
Neural networks - Victor Kitov

Neural networks

Victor Kitov

v.v.kitov@yandex.ru

1/44

v.v.kitov@yandex.ru

Neural networks - Victor Kitov

Introduction

Table of Contents

1 Introduction

2 Definition

3 Output generation

4 Weight space symmetries

5 Neural network optimization

6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

2/44

Neural networks - Victor Kitov

Introduction

History

Neural networks originally appeared as an attempt to model

human brain

Human brain consists of multiple interconnected neuron cells

cerebral cortex (the largest part) is estimated to contain

15–33 billion neurons

communication is performed by sending electrical and

electro-chemical signals

signals are transmitted through axons - long thin parts of

neurons.
3/44

Neural networks - Victor Kitov

Definition

Table of Contents

1 Introduction

2 Definition

3 Output generation

4 Weight space symmetries

5 Neural network optimization

6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

4/44

Neural networks - Victor Kitov

Definition

Definition

linear / logistic regression - simplest case

acyclic directed graph

verticals called neurons

edges correspond to certain weighs

Structure of neural network:

1-input layer

2-hidden layers

3-output layer
5/44

Neural networks - Victor Kitov

Definition

Definition

Each neuron j is associated a non-linear transformation ϕ.

For multilayer perceptron class neural networks ϕ belongs to

a class of activation functions.

Most common activation functions:

sigmoidal: σ(x) = 1
1+e−x

1-layer neural network with sigmoidal activation is equivalent to

logistic regression

hyperbolic tangent: tangh(x) = e
x−e

−x

ex+e−x

6/44

Neural networks - Victor Kitov

Definition

Activation functions

Activation functions are smooth approximations of step functions:

σ(ax) limits to 0/1-step function as a→∞

tangh(ax) limits to -1/1-step function as a→∞

7/44

Neural networks - Victor Kitov

Definition

Definition details

Label each neuron with integer i.

Denote: Ii - input to neuron i, Oi - output of neuron i

Output of neuron i: Oi = A(Ii), where A is activation

function.

Input to neuron i: Ii =
∑

k∈inc(i) wkiOk + wk0,

wk0 is the bias term

inc(i) is a set of neurons with outgoing edges to neuron i.

further we will assume that at each layer there is a vertex

with constant output Oconst ≡ 1, so we can simplify notation

Ii =
∑

k∈inc(i)

wkiOk

8/44

Neural networks - Victor Kitov

Output generation

Table of Contents

1 Introduction

2 Definition

3 Output generation

4 Weight space symmetries

5 Neural network optimization

6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

9/44

Neural networks - Victor Kitov

Output generation

Output generation

Forward propagation is a process of successive calculations

of neuron outputs for given features.

10/44

Neural networks - Victor Kitov

Output generation

Output generation

Output layer transformations

regression: ϕ(I) = I

classification:

2 classes: sigmoid, indicating target class probability

ϕ(I) =
1

1 + e−I

multiple classes: softmax, indicating probabilities of each

class:

ϕ(Ii) =
eOi∑

k∈OL
eOk

, i ∈ OL

where OL denotes neuron indices at output layer.

11/44

Neural networks - Victor Kitov

Output generation

Generalizations

each neuron j may have custom non-linear transformation ϕj

weights may be constrained:

non-negative

equal weights

etc.

layer skips are possible

Not considered here: RBF-networks, recurrent networks.
12/44

Neural networks - Victor Kitov

Output generation

Number of layers selection

Number of layers usually denotes all layers except input layer

(hidden layers+output layer)

We will consider only continuous activation functions.

Classification:

single layer network selects arbitrary half-spaces

2-layer network selects arbitrary convex polyhedron (by

intersection of 1-layer outputs)

therefore it can approximate arbitrary convex sets

3-layer network selects (by union of 2-layer outputs) arbitrary

finite sets of polyhedra

therefore it can approximate almost all sets with well defined

volume (Borel measurable)

13/44

Neural networks - Victor Kitov

Output generation

Number of layers selection

Regression

single layer can approximate arbitrary linear function

2-layer network can model indicator function of arbitrary

polyhedron

3-layer network can uniformly approximate arbitrary continuous

function (as sum of indicators of various polyhedra)

Sufficient amount of layers

Any continuous function on a compact space can be uniformly

approximated by 2-layer neural network with linear output and

wide range of activation functions (excluding polynomial).

