
Learning to Rank with

Nonlinear Monotonic Ensemble

Nikita Spirin1 and Konstantin Vorontsov2

1 University of Illinois at Urbana-Champaign,
2 Dorodnicyn Computing Center of the Russian Academy of Sciences,

spirin2@illinois.edu, vokov@forecsys.ru

Abstract. Over the last decade learning to rank (L2R) has gained a
lot of attention and many algorithms have been proposed. One of the
most successful approach is to build an algorithm following the ensemble
principle. Boosting is the key representative of this approach. However,
even boosting isn’t effective when used to increase the performance of
individually strong algorithms, scenario when we want to blend already
successful L2R algorithms in order to gain an additional benefit. To ad-
dress this problem we propose a novel algorithm, based on a theory
of nonlinear monotonic ensembles, which is able to blend strong base
rankers effectively. Specifically, we provide the concept of defect of a set
of algorithms that allows to deduce a popular pairwise approach in strict
mathematical terms. Using the concept of defect, we formulate an opti-
mization problem and propose a sound method of its solution. Finally,
we conduct experiments with real data which shows the effectiveness of
the proposed approach.

1 Introduction

Learning to rank (L2R) has become a hot research topic over the last decades.
Numerous amount of methods previously applied to regression and classification
have been adapted to L2R. Specifically, one can categorize all L2R algorithms
into three big categories: pointwise (reduction of L2R to regression) [4, 8]; pair-
wise (reduction of L2R to classification) [2, 5, 7, 9, 13]; and listwise (direct opti-
mization) [3, 12,16].

One of the most popular approach that has been applied in all three categories
is boosting [5,10]. Thus, weak rankers are trained sequentially and then they are
blended in a linear composition. It is a common knowledge that boosting allows
to combine hundreds of base algorithms and isn’t inclined to overfitting [10].
However, boosting isn’t effective if we want to build an ensemble from a small set
of already strong algorithms. Particularly, one cannot build a boosted ensemble
over SVM properly. Different methods was developed to cope with this problem
and build small ensembles effectively [6, 14]. We adapted methods from [14]
to L2R domain and in this paper we propose a novel algorithm solving the
L2R problem within a nonlinear monotonic ensemble framework. Monotonic
ensembles have expanded the existing variability of ensemble learning methods
and allowed to effectively blend a small set of individually strong algorithms.

For instance, in our experiments the size of an ensemble varied from 4 to 7 base
rankers. Moreover, the algorithm in question is built on a strict mathematical
foundation, theoretically consistent with the internal structure of L2R problem
and allows to induce pairwise approach merely from theoretical constructions
instead of heuristic speculations.

1.1 The learning to rank problem

The L2R problem can be formalized as follows. There is an ordered set of ranks
Y = {r1, . . . , rK} and a set of queries Q = {q1, . . . , qn}. A list of documents
Dq = {dq1, . . . , dq,n(q)} is associated with each query q ∈ Q, where n(q) is the
number of documents associated with the query q. A factor ranking model is
admitted, i.e. each query-document pair (q, d), d ∈ Dq is represented by the
vector of features xqd =

(

f1(q, d), . . . , fm(q, d)
)

∈ R
m. Thus, the training set is

S = {xqd, r(q, d)}, q ∈ Q, d ∈ Dq,

where r(q, d) ∈ Y is the corresponding correct relevance score for a (q, d) pair.
The objective is to build a ranking function A : Rm → Y that maximizes a
performance measure on the training set and has a good generalization ability.

2 Our Method: MonoRank

2.1 Nonlinear monotonic ensemble: underlying theory

Monotonicity constraints often arise in real world machine learning tasks. For
example, we can observe such constraints in a credit scoring task where the ob-
jective is to build an algorithm that will classify applicants given their responses
to questionnaires (e. g. the bigger annual household income and value of property
the more probably a customer will pay a loan back). Generally speaking, mono-
tonicity constraints can arise in any task where the factor model is admitted,
and the order on targets is in agreement with the order on ordinal features [11].

