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AnnHortarua

B jgumccepranum  m3ydaercss  3ajada  BBIIYKJION — CTOXaCTHYECKOI
ONTUMMI3AINN ¢ Oe3rpaJlueHTHLIM OPAKYJIOM B YCJIOBUAX IVIQJIKOCTU BBICOKUX
opsijikoB. OnruMusupyemast (yHKIUST YA0BIETBOPsieT 0000IIEHHOMY YCIOBUIO
['énpaepa, IpyruMu CJIOBAMEI UCCJIEIYIOTCS (DYHKITUHN, Y KOTOPBIX KAK MITHIMYM
Jinunes l'eccnan mim Ipou3BOJHbIE D0JIEe BHICOKIX OPSIIKOB.

B 9TOIl  JAUccepTaln 1IpeJIcTaB/IeH AJICOPUTM, KOTOPBIIi
[I03BOJISIET IIOJIYUUTh BEPXHIE OIEHKU CKOPOCTU CXOJIMMOCTH, IPEBBIIIAONINe
CYIIECTBYIONINE KaK B CUJILHO BBIIYKJIOM CIydae, TaK U B BBIIYKJIOM CIydae.
Tax>ke pesysabTaT OBLI 0000INEH Ha CEJJIOBBIE 3aJladul, IJie II0JIyUeHbl HOBbIE
PEKOp/IHbIE OIEHKN CKOPOCTHU CXOJIMMOCTH JIJI BBIITYKJIO—BOIHYThIX (DYHKIII 1

JIUTST CUJTHHO BBITYKJIOCHJIBHO BOTHYTHIX (DYHKITHIA.
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1 Introduction

We study the problem of zero-order stochastic optimization in which the aim is
to minimize an unknown convex or strongly convex function where no gradient
realization is given but a function value is available at each iteration with
some additive noise £&. We also study a closely related problem of continuous
stochastic bandits. These problems have received significant attention in the
literature (see |1-7,10,14,15|) and are fundamental for many application where
the derivative of function is not available or it is hard to calculate derivatives.

The goal is to exploit higher order smoothness of the function to improve
the performance of projected gradient-like algorithms. Our approach is out-
lined in Algorithm 1, in which a sequential algorithm gets at each iteration
two function values under some noise. At each iteration the algorithm gets
function values at points x; 4+ 0, and x; — 0y, where 0, = 7.rre,. Here rp is
uniformly distributed random variable, e is uniformly distributed on the Eu-
clidean sphere, 7, — is tunable parameter of the algorithm, the smaller 7, is, the
smaller approximation error of the gradient ||gr — V f(x)|| is (in this article we
use only the Euclidean norm) but the bigger variance of ||gx|| is, so the trade-off
between these terms is needed. Our approach uses kernel smoothing technique
proposed by Polyak and Tsybakov in [12], this helps to exploit higher order

smoothness.

Algorithm 1 Zero-order Stochastic Projected Gradient
Requires: Kernel K : [—1,1] — R, step size a > 0, parameters 7.

Initialization: Generate scalars rq,. ..,y uniformly on [—1, 1] and vectors
e1,. .., ey uniformly on the Euclidean unit sphere S, = {e € R" : |le|| = 1}.
for k=1,...,N do

Loy = f(zr + mereer) + &k, y; = far — Trrrer) + fl/c
2 Define g; := %(yk —yp)ex K (1)
3 Update zj41 := Hg(xp — argr)

end for
Output: {z;},_,.

In algorithms like Algorithm 1 the two possibilities are usually considered.

The first one is to obtain a function value in one point with some noise ("one-
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point" multi-armed bandit), the second is to observe function values in two
points with the same noise at each iteration ("two-point" multi-armed bandit).
The use of three and more points does not make dramatic difference to the
results for two points [11]. Note that despite our algorithm gets two function
values for iteration, they are obtained with different noise & and &, so it
is correct to regard Algorithm 1 one-point and to compare it with one-point
algorithms.

Here we study functions satisfying the generalized Holder condition with
parameter 3 > 2 (see inequality (1) below).

We address the question: what is the performance of Algorithm 1, namely
the explicit dependency of the convergence rate on the main parameters n
(dimension), N, 7 (strong convexity parameter for strongly convex functions),
B. To handle this task we prove an upper bound for Algorithm 1.