In practice often it is more convenient to use more layers

with fewer amount of neurons

model becomes more interpretable and tunable

14/44

Neural networks - Victor Kitov

Output generation

Neural network architecture selection

Network architecture selection:

increasing complexity (control by validation error)

decresing complexity (“optimal brain damage”)

may be used for feature selection

15/44

Neural networks - Victor Kitov

Weight space symmetries

Table of Contents

1 Introduction

2 Definition

3 Output generation

4 Weight space symmetries

5 Neural network optimization

6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

16/44

Neural networks - Victor Kitov

Weight space symmetries

Weight space symmetries

Consider a neural network with 1 hidden layer

with tangh(x) activation functions

consisting of M neurons

17/44

Neural networks - Victor Kitov

Weight space symmetries

Weight space symmetries

The following transformations in weight space lead to neural

networks with equivalent outputs:

for any neuron in hidden layer: simultaneous change of sign

of input and output weights

2M possible equivalent transformations of such kind

for any pair of neurons in the hidden layer: interchange of

input weights between the neurons and simultaneous

interchange of output weights

this is equivalent to reordering of neurons in the hidden layer,

so there are M! such orderings

2MM! equivalent transformations exist in total.

For neural network with K hidden layers, consisting of

Mk, k = 1, 2, ...K neurons each, we obtain
∏K

k=1 2MkMk!
equivalent neural networks.

In general case these are the only symmetries existing in the

weights space.

18/44

Neural networks - Victor Kitov

Neural network optimization

Table of Contents

1 Introduction

2 Definition

3 Output generation

4 Weight space symmetries

5 Neural network optimization

6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

19/44

Neural networks - Victor Kitov

Neural network optimization

Network optimization: regression

Single output:

1

N

N∑
n=1

(ŷn(xn)− yn)
2 → min

w

K outputs

1

NK

N∑
n=1

K∑
k=1

(ŷnk(xn)− ynk)
2 → min

w

20/44

Neural networks - Victor Kitov

Neural network optimization

Network optimization: regression

Single output:

1

N

N∑
n=1

(ŷn(xn)− yn)
2 → min

w

K outputs

1

NK

N∑
n=1

K∑
k=1

(ŷnk(xn)− ynk)
2 → min

w

20/44

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classification

Two classes (y ∈ {0, 1}, p = P(y = 1)):

N∏
n=1

p(yn = 1|xn)
yn [1− p(yn = 1|xn)]

1−yn → max
w

C classes (ync = I{yn = c}):

N∏
n=1

C∏
c=1

p(yn = c|xn)
ync → max

w

In practice log-likelihood is maximized.

21/44

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classification

Two classes (y ∈ {0, 1}, p = P(y = 1)):

N∏
n=1

p(yn = 1|xn)
yn [1− p(yn = 1|xn)]

1−yn → max
w

C classes (ync = I{yn = c}):

N∏
n=1

C∏
c=1

p(yn = c|xn)
ync → max

w

In practice log-likelihood is maximized.

21/44

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classification

Two classes (y ∈ {0, 1}, p = P(y = 1)):

N∏
n=1

p(yn = 1|xn)
yn [1− p(yn = 1|xn)]

1−yn → max
w

C classes (ync = I{yn = c}):

N∏
n=1

C∏
c=1

p(yn = c|xn)
ync → max

w

In practice log-likelihood is maximized.

21/44

Neural networks - Victor Kitov

Neural network optimization

Neural network optimization

Let W denote the total dimensionality of weights space

Let E(ŷ, y) denote the loss function of output

We may optimize neural network using gradient descent:

while (stop criteria not met):
wk+1 = wk − η∇E(wk)

Standardization of features makes gradient descend

converge faster

Other optimization methods are more efficient (conjugate

gradients)

22/44

Neural networks - Victor Kitov

Neural network optimization

Neural network optimization

Direct ∇E(w) calculation, using

∂E

∂wi

=
E(w + εi)− E(w)

ε
+ O(ε)

or better

∂E

∂wi

=
E(w + εi)− E(w − εi)

ε
+ O(ε2)

has complexity O(W2) [W forward propagations to evaluate

W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all

derivatives.

