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1. Introduction

Heart rate variability (HRV) is the physiological phenomenon of variation in

the time interval between heartbeats, or, more precisely, between R-peaks

(see Fig. 1). HRV analysis is widely used to diagnose cardiovascular dis-

eases1,3. HRV reflects many regulatory processes of the human body and

therefore has a high potential to contain valuable diagnostic information

about many internal diseases, not only related to heart problems.

The information analysis of ECG signals 4, instead of averaging time

interval variability around the signal, discovers patterns of variability for

both intervals and amplitudes of consecutive R-peaks. It was found that

some of these patterns are significantly correlated with various diseases5,6.

This approach has been implemented in the multidisease diagnostic sys-

tem which permits a diagnosis of a multitude of internal diseases through

a single ECG record. This diagnostic technology is based on the encod-

ing of the electrocardiogram into a symbolic string with each cardiac cycle
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Fig. 1. Three consecutive R-peaks of the ECG signal determine two full cardiac cycles
with amplitudes Rn, Rn+1, intervals Tn, Tn+1, and “phase angles” αn, αn+1.

corresponding to one symbol. Subsequently, computational linguistics and

machine learning techniques are used to infer diagnostic rules from a train-

ing sample of ECGs collected from healthy and sick persons.

In this paper, we improve the diagnostic performance by means of fuzzy

encoding. Note that we use the term “fuzzy” only in its intuitive sense,

without regard to the fuzzy logic. Fuzzy encoding aims to smooth out the

noise and decrease uncertainties in the ECG signal. To do this, we introduce

a simple two-parametric probabilistic model of measurements. We make an

extensive cross-validation experiment to estimate the model parameters and

to show that fuzzy encoding improves the performance.

2. Discrete and Fuzzy Encoding

The informational analysis of the ECG is based on the measurement of

the interval Tn and amplitude Rn for each cardiac cycle, n = 1, . . . , N

(see Fig. 1). The sequence T1, . . . , TN represents the intervalogram of the

ECG, and the sequence R1, . . . , RN represents the amplitudogram of the

ECG. Note that in HRV analysis only intervals Tn are used; in contrast,

we analyze the variability of intervals Tn and amplitudes Rn together.

Discrete Encoding. In successive cardiac cycles, we take the signs of

increments ∆Rn, ∆Tn and ∆αn, where αn = arctan Rn

Tn

. Only six of the

eight combinations of increment signs are possible. They are encoded by

the letters of a six-character alphabet A = {A, B, C, D, E, F}:

A B C D E F

∆Rn = Rn+1 −Rn + − + − + −

∆Tn = Tn+1 − Tn + − − + + −

∆αn = αn+1 − αn + + + − − −
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Fig. 2. An example of a codegram with a sliding window of three symbols.

Fig. 3. Vector representation nw(S) of the codegram S shown in Fig. 2. Only 64 of 216
trigrams with frequency nw(S) ≥ 2 are shown.

Thus, the ECG is encoded into a sequence of characters from A called

a codegram, S = (s1, . . . , sN−1), see Fig. 2. We define a frequency pw(S) of

a trigram w = (a, b, c) with three symbols a, b, c from A in the codegram S:

pw(S) =
nw(S)

N − 3
, nw(S) =

N−3
∑

n=1

[sn = a][sn+1 = b][sn+2 = c],

where brackets transform logical values false/true into numbers 0/1.

Denote by p(S) =
(

pw(S) : w ∈ A3
)

a frequency vector of all |A|3 = 216

trigrams w in the codegram S, see Fig. 3. The informational analysis of the

ECG is based on the idea that each disease has its own diagnostic subset

of trigrams frequently observed in the presence of that disease4,6.

Fuzzy encoding. There are two reasons to consider a smooth variant of

discrete encoding. First, the ECG may contain up to 5% of outliers among

the values Rn and Tn. In discrete encoding, each outlier distorts four neigh-

boring trigrams; accordingly, the total number of distorted trigrams may

reach 20%. Second, the discreteness of the ECG digital sensor results in

uncertainties ∆Tn = 0 and ∆Rn = 0 in 5% of cardiac cycles. In such cases,

it is appropriate to consider the increment as positive or negative with equal

probabilities. In general, the smaller the increment, the greater the uncer-



January 31, 2015 23:41 WSPC Proceedings - 9in x 6in uvcb14amctm-full-eng page 4

4

Rn, mV 313 343 343 318 344 350 327 321 340 340
Tn, ms 843 843 865 828 865 880 861 808 825 825

αn, ◦ 33.4 36.6 35.7 34.6 35.8 35.8 34.2 35.8 37.1 37.1

∆Rn, mV 30 0 -25 26 6 -23 -6 19 0
∆Tn, ms 0 22 -37 37 15 -19 -53 17 0
∆αn, ◦ 3.2 -0.9 -1.1 1.2 0.0 -1.6 1.6 1.3 0.0

sn C D F A A F B A F

qn(A), % 50 6 0 93 39 0 0 84 11
qn(B), % 0 2 8 0 0 3 87 0 14
qn(C), % 50 3 0 1 11 0 10 10 25
qn(D), % 0 47 2 0 8 8 0 1 25
qn(E), % 0 41 0 6 41 0 0 5 14
qn(F ), % 0 1 90 0 1 89 3 0 11

