Оценка объема выборки в задачах классификации и прогнозирования

А. П. Мотренко, В. В. Стрижов

Московский физико-технический институт, $BU \Phi MU MY PAH$

Математические методы распознавания образов 17 г. Светлогорск, 23 сентября 2015.

Цель: разработать метод оценки объема выборки, необходимого для получения статистически достоверных результатов классификации.

Задача: выбрать оптимальную модель к решению задачи классификации — порождающую, разделяющую, либо комбинированную.

Предлагается для выбора оптимальной модели при решении задач классификации оценить объем выборки в рамках каждой из моделей.

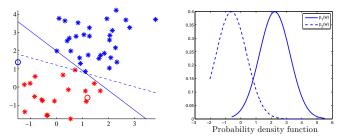
Существующие методы оценки объема выборки

Подход	Формула
Метод доверительных интервалов $Z=rac{ ilde{X}-\mu}{\sigma}\sqrt{m} o\mathcal{N}(0,1)$ при $H_0: EX=\mu$	$m = \left(\frac{z_{\alpha/2}\sigma}{\bar{X}-\mu}\right)^2$
Тест на равенство: $Z=rac{\hat{ ho}-p_0}{\sqrt{\hat{ ho}(1-\hat{ ho})}}\sqrt{m} ightarrow\mathcal{N}(0,1)$ при $H_0:\ p=p_0$ против $H_1:\ p eq p_0$	$m = \frac{(z_{Pow} + z_{\alpha/2})^2 \rho(1-\rho)}{(\hat{\rho} - \rho_0)^2}$
Тест отношения правдоподобия:	$m=rac{\gamma_m}{\Lambda^*}$, где
$\gamma_m: \chi^2_{ ho,1-\mathrm{Pow}}(\gamma_m) = \chi^2_{ ho,\alpha}$	$\Delta^* = \mathrm{E}_X \left[\frac{-X(\beta - \beta^*)}{1 + e^{-X\beta}} - \log \left(\frac{1 + e^{-X\beta}}{1 + e^{-X\beta^*}} \right) \right]$
Статистика Вальда: $Z = rac{\hat{eta} - eta^0}{\sqrt{\hat{V}}} \sqrt{m} ightarrow$	$\hat{m} = \frac{\left(\sqrt{V_1} z_{\mathbf{Pow}} - \sqrt{V_0} z_{\alpha/2}\right)^2}{(\beta^1 - \beta^0)^2}$
$\mathcal{N}(0,1)$ при \mathcal{H}_0 : $eta=eta^0$	
Заданная точность регрессии: \hat{eta}_j =	$m^* = rac{z_{lpha/2}^2}{\delta^2} \left(rac{1-\mathbf{R}^2}{1-\mathbf{R}_i^2} ight) \left(rac{\chi_{1-\gamma}^2(m-1)}{m-n-1} ight) + n + 1$
$t_{1-\alpha/2}(m-n-1)\sqrt{\frac{1-R^2}{(1-R_j^2)(m-n-1)}}$	1, где $\mathbf{R} = oldsymbol{ ho}_{yx}^{\prime} \mathbf{R}_{xx}^{-1} oldsymbol{ ho}_{yx}^{\prime}$
С помощью метода Bootstrap	$m = \left(rac{z_{lpha/2}\sigma}{ar{\chi}-\mu} ight)^2$ и
	$m = \frac{z_{\alpha/2}^2}{(\bar{X} - \mu)^2} \left(\frac{1 - R^2}{1 - R_j^2} \right) + n$

Пример выборки недостаточного объема

Дана выборка $Z=\{\mathbf{x}_i,y_i\}, i=1,\ldots,m$, где $y_i\in\{0,1\}$ — метка класса объекта, $\mathbf{x}_i\in\mathbb{R}^n$ — признаковое описание объекта.

При изменении состава выборки существенно изменяются параметры модели $\mathbf{x}^\mathsf{T}\mathbf{w} + c = 0$ и оценка априорного распределения $p(\mathbf{w})$.



Назовем объем m^* выборки из распределения P достаточным, если для всех выборок X_1 , X_2 объема $m>m^*$ из P распределения $\hat{p}_1(\mathbf{w})$ и $\hat{p}_2(\mathbf{w})$ близки согласно некоторой функции расстояния $D(\hat{p}_1||\hat{p}_2)$.