Contributions. Our main contributions can be summarized as follows:

1 For strongly-convex case: under an adversarial noise assumption (see
Assumption 1) we establish for all 5 > 2 the upper bound of order
B—1

YN

case.

91
n- v
O <—> for the optimization error of Algorithm 1 for strongly convex

2 For convex case: under an adversarial noise assumption (see Assumption

1
2t

24524

1) we establish for all 8 > 2 that after N(g) = O iterations of

£
Algorithm 1 for the regularized function f,(x) := f(x) + 55|z — xo[|* we

achieve the optimization error less than or equal to e.

3 We have also generalized the results of minimization for the saddle-

point problem mi)rg maﬁc ©(z,y). Upper bounds for both strongly-convex-
xre ye

strongly-concave case and convex-concave case coincide with the minimiza-

tion upper bounds.

For clarity we compare our results with state-of-the-art ones in Table 1
(dependence of optimization error € on the number of iteration N, dimension
n and [, ) and Table 2 (dependence of the number of iteration N on the
optimization error €, dimension n and (3, ). To summarize the results we use
O() , where O() coincides with O() up to the logarithmic factor.
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Table 1: The dependence of optimization error (¢) on N (number of iterations),

n (dimension), v, /3

strongly convex convex
n n N
lower bound |1 O | min —, O ( min [ 4=, —
. ( <7 & VN)) ( (Ngw \/N>>

N
this work A ( n? 7 ) A <n1;3>
(2020) N7 N
Akhavan, Pontil, A ( n? ) A ( n )
Tsybakov (2020) [1] 7]\7% N
52

Bach, Perchet
(2016) 2]

N——1

Q
L
= |3
o |
D@

) 5

Gasnikov and al. 5 ( n ) d ( \/ﬁ>
(2015), B = 2, [15] VN N/
Akhavan, Pontil,
Tsybakov (2020), @, ( - ) O (@)
. Non N
special case 5 = 2 [1]
Zhang and al. 0 < n ) o ( \/ﬁ>
(2020) [3] VAN N/




Table 2: The dependence of N (number of iterations) on €, n (dimension), -,

B

strongly convex

convex

5 2 55 2
lower bound |[1] O | min [ 2 > ’n_ O [ min [ 2 /2 7n_2
ve)B-1 € Al =

£
this work 5 n”t 5 <n2+i1>
(2020) (ve)7T 2t E
Akhavan, Pontil, d <n2+21 > 5 <n2+621>
Tsybakov (2020) [1] (ye)71 e2tetT
Bach, Perchet 0 <n2+21> O <n2+621>
(2016) |2 o e
2

Gasnikov and al.

(2015), B = 2 [15] (7%2> ©
(

Akhavan, Pontil,
Tsybakov (2020), O
special case = 2 |[1]

Zhang and al. 0 (n_2> 0
(2020) (3]

Comments on Table 1 and Table 2.

1 Note that in Table 1 and Table 2 the right column equals to the central

one by v ~ €.

2 Note that the results of this work have better dependency £(N) or N(e)
than Gasnikov’s one-point method only if § > 2 else another technique
in Theorem 1 is better (see [15] or Theorem 5.1 in [1]). The result in
this work is achieved using both kernel smoothing technique and measure

concentration inequalities.

3 The lower bound for strongly convex case is got under conditions v >

N~2+Y8 (otherwise it is better to use convex methods) and (see [1]) 2y <

max | V./(2)] -



4 The bounds marked in blue are not given in this article and in references

but they can be got.

n2- n2
5 Too optimistic bounds O | ———= | and O ( 2 > were claimed in
(yN) 7 RS
nQ_ﬁ n2+%
2] instead of O [ ——= | and O [ ——— ], but Akhavan, Pontil and
() e*trI

Tsybakov [1] found error in Lemma 2 in [2| where factor d of dimension

(n in our notation) is missing.

2 Preliminaries

In this section we give the necessary notation, definitions and assumptions.

2.1 Notation

Let (-,-) and || - || be the standard inner product and Euclidean norm on R”
respectively. For every closed convex set () C R"™ and for every z € R” let

IIo(x) denote the Euclidean projection of = on Q.