A

B

C

D

E

F

(∆Tn,∆Rn)

(0, 0)

αn ∆T

∆R

Fig. 4. An example of discrete and fuzzy encoding. Fig. 5. Six sectors.

tainty in their sign. We can replace each character sn with a probability

distribution qn(s) overA (see Fig. 4) and redefine the frequency of a trigram

w = (a, b, c) as a probability of w averaged across the codegram S:

pw(S) =
1

N − 3

N−3
∑

n=1

qn(a) qn+1(b) qn+2(c).

To estimate the probability qn(s) from Rn, Rn+1, Tn, and Tn+1 we in-

troduce a probabilistic model of measurement. We assume that each am-

plitude Rn comes from Laplace distribution with a fixed but unknown

RMS error parameter σR, which is the same for all ECGs. For intervals Tn,

we introduce a similar model with the RMS error parameter σT . Subse-

quently, we calculate probabilities qn(s) analytically by integrating a two-

dimensional probability distribution centered at a point (∆Tn,∆Rn) over

six sectors corresponding to symbols A, B, C, D, E, F shown at Fig. 5.

Machine learning techniques are designed to learn a classifier automati-

cally from a sample of classified cases2. We learn a diagnostic rule for each

disease from a two-class training sample that contains both healthy persons

and patients, each represented by its trigram frequency vector.

In this work we compare three classification models: NB — Näıve Bayes

with greedy feature selection, LR — Logistic Regression after dimension-

ality reduction via Principal Components Analysis, and RF — Random

Forest, which is known as one of the strongest classification model. For all

classifiers we use binary features
[

pw(S) ≥ θ
]

instead of frequencies pw(S),

and optimize threshold parameter θ experimentally.
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necrosis of the femoral head toxic nodular goiter coronary heart disease

Fig. 6. The result of permutational tests for three diseases. Points indicates trigrams.
The X-axis and the Y-axis indicate the proportion of healthy and sick people correspond-
ingly, with two or more occurrences of the trigram in their codegram. The trigrams lo-
cated in the region of acceptance near the diagonal are likely to have occurred by chance
(the significance level equals 10% for the narrow region and 0.2% for the wider one). The
trigrams located in the critical region far above the diagonal are specific to the disease,
and the trigrams far below the diagonal are specific to a healthy condition.

This approach is motivated by an empirical observation that each dis-

ease induces a diagnostic subset of trigrams that are significantly more

frequent in the codegrams of sick people. Also, there are trigrams that are

highly specific to the codegrams of healthy people. Fig. 6 shows the results

of permutational statistical tests for three diseases. If the frequency of the

trigram and the class label were independent random variables, then all

trigrams would be close to the diagonal of the chart. However, many tri-

grams are located far away from the chart diagonal. This fact means that

for each disease the diagnostic subset of highly specific trigrams exists and

can be reliably determined.

Note that both discrete and fuzzy encoding can be used to calculate fea-

tures pw(S), thus enabling a comparative study of the two types of encoding

with the same performance criterion.

We measure the diagnostic rules performance using a standard 40×10-

fold cross-validation procedure. During procedure, a two-class sample of

codegrams are randomly divided into 10 equi-sized blocks 40 times. Each

block is used in turns as a testing sample, while the other nine blocks are

used as a training sample in order to learn a classifier.

For each partitioning, we calculate three performance measures, for both

training and testing samples. Sensitivity is the proportion of sick people

with true positive diagnosis. Specificity is the proportion of healthy people

with true negative diagnosis. AUC is defined as the area under the curve

of specificity as a function on sensitivity. For each of three performance

measures the higher the value, the better. From all 40 cases of partitioning

we estimate the mean AUC values as well as their confidence intervals.
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Table 1. The AUC (in percents) on testing data for three types of classifiers (RF, LR,
NB) and two types of encoding (.d for discrete and .f for fuzzy). Confidence intervals
are: ±0.26 for RF, ±0.19 for LR, and ±0.08 for NB.