Another application of this principle is to impose monotonicity constraints
not on features but on base algorithms predictions [6, 14]. It is very natural to
construct an ensemble of base predictors according to the following principle:
if output of a predictor is higher for an object, provided that outputs of other
predictors are the same, then the output of the entire ensemble must be also
higher for this object. This implies that the aggregating function is to be mono-
tonic. Obviously, linear blending meets the monotonicity restriction if only all
the weights are nonnegative. In this paper we use nonlinear monotonic aggregat-
ing functions and argue that monotonicity is a more natural and less restrictive
principle than the weighted voting, especially for L2R domain.

Let Ω = R
m be an object space of query-document feature vectors, according

to general factor ranking model; X and Y be partially ordered sets, B be a set
of base algorithms b : Ω → X, X is referred to as an estimation space (predic-
tions of base algorithms) and Y as an output space (labels, responses, relevance

scores). A training set of object–output pairs {(xk, yk)}
ℓ
k=1 from Ω×Y and a set

of base algorithms b1, . . . , bp induces a sequence of estimation vectors {uk}
ℓ
k=1

from Xp, where uk =
(

u1
k = b1(xk), . . . , u

p
k = bp(xk)

)

.
Let us define an order on Xp: (u1, . . . , up) ≤ (v1, . . . , vp), if ui ≤ vi for all

i = 1, . . . , p. If vectors u,v ∈ Xp aren’t comparable we will denote it as u ‖ v.
If u 6= v and u ≤ v, then u < v. A map F : Xp → Y is referred to as monotonic,
if u ≤ v implies F (u) ≤ F (v) for all u,v ∈ Xp.

Monotonic ensemble of base algorithms b1, . . . , bp withmonotonic aggregating

function F is a map a : Ω → Y defined as a(x) = F
(

b1(x), . . . , bp(x)
)

, ∀x ∈ Ω.
If base algorithms are fixed, then learning of a monotonic function F from

data can be stated as a task of monotonic interpolation. Given a sequence of
vectors {uk}

ℓ
k=1 from Xp and a sequence of targets {yk}

ℓ
k=1 from Y , one should

build such a monotonic function F that meets the correctness condition

F (uk) = yk, k = 1, . . . , ℓ. (1)

Definition 1 A pair (i, j) is defective for the base algorithm b, if b(xi) ≥ b(xj)
and yi < yj. A set of all defective pairs of b will be denoted as D(b). A set

D(b1, . . . , bp) = D(b1) ∩ · · · ∩ D(bp) will be called cumulative defect of a set

of base algorithms (b1, . . . , bp). Similarly, a pair is clean if b(xi) < b(xj) and

yi < yj. We will use C(b) and C(b1, . . . , bp) for that analogously.

Directly from this definition it can be derived that for p = 1 a monotonic
function F exists iff D(b) = ∅. Thus, the number of defective pairs |D(b)| can
play a role of a quality measure for a base algorithm b. By definition, the cu-
mulative defect D(b1, . . . , bp) consists of those defective pairs on which all base
algorithms fail. So, if we build the next base algorithm bp+1 so that it yields
the right order bp+1(xi) < bp+1(xj) on pairs (i, j) from the cumulative defect,
then D(b1, . . . , bp, bp+1) = ∅ and a monotonic function F satisfying the condi-
tion (1) exists. It is worth mentioning that artificial “emptyfication” of defect
(for example, by taking two base algorithms with inverted predictions) won’t
give practically useful results (generalization ability will be poor). Instead, base
algorithms should be trained in succession so that they all be individually strong
and latter base algorithms corrected predictions of former ones. From practical
point of view we need to analyze a defect of an ensemble D(F (b1, . . . , bp)), but
not a defect of a set of base algorithms. The next two statements from [14] show
the relationship between the sets D(F (b1, . . . , bp)) and D(b1, . . . , bp).

Lemma 1 For each p-ary monotonic aggregating function F , D(F (b1, . . . , bp)) ⊇
D(b1, . . . , bp).

Theorem 2 The cumulative defect D(b1, . . . , bp) is empty iff there exist a mono-

tonic aggregating function F such that D(F (b1, . . . , bp)) = ∅.

From the statements above it can be derived that if we build a set of base
algorithms with zero defect, then we will gain a correct, on a training set, algo-
rithm. The stronger statement on convergence is valid [14], i.e. we need only a
finite number of steps (base algorithms) in order to build a correct algorithm.