2.2 Problem

We address the conditional minimization problem

f(z) — min,
e

where f : U, (Q) — R — function (convex or strongly convex), @ C R" —
convex compact set (Euclidean metrics).
The optimization problem can be formulated as follows: find the sequence

{24}, C Q minimizing the average regret:

If the average regret is less than or equal to € then the optimization error of



N
averaged estimator Ty = + > xj is also less than or equal to e:
k=1

1
N

E[f(@x) — (o) < v YElf(m) — f")] <<

k=1

2.3 Noise

The function values f(zy + Txrrer) and f(xp — Tprrer) are given with additive
noise & and & respectively (see Algorithm 1). Recall that the Algorithm 1
is randomized: the scalars rq,...,ry are distributed uniformly on [—1, 1] and
the vectors ey, ..., ey are distributed uniformly on the Euclidean unit sphere
S, ={eeR": |e]| =1}.

Assumption 1 For all k=1,2,..., N it holds that

1 E[€2] < 02 and E[¢7}) < 02 where o > 0;

2 the random variables &, and &, are independent from ey, and ry, the random

variables e and ri. are independent.

We do not assume here neither zero-mean of & and &, nor i.i.d of {& Y,

and {&,}2 | as condition 2 from assumption 1 allows to avoid that.

2.4 Higher-order smoothness

Let [ denote maximal integer number strictly less than 5. Let Fg(L) denote
the set of all functions f : R™ — R which are differentiable [ times and for all
z,z € U, (Q) satisty Holder condition:

1
f) = > D f(@)(z—2)"| < Lz —a])”, (1)
0<|m|<l
where L > 0, the sum is over multi-index m = (mq,...,m,) € N we use the
notation m! =my!-----my!, |m| =my + -+ 4+ m, and we defined
olml
D" f(x)z" /() 2 o, V2= (21,...,2,) € R™.

B oMmxy...0™"x,
Let F, 3(L) denote the set of y-strongly convex functions f € Fz(L).

Recall that f is called v-strongly convex for some ~ > 0 if for all x,z € R" it
holds that f(z) > f(z) +(Vf(z),z — z) + 3|z — =[]~
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2.5 Kernel

For gradient estimator g; we use the kernel
K:[-1,1] = R,
satisfying

E[K(r)] =0, ErK(r)]=1,E[rK(r)]=0,j=2,...,1,E UTWK(T)H < 00,

(2)
where r is a uniformly distributed on [—1, 1] random variable. This helps us
to get better bounds on the gradient bias ||gr — Vf(x)|| (see Theorem 1 for
details).

A weighted sum of Legendre polynoms is an example of such kernels:

1s)
= 2, (0)pm(r), (3)

where [(f) is maximal integer number strictly less than 5 and p,(r) =

V2m + 1L,,(r), Ly, (u) is Legendre polynom. We have
E [pmpmw] = 6(m —m').

As {pp(r ) _ is a basis for polynoms of degree less than or equal to j

we can represent u’ := Z by (r) for some integers {b,,} _, (they depend

m=0
on j).
Let’s calculate the expectation

E [r! K(r) E:%mm = (") lr—0 = 0(j — 1),
here §(0) = 1 and §(z) = 1 1f x # 0. We proved that the presented Kp(r)
satisfies (2 ) e have the following kernels for different betas (see Figure 1):
Kp(r) = 3r, g el23]
1or
Ky(r) = —=(5 =17, pe (3,9,
4
105
Ky(r) = ——=(99r% — 12612 + 35), B € (5,7].

64
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Figure 1: Examples of kernels from (3)

For Theorem 1 and Theorem 2 we need to introduce the constants

o = [ 1K (W) du )
and
5:/K2(u) du. (5)

It is proved in |2] that kg and x do not depend on n, they depend only on S:
Kk < V387 (7)

3 Minimization problem

In this section we prove upper bounds on the optimization error of Algorithm
1 for the problem of minimization of strongly convex function (Theorem 1) and
of convex function (Theorem 2).

Theorem 1. Let f € F, 3(L) withy, L > 0 and 8 > 2. Let Assumption
1 hold and let ( be a convex compact subset of R”. Let f be G-Lipschitz on
the Euclidean 77-neighborhood of Q).

