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Motivation: Deep Learning everywhere
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Image matching problem

Are these images similar?

Lets try to measure similarity using Pytyev morphology*

* Pytyev Y. P., Chulichkov A. Methods of Morphological Analysis of Images. 2010. In 

Russian.
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Mathematical definition of “shape”

where n – number of partitions of the image F, 

F={F1,…,Fn}; f=(f1,…,fn) – the intensity vector of 

corresponding partitions; Fi(x,y){0,1} – the 

indicator function of the partition Fi.

or as a set of images with similar partitions of  F –

FL2():
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Let’s consider images as elements of a linear space:

Let’s consider “shapes” as linear subspaces
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Shapes as partitions – “mosaic shapes”

* Pytyev Y. P., Chulichkov A. Methods of Morphological Analysis of Images. 2010. In 

Russian.



510 to 14 October 2016

Barcelona, Spain

Image projection on the shape of the other image

Morphological projection of the 

image g on the shape of the image f:

X – certain image area
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* Pytyev Y. P., Chulichkov A. Methods of Morphological Analysis of Images. 2010. In 

Russian.
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Morphological correlation coefficient

Let’s consider a normalized morphological correlation coefficient 

as a numerical similarity measure of the image g and the shape of 

the image f:

In the general case:
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Mean-square effective coefficient of morphological 

correlation
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* Vizilter Y., Rubis A. Morphological correlation coefficients of the images shapes for the 

multispectral image fusion tasks, 2012. In Russian.
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Classical approach

Input image Segmented image
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Classical approach drawbacks

Result strongly depends on:

 Stability and quality of segmentation

 Image noise

 Geometric distortion
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Proposed approach

Our approach advantages:

 No explicit segmentation

 Robustness to image noise through machine learning

 Robustness to geometric distortions through machine learning

Input image DCNN
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Image dataset

а) b)

c) d)

Original image Blurry image

Noisy image Blurry & Noisy image
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Machine learning workflow

Teacher
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Quality estimation (testing) workflow
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Network topology

Our network is based on a Siamese neural network that contains 5

convolutional layers (3x3), 3 full meshed layers (256x2, 1024, 256) and

a ReLU function as an activation function. Also we used the quadratic

function as a loss function.
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Results

f f f f

g g g g

KM (G,f)= 1.0 KM (G,f)= 1.0 KM (G,f)= 0.34 KM (G,f)= 0.93

Kdl (G,f)= 1.0 Kdl (G,f)= 0.973 Kdl (G,f)= 0.92 Kdl (G,f)= 0.916

Mean-square error is about 3% Mean-square error is about 7%

Our approach preserves the properties of 

the morphological correlation coefficients

Our approach is robust to 

image noise



We propose the new approach of morphological image matching using the

deep convolutional neural networks for calculation of the morphological

correlation coefficients with the following properties:

 No explicit image segmentation

 Highly precise values in cases of image distortions, when classical

morphological correlation coefficients don’t work

Experiments on the synthetic images proves the efficiency of the proposed

approach.

Conclusions
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Future research will include:

 Extra training and optimization of the neural network parameters

 Adding more samples to the training sets, including the images with the

distorted or overlapped models

Future research
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