From this, an iterative strategy of building a monotonic ensemble follows.
In order to minimize the size p of a composition the choice of the next algo-
rithm bp+1 should be guided by the minimization of the number of defective
pairs produced by all preceding base algorithms:

bp+1(xi) < bp+1(xj) : (i, j) ∈ D(b1, . . . , bp). (2)

However, the correctness condition (1) is too restrictive and may result in
overfitting (generalization might be poor). The trick is to stop iterations earlier
using a stopping criterion like a degradation of quality on a validation set.

Similar to arching and boosting algorithms, we propose to enrich the opti-
mization task (2) with weights in order to add more flexibility to our model.

bp+1(xi) < bp+1(xj) with wij : (i, j) ∈ D(b1, . . . , bp), (3)

where wij is a weight of a defective pair (i, j). So, the task is to find the heaviest
consistent sub-system of inequalities. In Section 2.2 we restate this problem in
terms of quality functional and analyze its properties, crucial for L2R.

2.2 The algorithm

Inspired by outstanding performance of monotonic ensembles on classification
problems [6,14], we applied the notion of monotonic aggregation to L2R problem
and developed an algorithm for it. The algorithm is referred to as MonoRank
and the pseudocode is presented in Algorithm 1.

Let us briefly go over all key stages of the algorithm and then we will dis-
cuss each stage in detail. First, we train the first base algorithm using the entire
training set (line 3). Then we reweigh pairs (line 8) according to the strategies
discussed in the Section 2.4. It is worth noting that a monotonic aggregating
function isn’t needed after the first step, because we have only one base algo-
rithm. Then using updated weights we train the second base algorithm (line 3).
Here, all pairs are used but weights already aren’t uniform. Having built two base
algorithms, we train a monotonic aggregating function in R

2 (lines 4-6), accord-
ing to the logic we describe in Section 2.5. Then we compute current ensemble
performance on a validation set and save it for future reference (line 7). Then
the process is repeated: we reweigh pairs based on a current cumulative defect,
train the next base algorithm and then fit a monotonic aggregating function.
Stopping condition (line 9) is determined by performance of the algorithm on
an independent validation set, standard criterion in machine learning research.

The problem (3), restated as a minimization of a quality functional Q with
base algorithms b1, . . . , bp fixed, will look like:

Q(b1, . . . , bp, bp+1) =
∑

q∈Q

∑

(d,d′)

wqdd′

[

bp+1(xqd) ≥ bp+1(xqd′)
]

→ min
bp+1

, (4)

where (d, d′) are all documents from Dq such that (qd, qd′) ∈ D(b1, . . . , bp). Note
that in L2R task the indices i, j from (3) become qd, qd′ respectively, and only
those documents d, d′ are comparable that corresponds to the same query q.

Algorithm 1 MonoRank pseudocode.

Input: training set S = {xqd, r(q, d)}, q ∈ Q, d ∈ Dq;
δ — number of unsuccessful iterations before stop;

Output: nonlinear monotonic ensemble of rankers MT (xqd) of size T ;
1: initialize weights wqdd′ = 1, q ∈ Q, d, d′ ∈ Dq;
2: for t = 1, . . . , n do

3: train base ranker bt(xqd) using weights {wqdd′};
4: get predictions bt(xqd) of bt on a training set S;
5: monotonize

{(

b1(xqd), . . . , bt(xqd)
)

, r(q, d)
}

;
6: build a composition Mt(xqd) of size t;
7: T = argmin

p : p≤t

Q(Mp);

8: update {wqdd′} using Mt;
9: if t− T ≥ δ then

10: return MT ;

In classification and regression tasks special efforts are to be made to reduce
the pairwise criterion Q to usual pointwise empirical risk [14]. In L2R such tricks
are needless as long as base rankers can be learned directly from Q minimization;
this is the reason why monotonic ensembles fit so well to L2R.

2.3 Adaptation of base rankers for usage in monotonic ensemble

Now we will briefly discuss ways to modify existing L2R algorithms with the
objective to use them effectively later in a monotonic ensemble. The general
idea is to define weights on pairs of query-document feature vectors and hence
guide the learning process accordingly. In RankSVM we only have to add weights
wqdd′ whenever we come across slack variables in the objective function. Rank-
Boost already contains weight distribution over the set of document pairs q ∈ Q,
d, d′ ∈ Dq, which is by default uniform. Weights wqdd′ can also be easily inserted
in FRank [13] and RankNet [2].