N
Then the optimization error of averaged estimator Ty = % > ) where
k=1

11



the points zj are given by Algorithm 1 with parameters

3ko’n )215 1 2
Tk = ]C_ﬁ, o k‘:l,...,N
(2(5 — 1)(rsL)?

satisfies

Elf(@y) — f27)] <

where A; = 35(&02)%(,‘@5@%, As = ¢*kG?, kg and k are constants depending
only on f3, see (4) and (5).
Proof. Step 1. Fix an arbitrary x € ). As xj.; is the Euclidean

projection we have ||z, 1 — z||* < ||zx — argr — z||* which is equivalent to

~ |z — 2| — lleer —2)* | awy~ o
—z) < — : 8
(G zr — ) < S Ty gk | (8)
By the strong convexity assumption we have
y
flxg) = f(z) <V f(zp), 2 — 2) —§H$k—$\|2- (9)

Combining the last two inequations we obtain

|z — z||* = lzry — x|
20y, (10)

Flaw) = F(@) OV (on) = Gion — ) +
+ il = Sl — 2

Taking conditional expectation given xj with respect to ry, & and & we

obtain

Fan) = J (@) IV (@) = Blgiled] 2 — @) + SB[l

lox — z|* — B [loss — @lPlae]

! . 2

(11)

Step 2 (Bounding bias term). Our aim is to bound the first term in
(11), namely (V f(zy) —E [gk|zk] , xxr — x). Using the Taylor expansion we have

f (l’k —+ Tkaek) :f(xk) + <Vf(l’k;), Tkrk€k>

m|
+ Z (ﬁ{:n—kzD(m)f(xk)ezl + R(Tkaek), (12)

2<|m|<l

12



where by assumption |R(rirrer)| < Ll|merrer]|® = L7y - |ri])?. Thus,

- 7)™
G = (Vi mred + Y P D ey
2<|m|<l,|m| odd ' (13)
1 1 A\ T
+ §R(Tk7’k€k) — ER(—Tkrkek) + fk - gk) _K(Tk)ek'
Tk

Using the properties of the smoothing kernel K, independence of e, and

rr (Assumption 1) and the fact that E [ekeﬂ = 1T ... we obtain

n

n

Eekﬂ‘k [(Vf(xk), Tka€k> T—kK(rk)ek‘xk] = Vf(ilfk;) (14)

Using the fact that E {TLTMK(?";C)} =0if 2 < |m| < lor|m| =0 and

Assumption 1 we have

m|
Z MD(m)f(xk)e}f + & — 5,2) gK(rk)ek = 0. (15)

2<|m|<l,|m| odd

Combining (13), (14) and (15) and using the definition of k3 we obtain

.

(Vf(xr) — Egi|re] 2 — x)| =
= ‘E [(%R(T}J/{ek) — %R(_Tkrkek)) %K(Tk)<€ka Lk — x>
< L)~ By, [Irel K (r)] - 0 |Ee, [{e, 2 — @) ||

< kgLy/nr) Moy — 2|,

(16)

where in the last inequality the fact that |E. [(e, s)]|* < E, (e, 5)?] = @ was
used (the fact from concentration measure theory). Applying the inequality
ab < 1/2(a® + b?) to the last expression in (16) we finally get

- kaL)? _
(9 ) = B (o] o = o] < "2 hnn00 4 Dl a0

Step 3 (Bounding second moment of gradient estimator). Our
aim is to estimate E [||gx||*|zx] which is the second term in (11). The expec-
tation here is with respect to ry, & and &,. To lighten the presentation and

withous loss of generality we drop the lower script k in all quantities.

13



We have

2

512 =15 11(f (@ + 77e) = f(z = 7re) + € = €)K (1)l
7 (18)
=1 (Flz +7re) = flo —Tre) + € = €)) K2(r).

Using the inequality (a + b+ ¢)? < 3(a? + b + ¢?) and Assumption 1 we
get

E [||9]]%z] < i_?; (E[(f(z +7re) — f(z — Tre))’K*(r)|z] 4+ 2k07) . (19)

Lemma 9 in [13] states that for any function f which is G— Lipschitz with

respect to 2-norm, it holds that if e is uniformly distributed on the Euclidean

unit sphere, then )
VEIG@ —EF@DT < 2, (20)

n

where ¢ < 3 is a positive numerical constant.
Using (20), symmetry of Euclidean unit sphere and the inequality (a +
b)? < 2(a®+ b?) we obtain

<E (/o +€) ~Elf(@+ o)) — (/& - ¢) = Elf(@ — )]
< 2FE, [(f(:c +e) —EJ[f(z+e))

< 2\/& (fa+ ) ~Elf + o))’

so we have

4e(Tr)*G? < 4eT?G?
n - n

E [(f(x +71re) — f(z — 7'7“6))2‘.%} < (22)

By substituting (22) into (19), using independence of e and r and return-
ing the lower script k& we finally get

~ . 3(no)?
E [il%] < x ( w20 ) , (23)
k

where ¢* = 3c.

