Neural networks

Victor Kitov

v.v.kitov@yandex.ru

Introduction

Table of Contents

1 Introduction

- 2 Definition
- Output generation
- Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm

🕖 Invariances

8 Case study: ZIP codes recognition

Introduction

History

 Neural networks originally appeared as an attempt to model human brain

• Human brain consists of multiple interconnected neuron cells

- cerebral cortex (the largest part) is estimated to contain 15-33 billion neurons
- communication is performed by sending electrical and electro-chemical signals
- signals are transmitted through axons long thin parts of neurons.

Table of Contents

1 Introduction

2 Definition

- Output generation
- Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm

🕖 Invariances

8 Case study: ZIP codes recognition

Definition

- linear / logistic regression simplest case
- acyclic directed graph
- verticals called neurons
- edges correspond to certain weighs

- Structure of neural network:
 - 1-input layer
 - 2-hidden layers
 - 3-output layer

Definition

- Each neuron j is associated a non-linear transformation φ .
- For multilayer perceptron class neural networks φ belongs to a class of activation functions.
- Most common activation functions:
 - sigmoidal: $\sigma(x) = \frac{1}{1+e^{-x}}$
 - 1-layer neural network with sigmoidal activation is equivalent to logistic regression

• hyperbolic tangent: $tangh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Activation functions

Activation functions are smooth approximations of step functions:

 $\sigma(ax)$ limits to 0/1-step function as $a
ightarrow\infty$

tangh(ax) limits to -1/1-step function as $a \to \infty$

Definition details

- Label each neuron with integer *i*.
- Denote: I_i input to neuron *i*, O_i output of neuron *i*
- Output of neuron *i*: $O_i = A(I_i)$, where *A* is activation function.

• Input to neuron
$$i$$
: $I_i = \sum_{k \in inc(i)} w_{ki}O_k + w_{k0}$,

- w_{k0} is the bias term
- *inc*(*i*) is a set of neurons with outgoing edges to neuron *i*.
- further we will assume that at each layer there is a vertex with constant output $O_{const} \equiv 1$, so we can simplify notation

$$I_i = \sum_{k \in inc(i)} w_{ki} O_k$$

Table of Contents

1 Introduction

2 Definition

- Output generation
 - Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm

🕖 Invariances

8 Case study: ZIP codes recognition

Output generation

• Forward propagation is a process of successive calculations of neuron outputs for given features.

Output generation

- Output layer transformations
 - regression: $\varphi(I) = I$
 - classification:
 - 2 classes: sigmoid, indicating target class probability

$$\varphi(I) = \frac{1}{1 + e^{-I}}$$

• multiple classes: softmax, indicating probabilities of each class:

$$arphi(\mathit{I}_i) = rac{\mathbf{e}^{\mathit{O}_i}}{\sum_{k\in \mathit{OL}}\mathbf{e}^{\mathit{O}_k}},\,i\in \mathit{OL}$$

where OL denotes neuron indices at output layer.

Generalizations

- each neuron *j* may have custom non-linear transformation φ_i
- weights may be constrained:
 - non-negative
 - equal weights
 - etc.
- layer skips are possible

• Not considered here: RBF-networks, recurrent networks.

Number of layers selection

- Number of layers usually denotes all layers except input layer (hidden layers+output layer)
- We will consider only continuous activation functions.
- Classification:
 - single layer network selects arbitrary half-spaces
 - 2-layer network selects arbitrary convex polyhedron (by intersection of 1-layer outputs)
 - therefore it can approximate arbitrary convex sets
 - 3-layer network selects (by union of 2-layer outputs) arbitrary finite sets of polyhedra
 - therefore it can approximate almost all sets with well defined volume (Borel measurable)

Number of layers selection

Regression

- single layer can approximate arbitrary linear function
 - 2-layer network can model indicator function of arbitrary polyhedron
 - 3-layer network can uniformly approximate arbitrary continuous function (as sum of indicators of various polyhedra)

Sufficient amount of layers

Any continuous function on a compact space can be uniformly approximated by 2-layer neural network with linear output and wide range of activation functions (excluding polynomial).

