
Incorporation of Distributed Multi-
Agent Programming Means in a
Strongly Typed Logic Language

Alexei A. Morozov, Olga S. Sushkova,
Alexander F. Polupanov

Kotel'nikov Institute of Radio Engineering and Electronics of RAS

Mokhovaya 11-7, Moscow, Russia
http: // www.fullvision.ru / actor_prolog

morozov@cplire.ru o.sushkova@mail.ru sashap55@mail.ru

There are three agents implemented in the distributed
logic language. The first agent acquires video. The
second agent detects running people. The third
agent detects abandoned things.

An example of a declarative multi-agent
system for intelligent visual surveillance

The plan of the report
n  The agent approach to the intelligent visual

surveillance / the real-time analysis of video.
n  The declarative approach to the agent

programming.
n  The distributed version of the Actor Prolog

object-oriented logic language.
n  The problem of incorporation into the logic

language the ability of remote procedure
calls.

n  A combined type system which provides a
solution of the problem of the strong typing
in the multi-agent systems.

The multi-agent approach to the
intelligent visual surveillance

The idea is in that the intelligent visual
surveillance system consists of
communicating programs (agents) that have
the following properties:

n  Autonomy. Agents operate without direct
control from users and other agents.

n  Social ability. Agents can co-operate to solve
the problem.

n  Reactivity. Agents perceive the environment
and respond to external events.

n  Pro-activity. Agents demonstrate a goal-
directed behavior.

Are the agents useful for the intelligent
visual surveillance indeed?

Agents are used for different purposes in various
research projects on the image processing /
intelligent visual surveillance:

n  Some researchers use agents just because of the
fashion.

n  Different agents control different hardware units;
for instance, pan-tilt-zoom (PTZ) cameras.

n  Different agents implement different functions /
types of analysis. The example was in the first slide.

n  Mobile agents are useful if it is preferably to transfer
the executable code, but not the data in the
network.

n  Different agents analyze different areas of space, for
instance, different rooms in a building.

The declarative approach to the
agent programming

n  Prolog-like syntax for beliefs, rules, goals, plans, etc.
is widely used in the area of intelligent agents.

n  In the intelligent visual surveillance, the agents are
to perform very specific operations on big arrays of
binary data that are out of the framework of the
conventional symbolic processing operations.

n  The distinctive feature of our approach is in that we
implement the intelligent video analysis using the
concurrent object-oriented language Actor Prolog
and a compiler of Actor Prolog into pure Java.

n  The Actor Prolog language differs from other Prolog-
based agent languages in that it is not based on the
belief-desire-intention (BDI) model and it does not
directly offer high-level agent features. Actor Prolog
is rather a high-performance object-oriented logic
language that is a base for implementation of real
time multi-agent applications.

The distributed version of the Actor
Prolog object-oriented logic language

n  Previously, we have demonstrated that the
translation of the object-oriented logic
language into Java yields a sufficiently fast
executable code for real time video analysis
and detection of complex patterns of the
abnormal people behavior.

n  This approach can be extended to the
distributed visual surveillance, because the
Actor Prolog language is indeed an object-
oriented language and can be easily adapted
to the distributed programming framework
even without modifications of the syntax.

n  The only problem to be solved was the
incorporation into the language the ability of
remote procedure calls.

Incorporation into the logic language the
ability of remote procedure calls

Agent One publishes an instance of a class in the
external database. Then, Agent Two obtains this
class instance and sends an asynchronous message
to this class instance using Java RMI.

The problem of the strong typing in
multi-agent systems

n  There is a contradiction between the strong type
system of the Actor Prolog language and the idea of
the independency of the agents.

n  The strong type system is necessary for generation
of fast and reliable executable code.

n  One needs to transfer information about the data
types between the software units to implement their
link and static type-checking.

n  This kind of information exchange between the
agents is undesirable, because it decreases the
autonomy of the agents.

n  The following solution of the problem is proposed:
the type system of the Actor Prolog language is
partially softened to allow a dynamic type-checking
(instead of the static one) in some restricted cases
linked with the inter-agent communications.

A combined type system supports strong
typing in the multi-agent systems

n The Actor Prolog language has the
strong type system that supports
various kinds of simple and composite
data items like numbers, structures,
lists, etc. The static type-checking and
standard features of a nominative type
system are used.

n At the same time, the dynamic type-
checking and elements of a structural
type system are implemented for all
the external worlds.

A strong type system in the
distributed Actor Prolog

n  The Actor Prolog language supports both types
(domains) and classes/objects.

n  A distinctive feature of the language is in that the
object and the data item notions are clearly
separated in the language.

n  Actor Prolog supports the following simple data
types: integer, real, symbol, and string. The
structural matching is straightforward.

n  There are three kinds of composite types in Actor
Prolog, namely: structures, lists, and so-called
underdetermined sets.

n  The data structure in Actor Prolog can include class
instances. To verify a remote predicate call one
needs to check the name and the arity of the
predicate, the flow pattern of the predicate, a
structural compatibility of all the arguments.