14



Step 4. Let p? denote E[||lzx — z|*]. Substituting (17) and (23) into

(11), taking full expectation and summing over k we obtain

L 2 B 2
((/‘eﬁ ) nr26-1) +%K (c*nG2+ 3(no) ))

v 277

> E[f(ar) = fl2)] <>

k=1

(PP (7 7
Tk Pl 1 1) 2
+Z< 20, (2 4) p’f)'
9 : 2
Let pyy; = 0. Then setting ay, = % yields

N pg p2 1 N N+1 1 1
§ : k k+1 /2 2 § : 2 )
( 20 4 k) 1 (2041 4) K <2ak 201 4)

k=1

. 3(no)?\ 1
Y E[f(z) - f@) <= ((mﬁL)mT:(ﬁ—l) Tk (C*nG2 + = ) —)
k=1 7= 27 k
N
1 2(5—1) s 3Ko? c knG?
—— - (ksL)? : .
7; ([n (kgL)™T, +n QkT,f + r
(26)
If 0 > 0 then 3ro’n . /4:_% is the minimizer of square
o T = 2 7
FT 208 - D)(rel)? !

brackets. Plugging this 75 in (26) and using two inequalities: for the expression

N
in square brackets > k718 < BNY? (if B > 2) and for the term after square

k=1
N
brackets > + < 1+InN we get
k=1
al 1 L
SCElf () — f()] < . (n2_ﬁA1Nﬁ + Ayn(1+1n N)> (27)
k=1

15



with A; and A, from the formulation of Theorem 1. Due to the convexity of f

we finally prove the theorem

= * 1 2—%
E (f(ex) - /() < - (n U

We emphasize that the usage of kernel smoothing technique, measure
concentration inequalities and the assumption that & is independent from e
or r; (Assumption 1) lead to the results better than the state-of-the-art ones
for B > 2 (see Table 1 and Table 2). The last assumption also allows us not to
assume neither zero-mean of & and &}, nor i.i.d of {&}4 | and {&}4 .

Theorem 2.

Let f € Fs(L) with v, L > 0 and 8 > 2. Let Assumption 1 hold and let
() be a convex compact subset of R". Let f be G-Lipschitz on the Euclidean

7-neighborhood of (). Let Ty denote + ¥ Z T
Then we achieve the optimization error E [f(ZTy) — f(2*)] < € after N(e)

steps of Algorithm 1 with settings from Theorem 1 for the regularized function:
£,(@) = f(@) + Fllo — 2o, where 7 < F5, R = |lzg — "], 7 € Q - arbitrary

point.

N(g) = max { (R\/TAO ﬂi (R\/ ZCIAQ) e 1+p) }

where A; = 383(ko?) F (K‘,ﬂL) Ay = ¢*kG? — constants from Theorem 1,
p > 0 — arbitrarily small positive number.

Proof. Step 1. Let z* and z7, denote arg miél f(x) and arg micrgl fy(z)
re re

S

respectively. Setting v = and using the inequality f,(z7) < f,(z*) we

R?
obtain
F@N) = fa) = f,@) = (@) = g lEx = wol + Sl = o
< £@) = fo @) + glle — ol (29)
< fy(Tn) = fy(23) + %

Step 2. Now we apply Theorem 1 for f,(x) and bound RHS by 5:

1 1 A 1+InN
Bl (o) - £, < 2 (n 55+ 4" ) <

S (30)

16



The inequality (30) is done if (y = %)

|=

Ay n(l+InN) < JE g
-~ 2  2RY”

92
maxsn” F——, A = — 31
{ NN oy

It is true that 1 +In N < ¢ N#1 for some ¢ > 0. So the inequality (31)
holds if

2 2 214+p) plte
N > max{ (Ry/24) 72 (RV2c4,) T L (3
52—1—ﬂ c2(1+p)

The inequalities (29) and (30) yield E[f(ZTy) — f(z*)] < e.