2.4 Reweighing strategies

Now let us discuss the initialization of weights wqdd′ for algorithms described
above in order for them to form a strong and diversified set of base rankers.
Particularly, below we will describe various reweighing strategies.

1. The weight for a defective pair equals one. The weight for a

nondefective pair equals zero. This is the most natural strategy that is
induced from the general theory of monotonic aggregating functions and can
also be referred to as the defect minimization principle. If we train the next
base algorithm using only defective pairs, we will minimize the number of base
algorithms and reach the state of empty cumulative defect. Thus, according to
theorem 2, we will be able to build a monotonic function on predictions of base
rankers. However, this approach has a significant shortcoming. If we train our

base algorithms only using defective pairs the generalization ability of the entire
algorithm will be poor and hence it won’t be practically applicable.

2. The weight for a defective pair is nonzero. The weight for a

nondefective pair equals zero. According to our experiments it doesn’t allow
to gain any rise in quality and only increases the complexity of the model.
Our conclusion is in agreement with conclusions made in related research for
classification [6].

3. The weight for a defective and clean pair is nonzero. The weight

for an incomparable pair is zero. Then the strategy will look like:

wqdd′ =











wD(t), (qd, qd′) ∈ D(b1, . . . , bp);

1, (qd, qd′) ∈ C(b1, . . . , bp);

0, otherwise,

This is the most successful strategy according to our experiments. Moreover,
this strategy combines the defect minimization principle and complete cross-

validation minimization that characterizes the generalization ability of the entire
algorithm [15]. In this case the weight for a clean pair equals one. And the weight
wD(t) for a defective pair may depend on iteration t = 1, . . . , T . Particularly, it
may increase from iteration to iteration in order to lead the training algorithm
to turn out the defect on these pairs. We used wD(t) = 2t−1 in our experiments.

2.5 Monotonic aggregating function

In this section we present the core part of our approach — how to blend base
rankers b1, . . . , bp with a nonlinear monotonic aggregating function F (b1, . . . , bp).
We will build our algorithm so as to minimize the quality functional induced by
the cumulative defect |D(b1, . . . , bp)|. To begin with, we describe general con-
structions inherent to regression and classification following [14], and then turn
to analysis of structures specific for ranking. It is worth noting that we don’t
impose any constraints on a set of base rankers while learning them. Therefore,
according to the theorem 2 monotonic function F might not exist, because a
sequence of base predictions might not be monotonic. To cope with this problem
we use monotonization based on isotonic regression [1]. Given a nonmonotonic
sequence {(uk, yk)}

ℓ
k=1, where uk ∈ R

p is a vector of base algorithms predictions
and yk ∈ R is the corresponding target, monotonization algorithm finds {y′k}

ℓ
k=1

minimizing
∑ℓ

i=1(y
′
k − yk)

2 subject to y′i ≤ y′j for all (i, j) such that ui ≤ uj .

So, let us have a monotonic sequence {(uk, yk)}
ℓ
k=1. The task is to build a

monotonic function F that meets the correctness condition (1).

Definition 2 For any vector u ∈ R
p denote its upper and lower set respectively

by M△ = {v ∈ R
p : u ≤ v} and M▽ = {v ∈ R

p : v ≤ u}.

Consider a continuous function µ : Rp → [0,+∞) nondecreasing by any ar-
gument. For example, one can take µ(x) =

∑p

i=1 x
i or µ(x) = max{x1, . . . , xp}.

Definition 3 For any vector u ∈ R
p denote the distance from u to an upper

and lower set of a vector ui respectively by

r△i = µ
(

(u1
i − u1)+, . . . , (u

p
i − up)+

)

,

r▽i = µ
(

(u1 − u1
i)+, . . . , (u

p − u
p
i)+

)

,

where (z)+ = z if z ≥ 0 and (z)+ = 0 if z < 0.

Now let us define functions h△(u, θ) and h▽(u, θ) that estimate the distance
from a vector u ∈ R

p to a nearest vector from upper and lower sets:

h△(u, θ) = min
i : yi>θ

r△i (u), h▽(u, θ) = min
i : yi≤θ

r▽i (u).