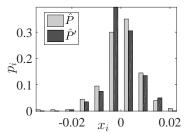
Непараметрический случай: сравнение гистограмм

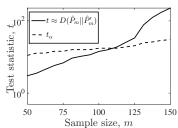
Рассмотрим выборку Z объема m и разбиение множества значений Z на N интервалов (a_i,a_{i+1}) . Набор оценок

$$\hat{P}_m(a_i < z \le a_{i+1}) = \frac{n_i}{m} = \hat{p}_i, \quad i = 1, \dots, N$$

вероятности $p_i = P(a_i < z \leq a_{i+1})$ назовем гистограммой \hat{P}_m .

Требуется ввести меру сходства гистограмм $D(\hat{P}_m||\hat{P}_m')$ и найти $m^*:D(\hat{P}_m||\hat{P}_m')>D_0$:





f-Дивергенции между гистограммами

f-дивергенция a между распределениями Q и P:

$$D_f(Q||P) = \sum P \cdot f\left(\frac{Q}{P}\right).$$

Дивергенция Кульбака-Лейблера: $f(t)=t\ln t$, $D_{\mathsf{KL}}(Q||P)=\sum Q\ln\left(\frac{Q}{P}\right)$. Свойства D_f (для f(t), строго выпуклых и дважды дифференцируемых в t=1):

- **1** Дивергенция $D_f(Q, P)$ определена на всех парах распределений с одинаковым носителем.
- \mathbf{Q} $D_f(Q,P)$ достигает минимума при P=Q.
- **3** При $m \to \infty$ выполнено

$$\frac{2m}{f''(1)}\cdot D_f(\hat{P}_m||P) \to \chi_N^2,$$

где \hat{P}_m — гистограмма, построенная по выборке X_m из распределения P.

^aS. M. Ali, S. D. Silvey. 1966. A general class of coefficients of divergence of a distribution from another. Journal of Royal Statistical Soiety. Series B (Methodological). 1(28):131-142.

Утверждение

Пусть

- (a) функция f строго выпукла и дважды дифференцируема в единице,
- **(b)** распределение $P:\mathbb{R} o [0,1]$ таково, что для всех $x\in\mathbb{R}$ P(x)
 eq 0,
- (c) выборки Z и Z' выбираются независимо из распределения P, причем $\frac{1}{\rho} \leq m'/m \leq \rho$ при всех m,m' для некоторого $0<\rho \leq 1.$

Тогда случайная величина $\frac{2m}{f''(1)} \cdot D_f(\hat{P}_m||\hat{P}_{m'})$ в пределе ограничена сверху и снизу случайными величинами из распределения χ^2_N

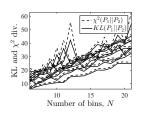
$$C_1\chi_{N}^2 \leq rac{2m}{f''(1)} \cdot D_f(\hat{P}_m||\hat{P}_{m'}) \leq C_2\chi_{N}^2,$$
 при $m, \ m' o \infty.$

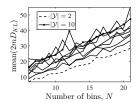
Аппроксимация D_{KL} с помощью χ^2

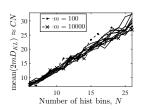
Схема доказательства: при
$$P o Q: P(x) f\left(\frac{Q(x)}{P(x)}\right) = P(x) f\left(\frac{Q(x)}{P(x)}\right) + \to 0$$
, т.к. $f(1) = 0$
$$f'(1)(Q(x) - P(x)) + \text{суммируется по } x \ltimes 0,$$

$$\frac{f''(1)}{2} \frac{(Q(x) - P(x))^2}{P(x)} + P(x) o\left(\left(\frac{Q(x)}{P(x)} - 1\right)^3\right),$$
 тогда
$$D_f(\hat{P}_m||P) = \sum_{i=1}^N p_i f\left(\frac{\hat{p}_i}{p_i}\right) \approx \frac{f''(1)}{2m} \sum_i^N \frac{(n_i - mp_i)^2}{mp_i}.$$

Зависимость параметров аппрокимации C_1 , C_2 от размера выборки m и классов $|\mathcal{Y}|$.





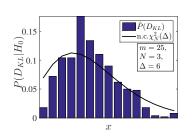


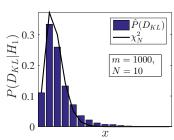
Задача двух выборок

Для оценки объема выборки сформулируем задачу двух выборок:

$$H_0: P(x) \neq P'(x)$$
 при альтернативе $H_1: P(x) = P'(x)$.

- При H_1 с.в. $C_1'\chi_N^2(\Delta) \leq D_{\mathsf{KL}}(\hat{P}_m,\hat{P}_m') \leq C_2'\chi_N^2(\Delta)$, где $\chi^2(\Delta)$ нецентральное хи-квадрат распределение с параметром нецентральности $\Delta = \frac{1}{\mathbb{D}p_i} \sum_{i=1}^N \left[\mathbb{E}(p_i p_i') \right]^2$.
- ullet При H_1 с.в. $C_1\chi_N^2 \leq D_{\mathsf{KL}}(\hat{P}_m,\hat{P}_m') \leq C_2\chi_N^2$.





