Различные подходы к решению задачи Sparse Principal Components Analisys

Выступающий: Кузнецов Кирилл Николаевич Руководитель: к.ф.-м.н. Панов Максим Евгеньевич

Высшая Школа Экономики Математические Методы Оптимизации и Стохастики

Апрель, 2016

Цели и задачи

- Предмет исследования: Применение методов кластеризации при решении задач Sparse Principal Component Analysis
- Цель исследования: Рассмотрение возможности достижения хороших результатов в задачах SPCA
- Проблемы:
 - Низкая скорость работы исходного алгоритма
 - Неточность алгоритмов кластеризации

План работ

- Введение
 - Необходимые определения
 - Метод Главных Компонент
- Sparse PCA
 - Рассмотрение метода
 - Известные решения задачи SPCA
 - Рассмотрение возможности применения кластеризации в решении задачи SPCA
- Численные результаты

Определения

- trA след матрицы
- Норма матрицы

$$||A||^2 = \sum_{i=1}^n \sum_{j=1}^m a_{ij} = trAA^T = trA^TA$$

• Сингулярное разложение: Произвольная $l \times n$ матрица представима в виде сингулярного разложения:

$$F = VDU^T$$

Свойства сингулярного разложения:

• $n \times n$ матрица D - диагональна.

$$D = \textit{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$$

 λ_i - общие ненулевые собственные значения матриц F^TF и FF^T

- $I \times n$ матрица $V = (v_1, \dots, v_n)$ ортогональна, $V^T V = I_n$, где столбцы v_j являются собственными векторами матрицы FF^T , соответствующими $\lambda_1, \dots, \lambda_n$;
- $I \times n$ матрица $U = (u_1, \dots, u_n)$ ортогональна, $U^T U = I_n$, где столбцы u_j являются собственными векторами матрицы $F^T F$, соответствующими $\lambda_1, \dots, \lambda_n$;

- Необходимость метода:
 - возникновение мультиколлинеарности
 - уменьшение количества признаков
- Идея метода: в РСА строится минимальное число новых признаков, по которым исходные признаки могут быть восстановлены линейным преобразованием с минимальными погрешностями.

Стр. 7 из 31

• Постановка задачи: Пусть имеется n числовых признаков $f_j(x), j=1,\ldots,n$. Тогда признаковое описание объекта обучающей выборки представим в виде: $x_i=(f_1(x_i),\ldots,f_n(x_i)), i=1,\ldots,I$. Исходная матрица:

$$F_{l\times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_l) & \dots & f_n(x_l) \end{pmatrix} = \begin{pmatrix} x_1 \\ \dots \\ x_m \end{pmatrix}$$

Обозначим через $z_i = (g_1(x_i), \ldots, g_m(x_i))$ признаковые описания тех же объектов в новом просранстве $Z = R^m, m < n$

$$G_{l \times m} = \begin{pmatrix} g_1(x_1) & \dots & g_m(x_1) \\ \dots & \dots & \dots \\ g_1(x_l) & \dots & g_m(x_l) \end{pmatrix} = \begin{pmatrix} z_1 \\ \dots \\ z_m \end{pmatrix}$$

Потребуем, чтобы исходные признаковые описания можно было восстановить по новым описаниям с помощью некоторого линейного преобразования, определяющемого матрицей $U=(u_{js})_{n\times m}$:

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x)u_{js}, \qquad j=1,\ldots,n$$

В векторной записи: $\hat{x} = zU^T$. При этом, отличие x от \hat{x} должно быть как можно меньше при выбранной размерности m.

$$\Delta^{2}(G, U) = \sum_{i=1}^{I} \|\hat{x}_{i} - x_{i}\|^{2} = \sum_{i=1}^{I} \|z_{i}U^{T} - x_{i}\|^{2} = \|GU^{T} - F\|^{2} \to \min_{G, U}$$

Теорема

Если $m \leq rkF$, то минимум $\Delta^2(G,U)$ достигается, когда столбцы матрицы U есть собственные векторы F^TF , соответствующие m максимальным собственным значениям. При этом G=FU, матрицы U и G ортогональны

$$\Delta^2(G,U) = \sum_{j=m+1}^n \lambda_j,$$

где $\lambda_1, \ldots, \lambda_n$ - все собственные значения матрицы $F^T F$. Собственные векторы u_1, \ldots, u_m , отвечающие максимальным собственным значениям называют главными компонентами

Связь с сингулярным разложением

Если m=n, то $\Delta^2(G,U)=0$. Тогда представление $F=GU^T$ является точным и совпадает с сингулярным разложением: $F=GU^T=VDU^T$, если положить, что G=VD и $\Lambda=D^2$. При этом $V^TV=I_M$ Если m< n, то представление $F\approx GU^T$ является приближенным. Сингулярное разложение матрицы GU^T получается из сингулярного разложения матрицы F путем обнуления n-m минимальных собственных значений.

