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Draft of introduction2

Suppose that one needs to build a forecasting machine for a response variable. Given a large3

set of time series, one can advance a hypothesis that they are related to this variable. Relying4

upon this hypothesis, we can use given time series as features for the forecasting machine.5

However, the values of time series could be produced with di�erent frequencies. Therefore, we6

should take into account not only the values, but the delays as well.7

The simplest model for forecast is a linear one. In the presence of large set of features8

this model can approximate the response quite well. To avoid the problem of multiscaling, we9

introduce a de�nition of delay-operators. Each delay-operator corresponds to one time series10

and represents continuous correlation function. This correlation function shows a dependence11

between the response variable and corresponding time series. Therefore, each delay-operator12

put weights on the values of corresponding time series depending on the greatness of the delay.13

Having these delay-operators, we avoid the problem of multiscaling. To �nd them, we use14

genetic programming and symbolic regression.15

If the resulted weighted linear regression model would produce poor approximation, we can16

use a nonlinear one instead. To �nd good nonlinear function, we would use symbolic regression17

as well.18

Statement19

Denote a large set of time seriesD = {si}i=N
i=1 , whereN is a number of time series. The values20

of a response variable are denoted as s0 Each time series sk (including the response variable s0) is21

a set of observations sk = {(tkj , skj )}j=N(k)
j=1 with its own number of observations N(k), where skj -s22

represent values and tkj -s represent timestamps for these values.23

Given a primitive set G = {f1, . . . , fm, x1} consisting of mathematical functions (they may

be parametric), we can construct superpositions of them. The space of such superpositions

is denoted by F . Each delay-operator dk(w, x1) lies in F and represents valid mathematical

formula. As each delay-operator dk(w, x1) should represent a good approximation for the
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correlation function between sk and s0, the parameters of dk(w, x1) are tuned to maximize

N(0)/2∑
i=1

(
s0i − s̄0

) (
sk0i − s̄k0

)
,

where sk0 is a new time series with the same timestamps with s0 and values calculated as

follows

sk0j = dk(w, t0j − tkm) · skm,

where m is an index of the last available value from sk up to the timestamp t0j of the response24

variable. To comment on more precisely, we take the closest previous value from sk, calculate25

its delay t0j − tkm from considered timestamp t0j of the response variable s
0 and �nally weight it26

by dk(w, t0j − tkm).27

Once the parameters are tuned, we can use dk(w, x1) to weight delayed values of sk. So, we

can build a linear model to forecast values of s0.

s0 =
N∑
i=1

pi · si0 + ε,

where each new time series si0 consists of values of si weighted according to their delays:

sij = dk(w, t0j − tkm) · skm, m = arg max
t0j−tkπ>0

(π)

Note, that we tune parameters on the �rst half of s0. Therefore, the prediction error is measured

on the second half

MSE =

N(0)∑
i=N(0)/2

(
s0i − ŝ0i

)2
.

To �nd explicit expressions of delay-operators we use genetic programming and symbolic

regression. Note that moreover, we can also apply them to �nd a function f , which describe

the dependence between s0 and sk well

s0 = f(s10, . . . , si0, . . . , sN0) + ε,
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