Then, define a relative distance from a vector u to the union of all upper sets:

Φ(u, θ) =
h▽(u, θ)

h▽(u, θ) + h△(u, θ)
, where u ∈ R

p, θ ∈ R. (5)

The first two functions can be used immediately for two-class classification.
Specifically, an object is prescribed to the first class if h△(u, θ) > h▽(u, θ) and
to the zero class otherwise, where θ can be any number in (0, 1), e. g. θ = 1

2 .
The third function is a regression stair that equals 0 on a union of lower sets,
equals 1 on a union of upper sets, and is a continuous, monotone non-decreasing,
piecewise bilinear function in between.

Theorem 3 Let {(uk, yk)}
ℓ
k=1 be a monotonic sequence, and a set {yk}

ℓ
k=1 is

sorted in ascending order. Then the function F : Rp → R defined below is con-

tinuous, monotone non-decreasing, and meets the correctness condition (1).

F (u) = y1 +

ℓ−1
∑

k=1

(yk+1 − yk)Φ(u, yk)

Learning to rank. At first, it is worth noting that due to the structure
of the training set comparable documents are only those which are associated
with the same query. Another distinction from the above cases is that we don’t
really need to meet the correctness condition (1) in the case of ranking. The only
constraint to meet is to keep the right ordering of documents on the training set.

Provided that documents associated with different queries aren’t comparable
at all, the quality functional can be rewritten as the sum of functionals, counting
defect only for a particular query. We will denote the defect of the entire algo-
rithm with the aggregating function F on a query q as Qq(F). Then the optimal
aggregating function F must be a solution for a minimization problem

∑

q∈Q

Qq(F) → min
F

.

To give an approximate but computationally efficient solution to this hard prob-
lem we propose to use an averaging heuristic. We solve |Q| problems separately:

Fq = argmin
F

Qq(F), q ∈ Q.

Fig. 1. Monotonic aggregating function
for ranking with 2 base algorithms.

Fig. 2. Texture of the surface of mono-
tonic function from the left figure.

Then we define an aggregating function F by averaging all F ′
q:

F =
∑

q∈Q

F ′
q. (6)

where F ′
q is a normalized to [0, 1] function

Fq

|Dq|
. Here we use normalization with

the value equal to |Dq| to avoid bias towards queries with the large number of
associated documents. Obviously, the function F is monotonic being the sum of
monotonic functions. We call a set of base rankers, trained following the logic
described above, together with the monotonic aggregating function described in
this section as a nonlinear monotonic ensemble for learning to rank.

We provide a few pictures of a monotonic aggregating function for ranking,
built according to the theory described above. Due to the large number of queries
in a training set and hence due to averaging, the monotonic function from the
fig. 1 looks like a plane. However, having changed the scale one can observe
a complicated texture of the surface, fig. 2. According to our experiments in Sec-
tion 3.3 the increase in quality takes place directly thanks to this tiny asperities.
It is also interesting to notice that asperities appear only above the diagonal.
This can be explained as follows. We use strong base rankers, like RankBoost
and RankSVM, that’s why their predictions are highly correlated (nevertheless,
we can blend them effectively) and lie along the diagonal.

3 Experimental results

3.1 Yahoo! LETOR 2010 Challenge Dataset

This is a dataset provided by Yahoo! company for L2R competition. There are
34815 query-document pairs and 1266 unique queries. Relevance grades are dis-
crete from range [0, 4]. Each query-document pair is described by a vector with
575 components. We used 5-fold cross validation to calculate the performance of
algorithms. As a base algorithm for MonoRank we used RankBoost. The results
are reported in table 1 and in a graphical form in fig. 3.

Table 1. Yahoo! LETOR 2010 results.

Metric MonoRank RankBoost RankSVM

NDCG@1 0.8149 0.8029 0.8057

NDCG@3 0.7783 0.7424 0.7711

NDCG@5 0.7754 0.7692 0.7678

NDCG@10 0.7973 0.7935 0.7949

Table 2. OSHUMED LETOR 3.0 results.