Эффективная размерность:

Главные компоненты содержат основную информацию о матрице F. Число главных компонент m называют эффективной размерностью задачи. Все собственные значения матрицы F^TF упорядочивают по убыванию: $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_n \geq 0$.

$$E(m) = \frac{\|GU^T - F\|^2}{\|F\|^2} = \frac{\lambda_{m+1} + \dots + \lambda_n}{\lambda_1 + \dots + \lambda_n} \le \epsilon$$

Разреженный Метод Главных Компонент

Разреженный Метод Главных Компонент

Разреженный метод главных компонент добавляет к обычному методу главных компонент разреженность на входные переменные.

Variable	PC1	PC2	PC3	PC4	PC5	PC6
topdiam	-0.404	0.218	-0.207	0.091	-0.083	0.120
length	-0.406	0.186	-0.235	0.103	-0.113	0.163
moist	-0.124	0.541	0.141	-0.078	0.350	-0.276
testsg	-0.173	0.456	0.352	-0.055	0.356	-0.054
ovensg	-0.057	-0.170	0.481	-0.049	0.176	0.626
ringtop	-0.284	-0.014	0.475	0.063	-0.316	0.052
ringbut	-0.400	-0.190	0.253	0.065	-0.215	0.003
bowmax	-0.294	-0.189	-0.243	-0.286	0.185	-0.055
bowdist	-0.357	0.017	-0.208	-0.097	-0.106	0.034
whorls	-0.379	-0.248	-0.119	0.205	0.156	-0.173
clear	0.011	0.205	-0.070	-0.804	-0.343	0.175
knots	0.115	0.343	0.092	0.301	-0.600	-0.170
diaknot	0.113	0.309	-0.326	0.303	0.080	0.626
Variance (%)	32.4	18.3	14.4	8.5	7.0	6.3
Cumulative variance (%)	32.4	50.7	65.1	73.6	80.6	86.9

Variable	PC1	PC2	PC3	PC4	PC5	PC6
topdiam	-0.477					
length	-0.476					
moist		0.785				
testsa		0.620				
ovensa	0.177		0.640			
ringtop			0.589			
ringbut	-0.250		0.492			
bowmax	-0.344	-0.021				
bowdist	-0.416					
whorls	-0.400					
clear				-1		
knots		0.013			-1	
diaknot			-0.015			1
Number of nonzero loadings	7	4	4	1	1	1
Variance (%)	28.0	14.4	15.0	7.7	7.7	7.7
Adjusted variance (%)	28.0	14.0	13.3	7.4	6.8	6.2
Cumulative adjusted variance (%)	28.0	42.0	55.3	62.7	69.5	75.8

Разреженный Метод Главных Компонент

PCA:

$$\max v^T \Sigma v$$

$$s.t.\|v\|_2=1$$

SPCA:

$$\max v^T \Sigma v$$

$$s.t.||v||_2=1$$

$$||v||_0 \leq k$$

Разреженный Метод Главных Компонент

После нахождения оптимального вектора ν , вычисляем новую матрицу Σ_1

$$\Sigma_1 = \Sigma - (v^T \Sigma v) v v^T$$

Повторяя данную процедуру, мы найдем последующие главные компоненты.

Но данная задача является NP-сложной!