disease cases RF.d RF.f LR.d LR.f NB.d NB.f RF-2 RF-4

(1) 278 98.72 99.00 99.00 98.94 98.96 99.00 95.16 94.49
(2) 324 99.24 98.86 99.26 99.07 99.24 99.01 98.11 95.49
(3) 1265 98.43 98.75 98.21 98.70 97.85 98.52 91.68 92.72
(4) 530 97.15 97.99 96.79 97.42 96.03 96.45 93.09 93.43
(5) 700 97.74 97.95 97.64 97.67 97.81 98.20 82.54 87.14
(6) 871 97.34 97.79 97.10 97.74 96.68 97.17 91.05 92.73
(7) 260 96.65 97.55 96.64 97.38 96.61 96.96 89.33 90.59
(8) 1894 97.13 97.49 96.87 97.68 96.59 97.31 87.43 90.12
(9) 748 96.07 96.90 95.73 96.04 95.17 95.72 85.56 88.10
(10) 324 95.53 96.37 95.20 95.98 94.79 95.85 88.95 92.17
(11) 340 95.21 96.25 95.06 96.17 95.51 96.44 86.29 87.60
(12) 717 95.29 96.20 95.13 96.12 95.13 95.82 86.92 87.86
(13) 654 95.09 96.16 95.14 95.94 95.14 96.03 87.80 86.90
(14) 785 94.99 95.58 94.74 95.33 94.68 95.09 86.60 89.17
(15) 781 94.43 95.26 93.58 94.74 93.38 94.28 84.06 85.97
(16) 276 92.37 92.65 92.44 92.32 91.88 91.50 81.49 84.96
(17) 260 90.03 91.82 90.03 91.07 89.56 90.34 79.39 81.77
(18) 694 88.07 88.63 87.70 87.65 86.59 86.50 76.48 82.39

3. Experiments and Results

In the experiment, we used more that 10 000 ECG records with N = 600

cardiac cycles in each. 193 ECGs were taken from healthy participants,

while the others were taken from patients who were reliably diagnosed

with one or more of the 18 diseases: (1) cholelithiasis, (2) AVN, necro-

sis of the femoral head, (3) coronary heart disease, (4) cancer, (5) chronic

hypoacidic gastritis (gastroduodenitis), (6) diabetes, (7) BPH, benign pro-

static hyperplasia, (8) HTN, hypertension, (9) TNG, toxic nodular goiter or

Plummer syndrome, (10) chronic hyperacidic gastritis (gastroduodenitis),

(11) chronic cholecystitis, (12) biliary dyskinesia, (13) urolithiasis, (14) pep-

tic ulcer, (15) hysteromyoma, (16) chronic adnexitis, (17) iron-deficiency

anemia, (18) vasoneurosis.

Table 1 compares the performance of three classifiers (Random Forest,

Logistic Regression and Näıve Bayes) on testing data for discrete and fuzzy

encoding. Fuzzy encoding gives better results for 16 of the 18 diseases.

Random Forest is usually the best choice. Nonetheless, Näıve Bayes with

feature selection is not much worse. Two additional columns RF-2 and

RF-4 show the performance of Random Forest for two simplified discrete



January 31, 2015 23:41 WSPC Proceedings - 9in x 6in uvcb14amctm-full-eng page 7

7

 

 

0 5 10 15

0

1

2

3

4

5

6

7
0.942

0.944

0.946

0.948

0.95

0.952

0.954

0.956

training testing

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.946

0.948

0.950

0.952

0.954

0.956

0.958

Fig. 7. The AUC on testing set aver-
aged across all diseases depending on σT

(X-axis) and σR (Y-axis).

Fig. 8. The AUC on training and testing
set averaged across all diseases depending
on threshold parameter θ(N − 3).

encodings. RF-2 uses a two-character alphabet for ∆Tn signs. RF-4 uses

a four-character alphabet for ∆Tn and ∆Rn signs. From the comparison we

conclude that the six-character encoding gives significantly better results.

Fig. 7 shows the AUC on testing data averaged across all diseases as

a function of the RMS error parameters σR and σT . Based on the charts we

selected the optimal values of parameters σR = 3.5 mV and σT = 10.6 ms.

Note that zero values σT = σR = 0, which corresponds to discrete encoding,

are evidently far away from being optimal.

Fig. 8 shows how the average AUC for NB classifier on testing data

depends on the frequency threshold parameter θ(N − 3). Trigrams that

occur less than twice in a codegram are not meaningful for the diagnosis.

Fig. 9 shows how the AUC for NB classifier on testing data depends on

the RMS error parameters σR and σT for 2 of the 18 diseases.

The proximity of training and testing AUCs in all charts indicates that

overfitting of NB classifier is minute, and optimal parameters could be

obtained from the training set even without cross-validation.

4. Conclusion

The information analysis of ECG signals improves the HRV analysis by two

directions. Firstly, it identifies patterns of joint variability of intervals and

amplitudes of R-peaks specific to diseases. Secondly, this type of analysis

is not restricted to cardiovascular diseases. Our experiments show that the

information analysis of the ECG signals reaches a high level of sensitivity

and specificity (90% and higher) in cross-validation experiments.

On average, fuzzy encoding helps to improve this level by 0.65%.

Future research will benefit from more accurate techniques for signal

encoding, statistical modeling, and machine learning.
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Fig. 9. AUC on training and testing set depending on σR at fixed σT = 10.6 (left-hand
charts) and depending on σT at fixed σR = 3.5 (right-hand charts) for two of 18 diseases.
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