Examples of type definitions in the
Actor Prolog language

DOMAINS:!
Year = INTEGER.!
Height = REAL.!
Color = SYMBOL.!
Message = STRING.!
Numerical = INTEGER; REAL.!
AppointedDate = date(Year,Month,Day).!
Dates = AppointedDate*.!
Customer = {name: STRING, age: INTEGER}.!
MessageHandler = ('MyClass').!
!
PREDICATES:!
intruder_coordinates(REAL,REAL) - (i,i);!
send_coordinates('AcceptingAgent') - (i);!

The structural matching of the
external class instances

n  The distributed Actor Prolog ensures that an
instance of a class belongs to the class
pointed in the type definition only if this
class is defined in the same logic program.

n  A check of an external class instance is to be
performed only when the accepting program
try to invoke a method in the external object.

n  Thus, the implementation of this check
requires information on the origin of all the
objects in the logic program.

n  Distributed Actor Prolog keeps internal
tables of all the class instances transferred
outside / accepted from other logic
programs.

The video data to be transferred between the agents is
encapsulated in built-in class instances. It is not
necessary to encode huge video files using Prolog
terms. The data exchange is based on Java RMI.

An example of a declarative multi-agent
system for intelligent visual surveillance

Conclusions
n  The extension of the Actor Prolog language

with the ability of distributed logic
programming was developed.

n  A combined type system is developed which
ensures the advantages of the static type-
checking for the generation of the fast
executable code and the flexibility of the
dynamic type-checking that is necessary for
the multi-agent systems design.

n  The distributed extension of the Actor Prolog
language gives new means for
experimenting with the real-time multi-
agent logic programming and practical
applications of the logic programming in the
intelligent visual surveillance.

Some Web Resources
•  The Project Web Site containing demo video clips,

applets, and source code of Actor Prolog demo
programs for intelligent video surveillance:
http://www.fullvision.ru/actor_prolog/

•  A GitHub repository containing source codes of Actor
Prolog built-in classes:
https://github.com/Morozov2012/actor-prolog-
java-library

•  Getting Started in Actor Prolog:
http://www.cplire.ru/Lab144/start/

•  A demo Web Site on linking Java3D with the Actor
Prolog language:
http://alexei-morozov-2012.narod.ru/

The Actor Prolog translator to
Java is available

You are welcome to participate in the
development, beta testing, and application of
the Actor Prolog system.

Thank you

http://www.fullvision.ru/actor_prolog!

What is Actor Prolog?
n  Actor Prolog is a logic language designed on the

basis of our experience of business / industrial
applications of logic programming.

n  Actor Prolog was initially designed as an object-
oriented language with a classical model-theoretic
semantics.

n  Actor Prolog is a concurrent language.
n  Actor Prolog implements underdetermined sets.
n  Actor Prolog supports domain and predicate

declarations; that is very important for development
of big / industrial programs.

n  Actor Prolog produces a fast, stable, and portable
stand-alone executable code (including Java
applets).

n  The Actor Prolog programming system is open; it
can be easily extended by new built-in classes. For
instance, Java2D and Java3D are connected with the
Actor Prolog system in this way.

Why Translation to Java?
n  It was our unsuccessful attempt to use a commercial

Prolog for programming Web agents several years
ago. The programs crashed after several days of
work because of unintelligible internal problems in
the translator and libraries.

n  We need a reliable implementation of a logic
language with a clear memory management. Logic
programs operating with big amounts of data should
work stably during long periods of time.

n  We can use an industrial Java virtual machine as a
basis for a logic programming system, because
modern processors are fast enough to give up the
speed of the executable code for the sake of
robustness, readability, and openness of the logic
programs.

n  Nevertheless, we need a fast executable code that is
appropriate for real-time data processing.

The Compilation Schema
n  Source text scanning and parsing. Methods of thinking

translation that prevent unnecessary processing of
already translated source files are implemented.

n  Inter-class links analysis. On this stage of global analysis,
the translator collects information about usage of
separate classes in the program, including data types of
arguments of all class instance constructors.

n  Type check. The translator checks data types of all
predicate arguments and arguments of all class instance
constructors.

n  Determinism check. The translator checks whether
predicates are deterministic or non-deterministic. So-
called imperative predicates are supported, that is, the
compiler can check whether a predicate is deterministic
and never fails.

n  A global flow analysis. The compiler tracks flow patterns
of all predicates in all classes of the program.

n  Generation of an intermediate Java code.
n  Translation of this code by a standard Java compiler.