Методы решения задачи SparsePCA

- a regression framework^[1]
- a convex relaxation/semidefinite programming framework^[2]
- a generalized power method framework^[3]
- an alternating maximization framework^[4]
- forward/backward greedy search and exact methods using branch-and-bound techniques^[5]
- Bayesian formulation framework^[6]
- [1] H. Zou; T. Hastie; R. Tibshirani (2006). "Sparse principal component analysis"
- [2] -Alexandre d'Aspremont; Laurent El Ghaoui; Michael I. Jordan; Gert R. G. Lanckriet (2007). "A Direct Formulation for Sparse PCA Using Semidefinite Programming"
- [3] Michel Journee; Yurii Nesterov; Peter Richtarik; Rodolphe Sepulchre (2010). "Generalized Power Method for Sparse Principal Component Analysis"
- [4] Peter Richtarik; Martin Takac; S. Damla Ahipasaoglu (2012). "Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes"
- [5] Baback Moghaddam; Yair Weiss; Shai Avidan (2005). "Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms"

- 1. Let A start at U[,1:k], the loadings of the first k ordinary principal components.
- 2. Given a fixed $A = [\alpha_1, ..., \alpha_k]$, solve the following elastic net problem for j = 1, 2, ..., k

$$\beta_j = \arg\min_{\beta} (\alpha_j - \beta)^T X^T X (\alpha_j - \beta) + \lambda \|\beta\|^2 + \lambda_{1,j} \|\beta\|_1$$

- 3. For a fixed $B = [\beta_1, \dots, \beta_k]$, compute the SVD of $X^TXB = VDU^T$, then update $A = VU^T$
- 4. Repeat Steps 2–3, until convergence
- 5. Normalization $\hat{U}_j = \frac{\beta_j}{\|\beta_j\|}, \quad j = 1, \dots, k$

input: Data matrix $X \in R^{p \times n}$, Sparsity controlling parameter $\gamma \geq 0$, initial iterate $\beta \in S^p$ output: A locally optimal pattern P

begin

repeat

$$\beta = \sum_{i=1}^{n} [|x_i^T \beta - \gamma]_+ sign(x_i^T \beta) x_i$$
$$\beta = \frac{\beta}{\|\beta\|}$$

until stopping criterion is satisfied Construct vector $P \in \{0, 1\}^n$ such that

$$\begin{cases} p_i = 1 & \text{if } |x_i^T \beta| \ge \gamma \\ p_i = 0 & \text{otherwise} \end{cases}$$

end

input: Data matrix $X \in R^{p \times n}$, Sparsity controlling parameter $\gamma \geq 0$, initial iterate $\beta \in S^p$ output: A locally optimal pattern P

begin

repeat

$$\beta = \sum_{i=1}^{n} [sign((x_i^T \beta)^2 - \gamma)]_{+} x_i^T \beta x_i$$
$$\beta = \frac{\beta}{\|\beta\|}$$

until stopping criterion is satisfied Construct vector $P \in \{0, 1\}^n$ such that

$$\begin{cases} p_i = 1 & \text{if } (x_i^T \beta)^2 \ge \gamma \\ p_i = 0 & \text{otherwise} \end{cases}$$

end

input: Data matrix $X \in R^{p \times n}$, Sparsity controlling vector $[\gamma_1, \ldots, \gamma_m]^T \geq 0$, Parameters $\mu_1, \ldots, \mu_m > 0$, initial iterate $B \in S_m^p$

output: A locally optimal pattern P

begin

repeat

for
$$j = 1, ..., m$$
 do

$$\beta_j = \sum_{i=1}^n \mu_j [\mu_j | x_i^T \beta| - \gamma_j]_+ sign(x_i^T \beta) x_i$$

$$B = Polar(B)$$

until stopping criterion is satisfied

Construct vector $P \in \{0,1\}^{n \times m}$ such that

$$\left\{ \begin{array}{l} p_{ij} = 1 & \text{if } \mu_j | x_i^T \beta | \geq \gamma_j \\ p_{ij} = 0 & \text{otherwise} \end{array} \right.$$

input: Data matrix $X \in R^{p \times n}$, Sparsity controlling vector $[\gamma_1, \ldots, \gamma_m]^T \geq 0$, Parameters $\mu_1, \ldots, \mu_m > 0$, initial iterate $B \in \mathcal{S}_m^p$

output: A locally optimal pattern P

begin

repeat

for
$$j = 1, ..., m$$
 do

$$\beta_j = \sum_{i=1}^n \mu_j^2 [sign((\mu_j x_i^T \beta_j)^2 - \gamma_j)]_+ x_i^T \beta x_i$$