Оценка объема выборки

Для оценки объема выборки m^* : $2mD_{\mathsf{KL}}(\hat{P}_m||\hat{P}_{m'})=t_{m^*}\in U(\alpha)$ приблизим критическую область

$$U(\alpha) = \{t : t < t_{\alpha}\},$$
 где $P(t < t_{\alpha}|H_0) = \alpha,$

с помощью
$$U^{\chi^2}(\alpha)=\{t:t< n.c.\chi^2_\alpha\},$$
 где $\mathrm{P}\big(t>\chi^2_\alpha|t\sim\chi^2_N(\Delta)\big)=\alpha.$

Для соблюдения условия $\mathrm{P}(H_0|H_1)=\mathrm{P}(t_m>t_\beta|H_1)\geq 1-\beta$ приблизим t_β квантилью $\chi^2_{N,\beta}$.

Из предельных неравенств следует:

$$t_{\alpha} < \chi^{2}_{N,\alpha}(\Delta) \Rightarrow U(\alpha) \subseteq U^{\chi^{2}}(\alpha)$$
, т.е. $\hat{\alpha} < \alpha$, $t_{\beta} < \chi^{2}_{N,\beta} \Rightarrow \hat{\beta} < \beta$.

Тогда

$$m^*: \chi^2_{N,\beta} < t_{m^*} < \chi^2_{N,\alpha}(\Delta).$$

Разделяющая и порождающая модели классификации

Задача классификации:

$$\hat{y} = \underset{y \in \{0,1\}}{\operatorname{argmax}} p(y|\mathbf{x}, \mathbf{w}).$$

• Разделяющая модель: параметры **w** максимизируют условное правдоподобие

$$\mathbf{w} = \mathbf{w}_{D} = \underset{\mathbf{w} \in \mathcal{W}}{\operatorname{argmax}} \ \mathbf{L}_{D}(\mathbf{w}; \mathbf{y}, X), \quad \mathbf{L}_{D}(\mathbf{w}) = \operatorname{In} p(\mathbf{y}|X, \mathbf{w}).$$

• Порождающая модель: параметры **w** максимизируют совместное правдоподобие

$$\mathbf{w} = \mathbf{w}_{\mathsf{G}} = \underset{\mathbf{w} \in \mathcal{W}}{\operatorname{argmax}} \ L_{\mathsf{G}}(\mathbf{w}; \mathbf{y}, X), \quad L_{\mathsf{G}}(\mathbf{w}) = \operatorname{In} p(\mathbf{y}, X | \mathbf{w}).$$

Логистическая регрессия и наивный байесовский классификатор

• Разделяющий классификатор имеет вид $\hat{y} = a_D(\mathbf{x}) = [\mathbf{w}_D^T \mathbf{x} > 0].$ $\mathbf{y} = [y_1, \dots, y_m]^T$ — случайный вектор с независимыми компонентами y_i :

$$p(y_i = 1 | \mathbf{x}_i, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{x}_i^\mathsf{T} \mathbf{w})},$$

• Порождающий классификатор: $\hat{y} = a_{\mathsf{G}}(\mathsf{x}) = [\mathsf{w}_{\mathsf{G}}^{\mathsf{T}}\mathsf{x} > 0]$, где $\mathsf{w} = [c, \beta]$.

Параметры $eta=\Sigma^{-1}(\mu_1-\mu_0)$, $c=\ln\frac{P}{1-P}-\frac{1}{2}eta^T(\mu_1+\mu_0)$ максимизируют совместное правдоподобие

$$\ln p(\mathbf{y}, X | \mathbf{w}) = L_G(\boldsymbol{\mu}_1, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}, P) \to \max_{\boldsymbol{\mu}_1, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}, P},$$

Предполагается, что $\mathbf{x}|y \sim \mathcal{N}(\mu_y, \Sigma)$, т.е. $p(\mathbf{x}|y) = \frac{1}{\sqrt{(2\pi)^n |\Sigma^{-1}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_y)^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_y)\right).$

тогда имеет место
$$\frac{p(1|\mathbf{x})}{p(0|\mathbf{x})} = \frac{Pp(\mathbf{x}|1)}{(1-P)p(\mathbf{x}|0)} = \frac{P}{1-P} \exp\left(\boldsymbol{\beta}^\mathsf{T} \mathbf{x} + \tilde{\boldsymbol{c}}\right) = \exp\left(\mathbf{w}^\mathsf{T} \mathbf{x}\right),$$

