
	Fisher–Snedecor (F)	rf(n, df1, df2)
	Pearson (χ^2)	rchisq(n, df)
	binomial	rbinom(n, size, prob)
	multinomial	rmultinom(n, size, prob)
	geometric	rgeom(n, prob)
	hypergeometric	rhyper(nn, m, n, k)
	logistic	<pre>rlogis(n, location=0, scale=1)</pre>
	lognormal	<pre>rlnorm(n, meanlog=0, sdlog=1)</pre>
	negative binomial	rnbinom(n, size, prob)
	uniform	<pre>runif(n, min=0, max=1)</pre>
	Wilcoxon's statistics	<pre>rwilcox(nn, m, n), rsignrank(nn, n)</pre>

Of course Matrices

```
> matrix(1:6, 2, 3, byrow=TRUE)
    [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
> x <- 1:15
> x
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
> dim(x)
NULL
> dim(x) <- c(5, 3)
> x
    [,1] [,2] [,3]
[1,] 1 6 11
[2,] 2 7 12
[3,] 3 8 13
[4,] 4 9 14
[5,] 5 10 15
```

Of course Matrices

```
> rbind(m1, m2) %*% cbind(m1, m2)
    [,1] [,2] [,3] [,4]
[1,] 2 2 4 4
[2,] 2 2 4 4
[3,] 4 4 8 8
[4,] 4 4 8 8
> cbind(m1, m2) %*% rbind(m1, m2)
    [,1] [,2]
[1,] 10 10
[2,] 10 10
> diag(m1)
[1] 1 1
> diag(rbind(m1, m2) %*% cbind(m1, m2))
```

[1] 2 2 8 8

Syntactic sugar

```
> x <- 3; y <- 2.5; z <- 1
> exp1 <- expression(x / (y + exp(z)))</pre>
> exp1
expression(x/(y + exp(z)))
> eval(exp1)
[1] 0.5749019
> D(exp1, "x")
1/(y + exp(z))
> D(exp1, "y")
-x/(y + exp(z))^{2}
> D(exp1, "z")
-x * \exp(z)/(y + \exp(z))^2
```

Device paradigm

- Window()
- Pdf()
- ► XII()

```
> dev.cur()
pdf
4
```

and to change the active device:

```
> dev.set(3)
X11
3
```

- > layout(matrix(1:6, 3, 2))
- > layout.show(6)

- > layout(matrix(1:6, 2, 3))
- > layout.show(6)

- > m <- matrix(c(1:3, 3), 2, 2)
- > layout(m)
- > layout.show(3)

Legend for a graph

> text(x, y, expression(p == over(1, 1+e^-(beta*x+alpha))))

_ _ _ _ _ _ _ _ _ _ _

х

Statistics with R

> library(stats)

- Key operator "∼"
- Omodel description operator
- ▶ y ~ model

Statistics with R

a+b	additive effects of a and of b	
Х	if X is a matrix, this specifies an additive effect of each of	
	its columns, i.e. $X[,1]+X[,2]++X[,ncol(X)]$; some	
	of the columns may be selected with numeric indices (e.g.,	
	X[,2:4])	
a:b	interactive effect between a and b	
a*b	additive and interactive effects (identical to a+b+a:b)	
poly(a, n)	polynomials of a up to degree n	
^n	includes all interactions up to level n , i.e. $(a+b+c)^2$ is	
	identical to a+b+c+a:b+a:c+b:c	
b %in% a	the effects of b are nested in a (identical to a+a:b , or	
	a/b)	
-b	removes the effect of b, for example: (a+b+c)^2-a:b is	
	identical to a+b+c+a:c+b:c	
-1	y^x-1 is a regression through the origin (id. for y^x+0 or	
	0+y~x)	
1	y~1 fits a model with no effects (only the intercept)	
offset()	adds an effect to the model without estimating any pa-	
	rameter (e.g., offset(3*x))	

Statistics with R Quiz y~xI+x2 $y = \beta_1 x_1 + \beta_2 x_2 + \alpha$ y~l(x1+x2) $y = \beta(x_1 + x_2) + \alpha$ y ~ poly(x, 2)

$$y = \beta_1 x + \beta_2 x^2 + \alpha$$

Statistics with R

Package	Description
base	base R functions
datasets	base R datasets
grDevices	graphics devices for base and grid graphics
graphics	base graphics
grid	grid graphics
methods	definition of methods and classes for R objects and program-
	ming tools
splines	regression spline functions and classes
stats	statistical functions
stats4	statistical functions using S4 classes
tcltk	functions to interface R with Tcl/Tk graphical user interface
	elements
tools	tools for package development and administration
utils	R utility functions

Data Analysis Using Regression and Multilevel/Hierarchical Models

ANDREW GELMAN JENNIFER HILL

Why multilevel modeling?

- Using all the data to perform inferences for groups with small sample size
- Predict an output for a new group
- Hierarchical models avoid overfitting effect of least squares regression
- Yields accurate measure of predictive uncertainty

fss = c(0,8,15,33,42,45,49,54,98,143,165,175,179,200)

include the library

library(caTools)

read training and scoring data

train <- read.csv("C:/Users/Spirinus/Desktop/Final Package/R/S_AUC_Train_I_7500.csv")

score <- read.csv("C:/Users/Spirinus/Desktop/Final Package/R/S_AUC_Train_Test_7501_15000.csv")

data preparation

```
train[train$Target == - I, "Target"] <- 0
train$RowID = NULL</pre>
```

build the model

- AUClogistic <- glm(Target ~ ., data=train[1:1000,fss+1], family=binomial(link="logit"))
- # get predictions on a scoring dataset
- test_scores <- predict(AUClogistic, type="response", score[1:1000,])
- testY = score[1:1000,]\$Target

calculate AUC

colAUC(test_scores,testY)

lmer() library(matrix)

Examples:

 $\operatorname{Imer}(y \sim \underline{I} + (I \mid \operatorname{county}))$

 $\operatorname{Imer}(y \sim \underline{x} + (| | \operatorname{county}))$

 $\operatorname{Imer}(y \sim \underline{x} + (\underline{I} + \underline{x} | \operatorname{county}))$

Summary

- How R works
- Basic objects in R
- R graphical capabilities
- R for statistical analysis
- Multilevel modeling in R

More Information

- R for Beginners, Emmanuel Paradis, Institut des Sciences de l'Evolution Universite Montpellier II,
 - F-34095 Montpellier cedex 05, France
- http://cran.r-project.org
- Data Analysis Using Regression and Multilevel Hierarchical Models, A. Gelman J.Hill

Acknowledgements

Thank you!