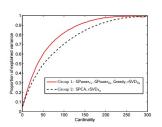
$$B = Polar(B)$$

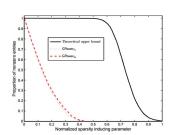
until stopping criterion is satisfied

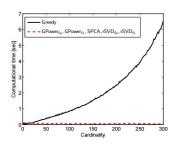
Construct vector $P \in \{0,1\}^{n \times m}$ such that

$$\begin{cases} p_{ij} = 1 & \text{if } (\mu_j x_i^T \beta_j)^2 \ge \gamma_j \\ p_{ij} = 0 & \text{otherwise} \end{cases}$$

- GPower_{I1} Single-unit sparse PCA via I₁-penalty
- GPower_{I0} Single-unit sparse PCA via I₀-penalty
- $GPower_{l_1,m}$ Block sparse PCA via l_1 -penalty
- GPower_{I0,m} Block sparse PCA via I₀-penalty
- Greedy Greedy method
- SPCA SPCA algorithm
- $rSVD_{l_1}$ sPCA-rSVD algorithm with an l_1 -penalty ("soft thresholding")
- $rSVD_{l_0}$ sPCA-rSVD algorithm with an l_0 -penalty ("hard thresholding")





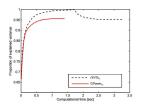


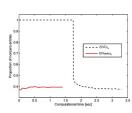
$p \times n$	100×1000	250×2500	500×5000	750×7500	1000×10000
GPower _{ℓ1}	0.10	0.86	2.45	4.28	5.86
GPower _{ℓ0}	0.03	0.42	1.21	2.07	2.85
SPCA	0.24	2.92	14.5	40.7	82.2
$rSVD_{\ell_1}$	0.19	2.42	3.97	7.51	9.59
$rSVD_{\ell_0}$	0.18	2.14	3.85	6.94	8.34

Average computational time for the extraction of one component (in seconds).

$p \times n$	500×1000	500×2000	500×4000	500×8000	500×16000
GPower _{ℓ1}	0.42	0.92	2.00	4.00	8.54
GPower _{lo}	0.18	0.42	0.96	2.14	4.55
SPCA	5.20	7.20	12.0	22.6	44.7
rSVD _{ℓ1}	1.05	2.12	3.63	7.43	14.4
$rSVD_{\ell_0}$	1.02	1.97	3.45	6.58	13.2

Average computational time for the extraction of one component (in seconds).





$p \times n$	50×500	100×1000	250×2500	500×5000	750×7500
GPower _{ℓ1}	0.22	0.56	4.62	12.6	20.4
$GPower_{\ell_0}$	0.06	0.17	2.15	6.16	10.3
$GPower_{\ell_1,m}$	0.09	0.28	3.50	12.4	23.0
$GPower_{\ell_0,m}$	0.05	0.14	2.39	7.7	12.4
SPCA	0.61	1.47	13.4	48.3	113.3
$rSVD_{\ell_1}$	0.29	1.12	7.72	22.6	46.1
$rSVD_{\ell_0}$	0.28	1.03	7.21	20.7	41.2

Average computational time for the extraction of m = 5 components (in seconds).

Method	Parameters	Total cardinality	Prop. of explained variance
$rSVD_{\ell_1}$	see Shen and Huang (2008)	25	0.7924
SPCA	see Zou et al. (2006)	18	0.7680
Greedy	cardinalities: 6-2-3-1-1-1	14	0.7150
	cardinalities: 5-2-2-1-1-1	12	0.5406
GPower _{ℓ1}	$\gamma_i/\overline{\gamma}_i = 0.22$, for $j = 1, \dots, 6$	25	0.8083
	$\gamma_i/\overline{\gamma}_i = 0.28$	18	0.7674
	$\gamma_i/\overline{\gamma}_i = 0.30$	15	0.7542
	$\gamma_i/\bar{\gamma}_i = 0.40$	13	0.7172
	$\gamma_i/\overline{\gamma}_i = 0.50$	11	0.6042
$GPower_{\ell_1,m}$	$\gamma_i / \bar{\gamma}_i = 0.17$, for $j = 1,, 6$	25	0.7733
with $\mu_j = 1$	$\gamma_j/\overline{\gamma}_j = 0.25$	17	0.7708
	$\gamma_i/\overline{\gamma}_i = 0.3$	14	0.7508
	$\gamma_j/\overline{\gamma}_j = 0.4$	13	0.7076
	$\gamma_j/\overline{\gamma}_j = 0.45$	11	0.6603
$GPower_{\ell_1,m}$	$\gamma_i / \overline{\gamma_i} = 0.18$, for $j = 1,, 6$	25	0.8111
.,	$\gamma_i/\overline{\gamma}_i = 0.25$	18	0.7849
with $\mu_j = \frac{1}{i}$	$\gamma_j/\overline{\gamma_j} = 0.30$	15	0.7610
,	$\gamma_j/\overline{\gamma}_j = 0.35$	13	0.7323
	$\gamma_i/\overline{\gamma}_i = 0.40$	12	0.6656