- In practice often it is more convenient to use more layers with fewer amount of neurons
 - model becomes more interpretable and tunable

Neural network architecture selection

- Network architecture selection:
 - increasing complexity (control by validation error)
 - decresing complexity ("optimal brain damage")
 - may be used for feature selection

Weight space symmetries

Table of Contents

1 Introduction

- 2 Definition
- Output generation
- Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm

Invariances

8 Case study: ZIP codes recognition

Weight space symmetries

Weight space symmetries

• Consider a neural network with 1 hidden layer

- with tangh(x) activation functions
- consisting of *M* neurons

Weight space symmetries

Weight space symmetries

- The following transformations in weight space lead to neural networks with equivalent outputs:
 - for any neuron in hidden layer: simultaneous change of sign of input and output weights
 - 2^{M} possible equivalent transformations of such kind
 - for any pair of neurons in the hidden layer: interchange of input weights between the neurons and simultaneous interchange of output weights
 - this is equivalent to reordering of neurons in the hidden layer, so there are *M*! such orderings
 - $2^{M}M!$ equivalent transformations exist in total.
 - For neural network with *K* hidden layers, consisting of M_k , k = 1, 2, ...K neurons each, we obtain $\prod_{k=1}^{K} 2^{M_k} M_k!$ equivalent neural networks.
 - In general case these are the only symmetries existing in the weights space.

Table of Contents

1 Introduction

- 2 Definition
- Output generation
- Weight space symmetries
- 5 Neural network optimization
 - 6 Backpropagation algorithm

🕖 Invariances

8 Case study: ZIP codes recognition

Neural networks - Victor Kitov

Neural network optimization

Network optimization: regression

• Single output:

$$\frac{1}{N}\sum_{n=1}^{N}(\widehat{y}_n(x_n)-y_n)^2\to\min_w$$

Neural networks - Victor Kitov

Neural network optimization

Network optimization: regression

• Single output:

$$\frac{1}{N}\sum_{n=1}^{N}(\widehat{y}_n(x_n)-y_n)^2\to\min_w$$

• K outputs

$$\frac{1}{NK}\sum_{n=1}^{N}\sum_{k=1}^{K}(\widehat{y}_{nk}(x_n)-y_{nk})^2\rightarrow\min_{w}$$

Network optimization: classification

• Two classes (
$$y \in \{0, 1\}$$
, $p = P(y = 1)$):

$$\prod_{n=1}^{N} p(y_n = 1 | x_n)^{y_n} [1 - p(y_n = 1 | x_n)]^{1-y_n} \to \max_w$$

Network optimization: classification

• Two classes (
$$y \in \{0, 1\}$$
, $p = P(y = 1)$):

$$\prod_{n=1}^{N} p(y_n = 1 | x_n)^{y_n} [1 - p(y_n = 1 | x_n)]^{1-y_n} \to \max_w$$

• C classes $(y_{nc} = \mathbb{I}\{y_n = c\})$:

$$\prod_{n=1}^{N}\prod_{c=1}^{C}\rho(y_n=c|x_n)^{y_{nc}}\to\max_w$$

Network optimization: classification

• Two classes (
$$y \in \{0, 1\}$$
, $p = P(y = 1)$):

$$\prod_{n=1}^{N} p(y_n = 1 | x_n)^{y_n} [1 - p(y_n = 1 | x_n)]^{1-y_n} \to \max_w$$

• C classes
$$(y_{nc} = \mathbb{I}\{y_n = c\})$$
:

$$\prod_{n=1}^{N}\prod_{c=1}^{C}\rho(y_n=c|x_n)^{y_{nc}}\to\max_w$$

• In practice log-likelihood is maximized.

Neural network optimization

- Let W denote the total dimensionality of weights space
- Let $E(\hat{y}, y)$ denote the loss function of output
- We may optimize neural network using gradient descent:

```
while (stop criteria not met):

w^{k+1} = w^k - \eta \nabla E(w^k)
```

- Standardization of features makes gradient descend converge faster
- Other optimization methods are more efficient (conjugate gradients)

Neural networks - Victor Kitov

Neural network optimization

Neural network optimization

• Direct $\nabla E(w)$ calculation, using

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w)}{\varepsilon} + O(\varepsilon)$$

or better

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w - \varepsilon_i)}{\varepsilon} + O(\varepsilon^2)$$

has complexity $O(W^2)$ [W forward propagations to evaluate W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all derivatives.