Вероятность ошибки разделяющего и порождающего подходов

Оценим вероятность ошибки ε каждого классификаторов a_D и a_{G} частотой ошибок на выборке $Z = \{\mathbf{x}_{i}, y_{i}\}_{i=1}^{m} *:$

$$\hat{\varepsilon}_m(a) = \frac{1}{m} \sum_{i=1}^m [a(\mathbf{x}_i) \neq y_i].$$

• При $m \to \infty$ выполняется $\varepsilon_{\mathsf{G}} > \varepsilon_{\mathsf{D}}$. Учитывая соотношение $\ln L_G(\mathbf{w}) = \ln L_D(\mathbf{w}) + \ln \prod_{i=1}^m p(\mathbf{x}_i)$, получаем:

$$\prod_{i=1}^m p(y_i|\mathbf{x_i},\mathbf{w_D}) > \prod_{i=1}^m p(y_i|\mathbf{x}_i,\mathbf{w_G}),$$
 поэтому при $m \to \infty$ с высокой вероятностью выполняется

$$a_{D}(\mathbf{x}) > a_{G}(\mathbf{x})$$
 для $y = 1$, $a_{D}(\mathbf{x}) < a_{G}(\mathbf{x})$ для $y = 0$.

ullet При mpprox 1 за счет регуляризатора $\ln\prod_{i=1}^m p(\mathbf{x}_i)$ в L_{G} выполняется $\varepsilon_{\rm G} < \varepsilon_{\rm D}$.

 $[^]st$ A. Y. Ng, M. I. Jordan. On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes, 2002.

Комбинация моделей

Достоинства моделей:

- Разделяющие модели более точны $\varepsilon_D < \varepsilon_G$ в случае если априорное распределение p(X) плохо описывает истинное распределение данных.
- При малых m, $\varepsilon_{\rm D}>\varepsilon_{\rm G}$; порождающие модели также позволяют учитывать неразмеченные данные.

Линейная комбинация:

$$\mathbf{w}_{\lambda} = \operatorname*{argmax}_{\mathbf{w}} \mathcal{L}_{\lambda}(\mathbf{w}), \quad \mathcal{L}_{\lambda}(\mathbf{w}) = \lambda \mathcal{L}_{\mathcal{D}}(\mathbf{w}) + (1 - \lambda)\mathcal{L}_{\mathsf{G}}(\mathbf{w})$$

- $\lambda \to 1 \Leftrightarrow \mathbf{w} \to \mathbf{w}_{\mathsf{D}}$;
- $\lambda \to 0 \Leftrightarrow \mathbf{w} \to \mathbf{w}_{\mathsf{G}}$.

Комбинированная вероятностная модель

Построим комбинированную модель с параметрами $\mathbf{w}_{\lambda} = (\mathbf{w}_{\mathsf{D}}, \mathbf{w}_{\mathsf{G}})$, где

$$\mathbf{w}_{\lambda} = \underset{\mathbf{w}}{\operatorname{argmax}} \operatorname{In} p(X, \mathbf{y}, \mathbf{w}_{\lambda}),$$

$$p(X,\mathbf{y},\mathbf{w}_{\lambda}) = p(\mathbf{w}_{\mathsf{D}},\mathbf{w}_{\mathsf{G}}) \left[\prod_{i \in 1}^{n} p(y_{i}|\mathbf{x}_{i},\mathbf{w}_{\mathsf{D}}) \right] \left[\prod_{i \in 1}^{n} p(\mathbf{x}_{i}|\mathbf{w}_{\mathsf{G}}) \right].$$

Задание нормального апостериорного распределения параметров \mathbf{w}_{λ}

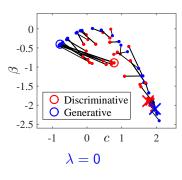
$$p(\mathbf{w}_{\mathsf{D}}, \mathbf{w}_{\mathsf{G}}) \propto p(\mathbf{w}_{\mathsf{D}}) p(\mathbf{w}_{\mathsf{G}}) \frac{1}{\sigma} e^{\left(-\frac{1}{2\sigma^2} ||\mathbf{w}_{\mathsf{D}} - \mathbf{w}_{\mathsf{G}}||^2\right)}, \quad \sigma(\lambda) = \left(\frac{\lambda}{1 - \lambda}\right)^2.$$

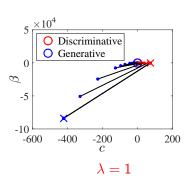
позволяет параметризовать $\lambda \in [0,1]$ переход от разделяющей к порождающей модели:

- $\lambda \to 0 \Rightarrow \sigma(\lambda) \to 0 \Rightarrow p(\mathbf{w}_{D}, \mathbf{w}_{G}) \approx p(\mathbf{w}_{D})\delta(\mathbf{w}_{D} \mathbf{w}_{G}).$
- $\lambda \to 1 \Rightarrow \sigma(\lambda) \to \infty \Rightarrow p(\mathbf{w}_D, \mathbf{w}_G) \approx p(\mathbf{w}_D)p(\mathbf{w}_G)$.

