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Spectral clustering

Community detection

» Graph:
> Nodes v;
» Edge weights w;; > 0.
» Problem: Want to partition graph such that edges between
groups have low weights.
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Spectral clustering

Similarity graphs

Types of graphs:
» e-neighborhood:

» Only include edges with distances < ¢;
» Treat as unweighted: w;; = Const.

» k-NN:
» Connect v; and v; if vj is a k-NN of v;.
» Weighted by similarity wj; = sj;.
» Directed or undirected.

» Mutual k-NN:

» Same as k-NN, but only include mutual k-NN.
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Spectral clustering

Similarity graphs
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Spectral clustering

Graph cuts

» Problem: Partition graph such that edges between groups
have low weights

» MinCut problem: Cut(Ai,...,Ax) = Zf'(:l W(A;, A)).
» Choose: Aj,...,Ax =argming, . a, Cut(Ai,...,Ax).

A B
- cut(A,B) =2
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Spectral clustering

MinCut

Problem: MinCut favors isolated clusters

“Optimal cut”
1 Minimum cut

Solution:
» Ratio cuts (RatioCut)
» Normalized cuts (Ncut)

» Lead to “balanced” clusters

6/18



Spectral clustering

Graph terminology

Two measures of size of a subset:

» Cardinality:

|A| = # of vertices in A.

» Volume:

N
vol(A) = Z Z wij.

icA j=1
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Spectral clustering

Cuts Accounting for Size

v

Ratio cuts (RatioCut)
> k = 2: RatioCut(A, A) = Cut(A, A)( Lo, L
» General k: RatioCut(Ay,...,Ax) = 3

v

Normalized cuts (Ncut)
>k =2: NCut(A,A) = Cut(A, A) (VO(A) + Vol )
» General k: NCut(As,...,Ax) = %Zf 1 CL\%I?Z?
Problem is NP-hard!

We need to look at relaxation.

v

v
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Spectral clustering

Graph Laplacian
Definition: L=D — W.
Facts:
» Symmetric, positive semi-definite
» Eigenvalues:

O=A1 < << Ay

> A1 corresponds to eigenvector u = (1,...,1)7.
» Invariance to self-edges:

Lip = di — wij, Lij = —wjj.

» Norm in L space:

N

W e RN FTLF = % S wilh— £
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Spectral clustering

Relationship to Identifying Connected Components

Theorem

The multiplicity k of eigenvalue 0 of L is equal to the number of
connected components.
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Spectral clustering

Spectral clustering

Three basic stages:

1. Pre-processing
» Construct a matrix representation of the graph.

2. Decomposition

» Compute eigenvalues and eigenvectors of the matrix.
» Map each point to a lower-dimensional representation based on
one or more eigenvectors.

3. Grouping

» Assign points to two or more clusters, based on the new
representation.

> Naive: thresholding (works for k = 2).
» K-means in projected space (works for any k > 2).
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Spectral clustering

Graph Laplacians and Ratio cuts

Ratio cuts for k = 2:
» Define cluster indicator variables:

f:{VMWNLWGA )
O VIAIAL vig A

» Properties:

fi = |AlVIAI/IAl = |Al\/|Al/|A] = 0,

N
—

1

[£all3 = M.

» RatioCut
fZ\—LfA
|V‘ . 12/18
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Spectral clustering

Relaxation

» Reformulating RatioCut problem

;\nin\}fZ\—LfA s.t. fais def. by Eq. (1), fa L 1, ||fa] = V/N.
C

» Still NP-hard!

» Relaxation:

min fTLfst. f L1, ||[f| =VN.
feRN

» Solution: given by the vector f which is the eigenvector
corresponding to the second smallest eigenvalue of L:

N
27 fCen T

13/18



Spectral clustering

Ratio Cuts for General k

» Define cluster indicator variables:

_ {1/\/\Aj|, vi € A,

i 0, V,'§ZAJ'.

> RatioCut: define Fa = (Fj,i € 1,N,j € 1, k) € RNk,
FATFA =1

k
RatioCut(A1, ..., Ax) = > FiLfa = Tr(Fi LFa).
j=1

» Reformulating RatioCut problem

min = Tr(F] LFa),s.t. Fa is defined above and FJ Fa =1.

150, Ak

» Relaxation: ming pvxk = Tr(FTLF),st.FTF =1. 14/18



Spectral clustering

Graph Laplacians and Norm cuts
Ratio cuts for k = 2:

» Define cluster indicator variables:

¢ _ [V vol(A)/vol(A), v € A, (2
" =V/vol(A)/vol(A), vi ¢ A,

> Properties:
(Dfs) L1, f}Dfs=vol(V).
» NCut

fILfa

NCut(A, A) = 2. W)
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Spectral clustering

Relaxation
» Reformulating NCut problem

;‘nir\}fILfA s.t. fa is def. by Eq. (2), Dfa L 1, £ Dfs = vol(V).
C

» Still NP-hard!
» Relaxation:

min f7Lf st. Df L 1, f7 Df = vol(V).
ferN

or equivalently for g = D/2f

min g’ D~Y/2LD?g st. g L DY?1, lgl|? = vol(V).
geRN
» Solution: given by the vector f which is the eigenvector

corresponding to the second smallest eigenvalue of
Lsym = D12 p-1/2, 16 /18



Spectral clustering

Norm Cuts for General k

» Define cluster indicator variables:

F {1/\/VO/(Aj)a vi € Aj,
U =

0, vi ¢ Aj.
» Reformulating NCut problem

min = Tr(FATLFA),s.t. F4 is defined above and FATDFA =1L

Aty Ak
» Relaxation:

min = Tr(HTDY2LD7?H), st HTH =L
HERNxk
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Spectral clustering

Spectral clustering

Which graph Laplacian to use?
» If degrees in graph vary significantly, then Laplacians are quite
different.

» In general, L,, behaves the best.

» Volume gives better measure of within-cluster similarity than
cardinality.
» Normalized cuts has consistency results, Ratio cuts does not.
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