23/44

Neural networks - Victor Kitov

Neural network optimization

Multiple local optima problem

Instability with respect to:

different starting parameter values

different subsamples

different feature selections

Solutions

select best optimum from local optima

average predictions for different local optima

24/44

Neural networks - Victor Kitov

Backpropagation algorithm

Table of Contents

1 Introduction

2 Definition

3 Output generation

4 Weight space symmetries

5 Neural network optimization

6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

25/44

Neural networks - Victor Kitov

Backpropagation algorithm

Definitions

Denote wij be the weight of edge, connecting i-th and j-th

neuron.

Define δj =
∂E
∂Ij

= ∂E
∂Oj

∂Oj

∂Ij

Since E depends on wij through the following functional

relationship E(wij) ≡ E(Oj(Ij(wij))), using the chain rule we

obtain:
∂E

∂wij

=
∂E

∂Ij

∂Ij
∂wij

= δjOi

because
∂Ij
∂wij

= ∂
∂wij

(∑
k∈inc(j) wkjOk

)
= Oi, where inc(j) is a

set of all neurons with outgoing edges to neuron j.

∂E
∂Ij

= ∂E
∂Oj

∂Oj

∂Ij
= ∂E

∂Oj
ϕ′(Ij), where ϕ is the activation function.

26/44

Neural networks - Victor Kitov

Backpropagation algorithm

Output layer

If neuron j belongs to the output node, then error ∂E
∂Oj

is

calculated directly.

For output layer deltas are calculated directly:

δj =
∂E

∂Oj

∂Oj

∂Ij
=

∂E

∂Oj

ϕ′(Ij) (1)

example for training set = {single point x and true vector of

outputs (y1, ...y|OL|)}:

for E = 1
2

∑
j∈OL(Oj − yj)

2 :

∂E

∂Oj

= Oj − yj

for ϕ(I) = sigm(I):

ϕ′(Ij) = sigm(Ij) (1− sigm(Ij)) = Oj(1− Oj)

finally

δj = (Oj − yj)Oj(1− Oj)27/44

Neural networks - Victor Kitov

Backpropagation algorithm

Inner layer

If neuron j belongs some hidden layer, denote

out(j) = {k1, k2, ...km} the set of all neurons, receiving

output from neuron j.

The effect of Oj on E is fully absorbed by Ik1,Ik2
, ...Ikm

, so

∂E(Oj)

∂Oj

=
∂E(Ik1,Ik2

, ...Ikm
)

∂Oj

=
∑

k∈out(j)

(
∂E

∂Ik

∂Ik
∂Oj

)
=

∑
k∈out(j)

(
δkwjk

)
So for layers other than output layer we have:

δj =
∂E

∂Ij
=

∂E

∂Oj

∂Oj

∂Ij
=

∑
k∈out(j)

(
δkwjk

)
ϕ′(Ij) (2)

Weight derivatives are calculated using errors and outputs:

∂E

∂wij

=
∂E

∂Ij

∂Ij
∂wij

= δjOi (3)

28/44

Neural networks - Victor Kitov

Backpropagation algorithm

Backpropagation

Backpropagation algorithm:

1 Forward propagate xn to the neural network, store all inputs

Ii and outputs Oi for each neuron.
2 Calculate δi for all i ∈ OL using (1).
3 Backpropagate δi from final layer backwards layer by layer

using (2).
4 Using calculated deltas and outputs calculate ∂E

∂wij
with (3).

Algorithm complexity: O(W).

Updates:

batch

online

sequential sampling

randomized sampling

29/44

Neural networks - Victor Kitov

Backpropagation algorithm

Regularization

Constrain model complexity directly

constrain number of neurons

constrain number of layers

impose constraints on weights

Take a flexible model

use early stopping during iterative evaluation (by controlling

validation error)

quadratic regularization

Ẽ(w) = E(w) + λ
∑

i

w2
i

alternative regularization (penalizes stronger smaller weights)

Ẽ(w) = E(w) + λ
∑

i

w2
i /(1 + w2

i)

30/44

Neural networks - Victor Kitov

Invariances

Table of Contents

1 Introduction

2 Definition

3 Output generation

4 Weight space symmetries

5 Neural network optimization

6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

31/44

Neural networks - Victor Kitov

Invariances

Invariances

It may happen that solution should not depend on certain

kinds of transformations in the input space.

