
Asymmetric Locality Sensitive Hashing
for Sublinear Time

Maximum Inner Product Search

Evgeny Nikishin

06.10.2016

Problem formulation and motivation

Given a collection X ∈ RN×D. For a feature vector q ∈ RD find

p = argmax
x∈X
〈q, x〉

Applications:
• Recommender systems
• Multiclass classification
• . . .

Problem formulation and motivation

Given a collection X ∈ RN×D. For a feature vector q ∈ RD find

p = argmax
x∈X
〈q, x〉

Applications:
• Recommender systems
• Multiclass classification
• . . .

From MIPS to Near Neighbour Search

Assumptions:
• ||x|| ≤ U < 1 ∀x ∈ X. If this is not the case then scale all
vectors x = U

maxx∈X ||x|| × x
• ||q|| = 1 for simplicity. It can be easily removed

Define two vector transformations P : RD 7→ RD+m and
Q : RD 7→ RD+m as follows:

P (x) = [x; ||x||2; ||x||4; . . . ; ||x||2m] Q(q) = [q; 1/2; 1/2; . . . ; 1/2]

From MIPS to Near Neighbour Search

P (x) = [x; ||x||2; ||x||4; . . . ; ||x||2m] Q(q) = [q; 1/2; 1/2; . . . ; 1/2]

By observing

2〈Q(q), P (x)〉 = 2〈q, x〉+ ||x||2 + ||x||4 + . . .+ ||x||2m

||P (x)||2 = ||x||2 + ||x||4 + . . .+ ||x||2m + ||x||2m+1

we obtain key equality:

||Q(q)− P (x)||2 = (1 +m/4)− 2〈q, x〉+ ||x||2m+1

So
argmax

x∈X
〈q, x〉 ≈ argmin

x∈X
||Q(q)− P (x)||

From MIPS to Near Neighbour Search

P (x) = [x; ||x||2; ||x||4; . . . ; ||x||2m] Q(q) = [q; 1/2; 1/2; . . . ; 1/2]

By observing

2〈Q(q), P (x)〉 = 2〈q, x〉+ ||x||2 + ||x||4 + . . .+ ||x||2m

||P (x)||2 = ||x||2 + ||x||4 + . . .+ ||x||2m + ||x||2m+1

we obtain key equality:

||Q(q)− P (x)||2 = (1 +m/4)− 2〈q, x〉+ ||x||2m+1

So
argmax

x∈X
〈q, x〉 ≈ argmin

x∈X
||Q(q)− P (x)||

ALSH for approximate NNS

Intuition for following definition: similar objects are desired to have
equal hashes with high probability

Definition A family of hash functions H called
(d1, d2, p1, p2)-sensitive if, for a given q and any x ∈ X,
• if Sim(q, x) ≥ d1 then Ph∈H(h(Q(q)) = h(P (x))) ≥ p1
• if Sim(q, x) ≤ d2 then Ph∈H(h(Q(q)) = h(P (x))) ≤ p2

ALSH for approximate NNS

Example: hash function for euclidean distance
Given a parameter r, we choose a random vector a with each
component generated from i.i.d. standard normal, i.e. ai ∼ N (0, 1),
and a scalar b generated uniformly from [0, r]

h(x) =

⌊
〈a, x〉+ b

r

⌋
It corresponds to some line in RD, divided by segments with length
r and returns number of segment.

ALSH for approximate NNS

Definition Data structure solves c-approximate Nearest Neighbour
problem (c-NN) if, for a given parameters d1 > 0, δ > 0 and a
query q, it does the following with probability 1− δ: if there exists
an d1-near neighbour of q, it reports some cd1-near neighbour of q.

Theorem Given a (d1, cd1, p1, p2)-sensitive family of hash
functions, one can construct a data structure for c-NN with
O(nρ log(n)) query time, where ρ = log p1

log p2

Experiments

For multiclass classification I had:

• 25% — Top 1 result
• 50% — Top 5 result
• 80% — Top 25 result

Workflow for MIPS with ALSH

1 Choose hash function h (uniformly from H)
2 Create a hash table by applying this function to all x ∈ X,

preprocessed by P (x)
3 For a query, compute h(Q(q))

4 Choose the nearest sample from hash table cell

	Problem formulation and motivation
	From MIPS to Near Neighbour Search
	ALSH for approximate NNS
	Experiments
	Workflow for MIPS with ALSH