4 Saddle-point problem

Recently GANs and Reinforcement Learning caused a big interest for saddle-
point problems, see [8,9,16]. So in this section we generalize the results for
minimization problems to saddle-point problem:

i . 33
min max p(z,y) (33)

As mentioned earlier, we consider the saddle-point problem (33), where
©(+,y) is convex function defined on compact convex set X C R", ¢(x,-) is
concave function defined on compact convex set ) C R". For convenience, we
denote Z = X x Y and then z € Z C R” means » = (r,y), where z € X,
y € Y. When we use ¢(z), we mean ¢(z) = ¢(x,y).

Definition (y-strong convexity—strong concavity). Function ¢(z)
is 7-strongly-convex-strongly-concave in Z with v > 0 when ¢(-,y) is -
strongly-convex for all y and ¢(x, -) is y-strongly-concave for all .

In this paragraph we study higher-order smooth functions ¢ functions
satisfying so called generalized Holder condition with parameter g > 2.

Let ®5(L) denote the set of all functions ¢ : R” — R which satisfy Hélder
condition (1) Let ®, 3(L) denote the set of v-strongly-convex-strongly-concave
functions ¢ € ®3(L).

For the saddle-point problem (33) we propose to use Algorithm 2 which
is a slightly modified version of Algorithm 1.

17



Algorithm 2 Zero-order Stochastic Projected Gradient
Requires: Kernel K : [—1,1] — R, step size 7 > 0, parameters 7.

Initialization: Generate scalars r, ...,y uniformly on [—1, 1] and vectors
e1, ..., ey uniformly on the Euclidean unit sphere S,, = {e € R" : ||e|| = 1}.
fork=1,...,N do

1y, = (2 + mirrer) + &, up := o2 — Tereer) + &,

2 Define g := 5= (up — uy,) ( (k) ) K(ry)
* —(er)y
3 Update zx11 := Uz (2 — Vi gk)
end for
Output: {z}, ;.

Theorem 3. Let ¢ € @, 5(L) with v, L > 0 and 8 > 2. Let Assumption
1 hold and let Z be a convex compact subset of R". Let ¢ be G-Lipschitz on
the Euclidean 7-neighborhood of Z (see 75, below).

Then the rate of convergence is given by Algorithm 2 with parameters

3kon % 1 2
_ k25 =—, k=1,....N
Th (2(6 — 1)(/15L)2> Mk ’ ’

satisfies

Elp(@n,y") — ¢(@",7y)] < maxE[p(Tn,y)] — minE [p(z,7y)]

yey reX

1 1 A 14+InN
S - n2—B ,31_1 _|_ AQM ,

v N & N

=1

N 2
where Zy = + > 2, A = Bﬁ(ﬁ;az)ﬂﬁ (kgL)?, Ay = 9kG?, ks and kK are
k=1
constants depending only on [, see (4) and (5).
Proof. Step 1. Fix an arbitrary z € Z. As z;y1 is the Euclidean

projection we have ||z 1 — 2]|? < [|zr — gk — 2||* which is equivalent to

~ ”Zk‘ Z||2 sz—H Z”
— <
<9k72k Z> = 9 .

2 Yk 2
+ 2l (34)

Using the strong convexity-concavity and combining x and y parts of the
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argument z together we have

p(@r,y) — o(z,y0) =0(z, y) — ©(Tk, yr) + ©(Tr, yx) — 0(T, Yr)
i
<(=Vyo(r, u), vk — v) — S lue — yll®
2 2 (35)
H=Vap(@r yp), o — ) = o llaw — 2|
=(Vep(z), 2 — 2) — —HZk — 2%
Combining the last two inequations we obtain
~ L — = 2 _ Z — Z 2
oz y) — o, ye) <(Vep(ar) — gm%—%ﬁ+ﬂk 1"~ Mzt = <]
2%k (36)

Teyp~n2 7 2
+ Gl — T =)
Taking conditional expectation given z; with respect to 7y, § and & we
obtain

o(zr,y) — o(z, ) <(Vo(z) — E il , 25 — 2) + %E [11Gx]1%|2]

H%—AP—EW%H—ﬂﬂ%]_mV_%W
29 917k ‘

(37)

Step 2 (Bounding bias term). Our aim is to bound the first term in
(37), namely (Vo (z) — E [Gr]zi] , 2 — 2). Using the Taylor expansion we have