The Compilation Schema
n  The imperative predicates are translated to Java

procedures directly. The imperative predicates
usually constitute the main part of the program and
ensure very high level of code optimization.

n  The deterministic predicates are translated to Java
procedures too. All clauses of one predicate
correspond to one Java procedure. Backtracking is
implemented using a special kind of light-weight
Java exceptions.

n  The non-deterministic predicates are implemented
using a standard method of continuation passing.
Clauses of one predicate correspond to one or
several automatically generated Java classes.

The Compilation Schema
n  Tail recursion optimization is implemented

for recursive predicates. Recursive
predicates are implemented using the while
Java command.

n  The Actor Prolog language supports explicit
definition of ground / non-ground domains
and the translator uses this information for
deep optimization of the executable code.

n  The Actor Prolog language is significantly
different from the conventional Clocksin &
Mellish Prolog. Object-oriented features and
supporting concurrent programming make
translation of an Actor Prolog code to be a
complex problem.

The Imperative Predicates
goal:-!
 p.!
p:-!
 q.!
q:-!
 writeln("Hi!").!
!
public void impProcP_s617_0(ChoisePoint iX) {!
 impProcQ_s618_0(iX);!
}!
public void impProcQ_s618_0(ChoisePoint iX) {!
 impProcWriteln_s193_1_i1(!
 iX,new PrologString("Hi!"));!
}!

The Deterministic Predicates
goal:-!
 p.!
p:-!
 q.!
q:-!
 writeln("Hi!").!
!
public void detProcP_s617_0(ChoisePoint iX)!
 throws Backtracking {!
 detProcQ_s618_0(iX);!
}!

n  Backtracking is implemented using a special kind of
light-weight Java exceptions.

n  Tail recursion optimization is possible.

The Non-Deterministic Predicates
class NondetProcP_s617_0 extends Continuation
{!

 private Continuation c1;!
 NondetProcP_s617_0(Continuation aC) {!
 c0= aC;!
 }!
 public void execute(ChoisePoint iX)!
 throws Backtracking {!
 c1= new NondetProcQ_s618_0(c0);!
 c1.execute(iX);!
 }!
}!

n  A standard method of continuation passing is used.
n  Tail recursion optimization is possible.

An Imperative Predicate P calls
a Non-Deterministic Predicate Q

p:-
 q,!.
p:-
 writeln("P").
q:-
 writeln("Q").!

public void impProcP_s694_0(ChoisePoint iX) {
 Continuation c1;
 Continuation c2;
 ChoisePoint newIx;
 newIx= new ChoisePoint(iX);
 try {
 c1= new And_1_1_P_s694_0(c0,iX);
 c2= new NondetProcQ_s695_0(c1);
 c2.execute(newIx);
 } catch (Backtracking b1) {
 if (newIx.isEnabled()) {
 newIx.freeTrail();
 impProcWriteln_s205_1_i1(
 newIx,new PrologString("P"));
 } else {
 throw new
 ImperativeProcedureFailed();
 }
 }
}

class And_1_1_P_s694_0 extends
Continuation {

 private ChoisePoint pS;
 And_1_1_P_s694_0(
 Continuation aC, ChoisePoint aCP) {
 c0= aC;
 pS= aCP;
 }
 public void execute(ChoisePoint iX)

throws Backtracking {
 iX.disable(pS);
 c0.execute(iX);
 }
}

Extension of Actor Prolog
package "Morozov/Vision":!
class 'ImageSubtractor' (specialized 'Alpha'):!
 extract_blobs = 'no';!
 track_blobs = 'no';!
...!
[!
SOURCE:!
!"morozov.built_in.ImageSubtractor";!
CLAUSES:!
subtract(FrameNumber,Image):!
![external "subtract"].!
...!
]!
!
public static abstract class
AbstrCls5_1076_ImageSubtractor extends
morozov.built_in.ImageSubtractor {!

...!

Test Iter.
No*

Actor Prolog to
Java 64-bit

SWI-Prolog
v. 7.2.2

NREV 3,000,000 109,677,895 lips 15,792,155 lips
CRYPT 100,000 1.820880 ms 1.98979 ms
DERIV 10,000,000 0.055460 ms 0.0105815 ms
POLY_10 10,000 3.750600 ms 4.4257 ms
PRIMES 100,000 0.037340 ms 0.14196 ms
QSORT 1,000,000 0.043129 ms 0.063976 ms
QUEENS 10,000 19.219600 ms 32.4248 ms
QUERY 10,000 3.135300 ms 0.4056 ms
TAK 10,000 3.913400 ms 11.1182 ms

Actor Prolog Benchmark Testing
(Intel Core i5-2410M, 2.30 GHz, Win7, 64-bit)

*Benchmark time is measured in milliseconds per iteration.

We invite you to participate in the beta testing of
the educational version of Actor Prolog:

n  Domain and predicate declarations are supported.
n  One can switch off the check of the declarations.
n  Creation of And-Or trees is supported.
n  Compilers to Java and EXE code are available.

morozov@cplire.ru
http: // www.fullvision.ru / actor_prolog