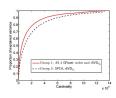
Extraction of 6 components from the pitprops data.

Study	Samples (p)	Genes (n)	Reference
Vijver	295	13319	van de Vijver et al. (2002)
Wang	285	14913	Wang et al. (2005)
Naderi	135	8278	Naderi et al. (2007)
JRH-2	101	14223	Sotiriou et al. (2006)

Breast cancer cohorts.

	Vijver	Wang	Naderi	JRH-2
GPower _{ℓ1}	5.92	5.33	2.15	2.69
GPower ₆₀	4.86	4.93	1.33	1.73
$GPower_{\ell_1,m}$	5.40	4.37	1.77	1.14
$GPower_{\ell_0,m}$	5.61	7.21	2.25	1.47
SPCA	77.7	82.1	26.7	11.2
$rSVD_{\ell_1}$	10.19	9.97	3.96	4.43
$rSVD_{\ell_0}$	9.51	9.23	3.46	3.61

Average computational times (in seconds) for the extraction of m = 10 components.



Vijver	Wang	Naderi	JRH-2
0.0728	0.0466	0.0149	0.0690
0.1493	0.1026	0.0728	0.1250
0.1250	0.1250	0.0672	0.1026
0.1418	0.1250	0.1026	0.1381
0.1362	0.1287	0.1007	0.1250
0.1362	0.1007	0.0840	0.1007
0.1213	0.1175	0.0914	0.0914
0.1175	0.0970	0.0634	0.1063
	0.0728 0.1493 0.1250 0.1418 0.1362 0.1362 0.1213	0.0728 0.0466 0.1493 0.1026 0.1250 0.1250 0.1418 0.1250 0.1362 0.1287 0.1362 0.1007 0.1213 0.1175	0.0728 0.0466 0.0149 0.1493 0.1026 0.0728 0.1250 0.1250 0.0672 0.1418 0.1250 0.1026 0.1362 0.1287 0.1007 0.1362 0.1007 0.0840 0.1213 0.1175 0.0914

PEI-values based on a set of 536 cancer-related pathways.

	Vijver	Wang	Naderi	JRH-2
PCA	0.0347	0	0.0289	0.0405
$GPower_{\ell_1}$	0.1850	0.0867	0.0983	0.1792
$GPower_{\ell_0}$	0.1676	0.0809	0.0925	0.1908
$GPower_{\ell_1,m}$	0.1908	0.1156	0.1329	0.1850
$GPower_{\ell_0,m}$	0.1850	0.1098	0.1329	0.1734
SPCA	0.1734	0.0925	0.0809	0.1214
$rSVD_{\ell_1}$	0.1387	0.0809	0.1214	0.1503
$rSVD_{\ell_0}$	0.1445	0.0867	0.0867	0.1850

PEI-values based on a set of 173 motif-regulatory gene sets.

Будем использовать методы кластерного анализа для решения задачи SparsePCA.

Алгоритм:

Строим ковариационную матрицу

Применяем к ковариационной матрице методы кластерного анализа

Для каждого отдельного кластера находим **Главные** компоненты обычным методом главных компонент

Рис.: Первые 5 компонент с помощью РСА

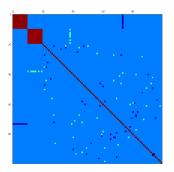


Рис.: Ковариационная матрица

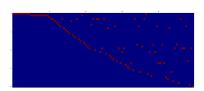


Рис.: Признаки объединенные в кластеры

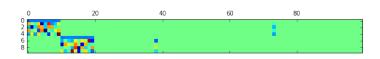


Рис.: Результат применения РСА к первым кластерам

Спасибо за внимание!