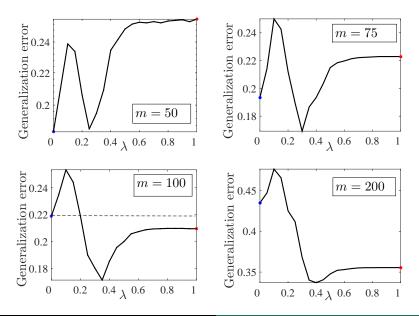
Оценка параметров \mathbf{w}_{λ}

Итерации настройки параметров $\mathbf{w} = [\beta, c]$ при экстремальных значениях параметра λ без дополнительной регуляризации (бесконечная дисперсия априорных распределений $p(\mathbf{w})$).





Пример: ошибка классификации $\hat{\varepsilon}_m(\lambda)$, $x \sim \mathcal{N}(\mu_y, \sigma_y^2)$



Оценка объема выборки

$$D_{\mathsf{KL}}(\lambda) = \int_{\mathbf{w}} p(\mathbf{w}|D_1, \alpha, \lambda) \ln \frac{p(\mathbf{w}|D_1, \alpha, \lambda)}{p(\mathbf{w}|D_2, \alpha, \lambda)} d\mathbf{w}.$$

Выражение для $p(\mathbf{w}|D,\alpha,\lambda)$ найдем с помощью формулы Байеса

$$p(\mathbf{w}_{\lambda}|D,\alpha,\lambda) = \frac{p(D|\mathbf{w}_{\lambda})p(\mathbf{w}_{\lambda}|\alpha,\lambda)}{p(D|\alpha,\lambda)},$$

где $p(D|\mathbf{w}_{\lambda}) = p(\mathbf{y}|X, \mathbf{w}_{\mathsf{D}})p(X|\mathbf{w}_{\mathsf{G}})$ — правдоподобие данных, $p(\mathbf{w}_{\lambda}|\alpha, \lambda) = p(\mathbf{w}_{\mathsf{D}}, \mathbf{w}_{\mathsf{G}}|\alpha, \lambda)$ — плотность распределения параметров модели, и

$$p(D|\alpha,\lambda) = \int p(D|\mathbf{w}_{\lambda})p(\mathbf{w}_{\lambda}|\alpha,\lambda)d\mathbf{w}.$$

Для определения m^*

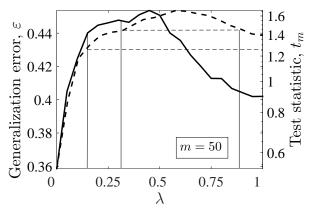
• в разделяющем случае положим

$$p(D|\mathbf{w}_{\lambda}) = p(\mathbf{y}|X, \mathbf{w}_{D}), \ p(\mathbf{w}_{\lambda}|\alpha, \lambda) = p(\mathbf{w}_{D}|\alpha);$$

• в порождающем случае:

$$p(D|\mathbf{w}_{\lambda}) = p(\mathbf{y}, X|\mathbf{w}_{G}), \ p(\mathbf{w}_{\lambda}|\alpha, \lambda) = p(\mathbf{w}_{G}|\alpha).$$

Сравнение $D_{\mathsf{KL}}(\lambda)$ и $\varepsilon_{\mathsf{m}}(\lambda)$



m	50	75	100	200	500
$\cos(D_{KL}(\lambda), \varepsilon_{m}(\lambda))$	0.916	0.933	0.926	0.969	0.8622

Результаты

- Рассмотрена задача оценки объема выборки в задаче классификаци с учетом используемой модели.
- Предложен способ оценки объема выборки, основанный на анализе распределения параметров модели.
- Предложенный способ проиллюстрирован задачей выбора между порождающим и разделяющим подходами к решению задачи классификации.

А. П. Мотренко, В. В. Стрижов. Построение агрегированных прогнозов объемов железнодорожных грузоперевозок с использованием расстояния Кульбака—Лейблера. Информатика и ее применениия, 2014, 8(2), 86-97. А. Motrenko, V. Strijov and G.-W. Weber. Sample Size Determination for Logistic Regression. Journal of Computational and Applied Mathematics, 2014, 255, 743-752.