Example: character recognition task

translation invariance

scale invariance

invariance to small rotations

invariance to small uniform noise

32/44

Neural networks - Victor Kitov

Invariances

Invariances

Approaches to build an invariant model:

augment training objects with their transformed copies

according to given invariances

amount of possible transformations grows exponentially with

the number of invariances

add regularization term to the target cost function, which

penalizes changes in output after invariant transformations

see tangent propagation

extract features that are invariant to transformations

build the invariance properties into the structure of neural

network

see convolutional neural networks

33/44

Neural networks - Victor Kitov

Invariances

Augmentation of training samples

1 generate a random set of invariant transformations

2 apply these transformations to training objects

3 obtain new training objects

34/44

Neural networks - Victor Kitov

Invariances

Tangent propagation

Denote s(x, ξ) be vector x after invariant transformation

parametrized by ξ.
Denote

τn =
∂s(xn, ξ)

∂ξ

∣∣∣∣
ξ=0

, Jki =
∂yk

∂xi

We want
∂yk

∂ξ

∣∣∣
ξ=0

to be as small, as possible.

Sensitivity of yk to small invariant transformation:

∂yk

∂ξ

∣∣∣∣
ξ=0

=
D∑

i=1

∂yk

∂xi

∂xi

∂ξ
=

D∑
i=1

Jkiτi

Tangent propagation - modify target cost function:

Ẽ = E + λ
∑

n

∑
k

(
D∑

i=1

Jnkiτni

)2

35/44

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

Convolutional neural network:

Used for image analysis

Consists of a set of convolutional layer / sub-sampling layer

pairs and aggregating layer

36/44

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

Convolutional layer

Convolutional layer consists of a number of feature maps

Feature map has the same dimensionality as input layer

Locality: each neuron in the feature map takes output from

small neigborhood of input layer neurons

Equivalence: the same transformation is applied by each

neuron in the feature map

obtained by constraining sets of weights to each feature map

layer neuron to be equal

similar to convolution with moving adaptive kernel

effectively it is feature extraction from a region

37/44

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

Sub-sampling layer

Consists of a number of planes, each corresponding to

respective feature map on the previous convolutional layer

Locality: Sub-sampling layer neurons take output from small

neigborhood of respective feature map neurons

neigbourhoods are chosen to be contiguous and

non-overlapping

Aggregation: input of each neuron i is: wi0 + wi1F, where

wi0, wi1 are adjustable weights and F is aggregation function

(sum or max of activations of respective feature map neurons)

Implements small translational invariance

There may be a sequence of convolutional and sub-sampling

layers

gradual dimensionality reduction

38/44

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Table of Contents

1 Introduction

2 Definition

3 Output generation

4 Weight space symmetries

5 Neural network optimization

6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

39/44

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Case study (due to Hastie et al. The Elements of

Statistical Learning)

ZIP code recognition task

40/44

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Neural network structures

Net1: no hidden layer

Net2: 1 hidden layer, 12 hidden units fully connected

Net3: 2 hidden layers, locally connected

Net4: 2 hidden layers, locally connected with weight sharing

Net5: 2 hidden layers, locally connected, 2 levels of weight

sharing

41/44

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Results

42/44

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Addition

Deep learning

Neural networks weights may be constrained to belong to

mixture density

Ẽ ← E − λP(w), where P(w) is the mixture probability of

weights

soft forcing of weights to group into similar clusters

Neural networks may model not only real value outputs, but

densities

each output - frequency of histogram bin

each output - either prior or mean or variance of mixture of

parametrized density (normal, beta, etc.)

43/44

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Conclusion

Advantages of neural networks:

can model accurately complex non-linear relationships

easily parallelizable

Disadvantages of neural networks:

hardly interpretable (“black-box” algorithm)

optimization requires skill

too many parameters

may converge slowly

may converge to inefficient local minimum far from global one

44/44

	Introduction
	Definition
	Output generation
	Weight space symmetries
	Neural network optimization
	Backpropagation algorithm
	Invariances
	Case study: ZIP codes recognition