Multiple local optima problem

- Instability with respect to:
 - different starting parameter values
 - different subsamples
 - different feature selections
- Solutions
 - select best optimum from local optima
 - average predictions for different local optima

Table of Contents

1 Introduction

- 2 Definition
- Output generation
- Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm

7) Invariances

8 Case study: ZIP codes recognition

Definitions

- Denote w_{ij} be the weight of edge, connecting *i*-th and *j*-th neuron.
- Define $\delta_j = \frac{\partial E}{\partial I_j} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial I_j}$
- Since *E* depends on w_{ij} through the following functional relationship $E(w_{ij}) \equiv E(O_j(I_j(w_{ij})))$, using the chain rule we obtain:

$$\frac{\partial E}{\partial \mathbf{w}_{ij}} = \frac{\partial E}{\partial I_j} \frac{\partial I_j}{\partial \mathbf{w}_{ij}} = \delta_j \mathbf{O}_i$$

because $\frac{\partial I_j}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \left(\sum_{k \in inc(j)} w_{kj} O_k \right) = O_i$, where inc(j) is a set of all neurons with outgoing edges to neuron j. • $\frac{\partial E}{\partial I_i} = \frac{\partial E}{\partial O_i} \frac{\partial O_j}{\partial I_i} = \frac{\partial E}{\partial O_i} \varphi'(I_j)$, where φ is the activation function.

Output layer

- If neuron *j* belongs to the output node, then error $\frac{\partial E}{\partial O_j}$ is calculated directly.
- For output layer deltas are calculated directly:

$$\delta_j = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial I_j} = \frac{\partial E}{\partial O_j} \varphi'(I_j)$$
(1)

• example for training set = {single point x and true vector of outputs (y₁,...y_{|OL|})}:

• for
$$E = \frac{1}{2} \sum_{j \in OL} (O_j - y_j)^2$$
 :
 $\frac{\partial E}{\partial O_j} = O_j - y_j$

• for $\varphi(I) = sigm(I)$:

$$\varphi'(I_j) = sigm(I_j) \left(1 - sigm(I_j)\right) = O_j(1 - O_j)$$

finally

$$\delta_j = (Q_{j_4} - y_j) O_j (1 - O_j)$$

Inner layer

 If neuron *j* belongs some hidden layer, denote *out*(*j*) = {*k*₁, *k*₂, ...*k_m*} the set of all neurons, receiving output from neuron *j*.

• The effect of O_j on E is fully absorbed by $I_{k_1}, I_{k_2}, ..., I_{k_m}$, so

$$\frac{\partial E(O_j)}{\partial O_j} = \frac{\partial E(I_{k_1}, I_{k_2}, \dots I_{k_m})}{\partial O_j} = \sum_{k \in out(j)} \left(\frac{\partial E}{\partial I_k} \frac{\partial I_k}{\partial O_j} \right) = \sum_{k \in out(j)} \left(\delta_k w_{jk} \right)$$

• So for layers other than output layer we have:

$$\delta_j = \frac{\partial E}{\partial I_j} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial I_j} = \sum_{k \in out(j)} \left(\delta_k w_{jk} \right) \varphi'(I_j)$$
(2)

• Weight derivatives are calculated using errors and outputs:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial I_j} \frac{\partial I_j}{\partial w_{ij}} = \delta_j O_i$$
(3)

28/44

Backpropagation

- Backpropagation algorithm:
 - Forward propagate x_n to the neural network, store all inputs I_i and outputs O_i for each neuron.
 - 2 Calculate δ_i for all $i \in OL$ using (1).
 - Solution Backpropagate δ_i from final layer backwards layer by layer using (2).

(4) Using calculated deltas and outputs calculate $\frac{\partial E}{\partial w_{ii}}$ with (3).

- Algorithm complexity: O(W).
- Updates:
 - batch
 - online
 - sequential sampling
 - randomized sampling

Regularization

- Constrain model complexity directly
 - constrain number of neurons
 - constrain number of layers
 - impose constraints on weights
- Take a flexible model
 - use early stopping during iterative evaluation (by controlling validation error)
 - quadratic regularization

$$\tilde{E}(w) = E(w) + \lambda \sum_{i} w_{i}^{2}$$

• alternative regularization (penalizes stronger smaller weights)

$$\tilde{E}(w) = E(w) + \lambda \sum_{i} \frac{w_i^2}{(1+w_i^2)}$$

Table of Contents

1 Introduction

- 2 Definition
- Output generation
- Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm

🕖 Invariances

8 Case study: ZIP codes recognition

Invariances

- It may happen that solution should not depend on certain kinds of transformations in the input space.
- Example: character recognition task
 - translation invariance
 - scale invariance
 - invariance to small rotations
 - invariance to small uniform noise

Invariances

- Approaches to build an invariant model:
 - augment training objects with their transformed copies according to given invariances
 - amount of possible transformations grows exponentially with the number of invariances
 - add regularization term to the target cost function, which penalizes changes in output after invariant transformations
 - see tangent propagation
 - extract features that are invariant to transformations
 - build the invariance properties into the structure of neural network
 - see convolutional neural networks

Augmentation of training samples

- generate a random set of invariant transformations
- apply these transformations to training objects
- obtain new training objects

Tangent propagation

- Denote s(x, ξ) be vector x after invariant transformation parametrized by ξ.
- Denote

$$\tau_n = \left. \frac{\partial \mathbf{s}(\mathbf{x}_n, \xi)}{\partial \xi} \right|_{\xi=0}, \quad J_{ki} = \frac{\partial y_k}{\partial x_i}$$

- We want $\frac{\partial y_k}{\partial \xi}\Big|_{\xi=0}$ to be as small, as possible.
- Sensitivity of y_k to small invariant transformation:

$$\left.\frac{\partial y_k}{\partial \xi}\right|_{\xi=0} = \sum_{i=1}^D \frac{\partial y_k}{\partial x_i} \frac{\partial x_i}{\partial \xi} = \sum_{i=1}^D J_{ki}\tau_i$$

• Tangent propagation - modify target cost function:

$$\tilde{E} = E + \lambda \sum_{n} \sum_{k} \left(\sum_{i=1}^{D} J_{nki} \tau_{ni} \right)^2$$

35/44

Convolutional neural networks

- Convolutional neural network:
 - Used for image analysis
 - Consists of a set of convolutional layer / sub-sampling layer pairs and aggregating layer

Convolutional neural networks

Convolutional layer

- Convolutional layer consists of a number of feature maps
- Feature map has the same dimensionality as input layer
- Locality: each neuron in the feature map takes output from small neigborhood of input layer neurons
- Equivalence: the same transformation is applied by each neuron in the feature map
 - obtained by constraining sets of weights to each feature map layer neuron to be equal
 - similar to convolution with moving adaptive kernel
 - effectively it is feature extraction from a region

Convolutional neural networks

- Sub-sampling layer
 - Consists of a number of planes, each corresponding to respective feature map on the previous convolutional layer
 - Locality: Sub-sampling layer neurons take output from small neigborhood of respective feature map neurons
 - neigbourhoods are chosen to be contiguous and non-overlapping
 - Aggregation: input of each neuron *i* is: w_{i0} + w_{i1}F, where w_{i0}, w_{i1} are adjustable weights and F is aggregation function (sum or max of activations of respective feature map neurons)
 - Implements small translational invariance
- There may be a sequence of convolutional and sub-sampling layers
 - gradual dimensionality reduction

Case study: ZIP codes recognition

Table of Contents

Introduction

- 2 Definition
- Output generation
- Weight space symmetries
- 5 Neural network optimization
- 6 Backpropagation algorithm

7 Invariances

8 Case study: ZIP codes recognition

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Case study (due to Hastie et al. The Elements of Statistical Learning)

ZIP code recognition task

Case study: ZIP codes recognition

Neural network structures

Net1: no hidden layer

Net2: 1 hidden layer, 12 hidden units fully connected

Net3: 2 hidden layers, locally connected

Net4: 2 hidden layers, locally connected with weight sharing

Net5: 2 hidden layers, locally connected, 2 levels of weight sharing

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Results

Training Epochs

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Addition

- Deep learning
- Neural networks weights may be constrained to belong to mixture density
 - $\tilde{E} \leftarrow E \lambda P(w)$, where P(w) is the mixture probability of weights
 - soft forcing of weights to group into similar clusters
- Neural networks may model not only real value outputs, but densities
 - each output frequency of histogram bin
 - each output either prior or mean or variance of mixture of parametrized density (normal, beta, etc.)

Case study: ZIP codes recognition

Conclusion

- Advantages of neural networks:
 - can model accurately complex non-linear relationships
 - easily parallelizable
- Disadvantages of neural networks:
 - hardly interpretable ("black-box" algorithm)
 - optimization requires skill
 - too many parameters
 - may converge slowly
 - may converge to inefficient local minimum far from global one