Metric MonoRank RankBoost RankSVM

NDCG@1 0.5231 0.4632 0.4958

NDCG@3 0.4602 0.4555 0.4207

NDCG@5 0.4500 0.4494 0.4164

NDCG@10 0.4337 0.4302 0.4140

Fig. 3. Performance on Yahoo! LETOR. Fig. 4. Performance on OSHUMED.

3.2 OSHUMED LETOR 3.0 Dataset

This is a dataset from LETOR repository3, prepared by Microsoft Research Asia.
There are 16140 query-document pairs and 106 unique queries. Relevance grades
are discrete from range [0, 2]. There are 36 features. In order to guarantee the
consistency of algorithms comparison, we used evaluation scripts from LETOR
project. The results are reported in table 2 and in fig. 4.

3.3 Experiment analysis

Now we will briefly discuss the key interesting feature of the monotonic surface
we built. Having seen the fig. 1 one might think why we should use so complex
construction to blend base rankers. Why couldn’t we just use a simple linear
combination of base rankers? Of course, this is a reasonable speculation but we
have set an experiment to test the hypothesis. We approximated our “wavy”
surface with a hyperplane by the least squares method and evaluated the per-
formance on a Yahoo! LETOR 2010 dataset. The results are in table 3.4

4 Conclusion

In this paper we proposed a new algorithm for L2R problem, following the en-
semble principle. The algorithm is referred to as MonoRank and employs the
theory of nonlinear monotonic ensembles in ranking model building. The core

3 http://research.microsoft.com/en-us/um/beijing/projects/letor/
4 same results was observed on OSHUMED dataset.

Table 3. Comparison of “wavy” monotonic aggregating function with its linear ap-
proximation.

Metric MonoRank MonoRank-linearized

NDCG@1 0.8149 0.8106

NDCG@3 0.7783 0.7735

NDCG@5 0.7754 0.7720

NDCG@10 0.7973 0.7898

of the algorithm are nonlinear monotonic aggregating functions that enable to
blend strong algorithms effectively. The algorithm is based on sound mathemat-
ical constructions that are aligned with the popular pairwise approach for L2R.
According to computational results MonoRank shows high accuracy in ranking
and outperforms existing algorithms, like RankBoost and RankSVM.

References

1. R. Barlow, D. Bartholomew, J. Bremner, and H. Brunk. Statistical inference under

order restrictions; the theory and application of isotonic regression. 1972.
2. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hul-

lender. Learning to rank using gradient descent. In ICML 2005.
3. Z. Cao, T. Qin, T. Y. Liu, M. F. Tsai, and H. Li. Learning to rank: From pairwise

approach to listwise approach. In ICML 2007, pages 129–136.
4. W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabilistic retrieval based on staged

logistic regression. In SIGIR 1992.
5. Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algo-

rithm for combining preferences. Journal of Machine Learning Research, 2003.
6. I. S. Guz. Nonlinear monotonic compositions of classifiers. In MMRO 13, 2007.
7. T. Joachims. Optimizing search engines using clickthrough data. In SIGIR 2002.
8. P. Li, C. J. Burges, and Q. Wu. Learning to rank with nonsmooth cost functions.

In Advances in NIPS’20, pages 193–200, 2008.
9. T. Qin, T. Y. Liu, W. Lai, X. D. Zhang, D. Wang, and H. Li. Ranking with

multiple hyperplanes. In SIGIR 2007, pages 279–286.
10. R. E. Schapire. Theoretical views of boosting and applications. In ALT’99.
11. J. Sill and Y. Abu-Mostafa. Monotonicity hints. In Advances in NIPS 9, 1997.
12. M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: Optimising non-

smooth rank metrics. In WSDM 2008.
13. M. F. Tsai, T. Y. Liu, T. Qin, H. H. Chen, and W. Y. Ma. Frank: A ranking

method with fidelity loss. In SIGIR 2007.
14. K. Vorontsov. Optimization methods for linear and monotone correction in the

algebraic approach to the recognition problem. Comp. Math and Mat. Phys., 2000.
15. K. Vorontsov. Combinatorial bounds for learning performance. Doklady Mathe-

matics, 69(1):145, 2004.
16. M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Cofirank — maximum margin

matrix factorization for collaborative ranking. Advances in NIPS 20, 2008.