© (21 + merrer) =p(zk) + (Vo (2k), Trrer)

m| 38
TET
+ > %D(m%(zk)e}? + R(mprier), (38)
2<[ml<l
where by assumption |R(rirrer)| < Ll|merrer]|® = L7y - |ri])?. Thus,
m|
- TET - -
9 :<<V€0(Zk)a7'k7°kek> + ) %D( Jp(zr)ef,
2<|m|<l,|m| odd ' (39)

1 1 n er)e
+ —R(mprrer) — =R(—mprrer) + &k — fz’g) —K (1) (€x) :
Using the properties of the smoothing kernel K, independence of e; and
. (Assumption 1) and the fact that E [ekeﬂ = %ann we obtain

E = V(). (40)

€Lk

(Vo(zr), rrrer) ﬁK(m)( (€k)z ) z

Tk —(ex)y

19



Using the fact that E {TLMK(W)} =0if 2 < |m| <l or|m| =0 and

Assumption 1 we have

m|

= ( > %D(m)w(zk)e?%k —52) %K(Tk) ( (€. ) zp| = 0.

2<|m|<l,|m| odd —(er)y
(41)
Substituting (39), (40) and (41) in the first term in (37) and using the
definition of ks (see (4)) we obtain
Zk]

(42)

‘(690(75/{) — E [gx|2k] , 21 — z>‘ =

(%R(T}ﬂ“kek) — %R(—Tkrkek)> %K(Tk) < < _(fzia)jy > y Rk — Z>

<Ly B [P K ()] - n |Ee [ens 2 — 2)|24]]
< kgLy/nt) |z — 2|,

E

where in the last two inequalities the symmetry of Euclidean sphere and the
fact from concentration measure theory that |E. [(e, s)]|* < E. [(e,s)?] = @
were used . Applying the inequality ab < 1/2(a® + b%) to the last expression in
(42) we finally get

rgL)? _
(s )m']f(ﬁ 1)—|—%sz—z|\2. (43)

(Vo(er) — Elgila] 2 — 2)| <

Step 3 (Bounding second moment of gradient estimator). Our
aim is to estimate E [||gr||?|zx] which is the second term in (37). The expec-
tation here is with respect to ry, & and &,. To lighten the presentation and

without loss of generality we drop the lower script k£ in all quantities.

We have

~2:n_2 . B e () ?

1P = || (o= + 7re) = 9lz = 7re) + €~ €)K ()
, —Cy (44)
n

=13 ((p(z + Tre) — o(z — re) + € — &) K2(r).

Using the inequality (a + b+ ¢)* < 3(a® + b? + ¢?) and Assumption 1 we
get

E [I51%]2] < 5 (E[(p(z +re) — p(z — mre) PK2()[2] + 250%) . (45

20



Using the symmetry of FEuclidean unit sphere and the inequality (a +
b)? < 2(a®+ b?) we obtain

E|(p(z+e) = p(z — )] =Ee [(6(z +¢) — (2 — )Y

|
< 2B, [(6(z + ©) ~ Eulp(z + )] + 2B, [(0(z - )~ Eulolc = o))

12G?
< 2
n
where in the last inequality (20) was used, so we have
12 2G? 1272GR
E [(gp(z +71re) — p(z — 7'7“6))2‘2} < (rr) <7 (47)
n n

By substituting (47) into (45), using independence of e and r and return-
ing the lower script k& we finally get

- 3(no)?
B (135171 < n (9062 + 205, (18)
k

Step 4. Let p? denote full expectation E[||z; — z||]. Substituting (43)
and (48) into (37), taking full expectation we obtain

kgL 3(no)?
Bietrn.y) - ol ] <200 4 2o (guc + 2090

72 2 49
Pk — Pe+1 (7 7) 9

_—— — p .
2 g

* 2 4

Using the convexity-concavity of ¢ and (49) we have

N N
_ _ 1 1
]E[SO(I'N,Q)_SO(I',QN)]SNZSO Tk, Y _Nzgpxyk
k=1 k=1
N
1 (ksL)®  o(s-1) | y | 3(no)’
< — —kK | InG
_N;( N G 272
1 (P p 0
- k— Pr+1 T 2
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2
Let p3,; = 0. Then setting v, = " yields

— P v 1 7\ = 1 1 Y

k+1 2 2 2

> (A 3n) ( 4> z( 1)
( ) 0.

I

b

=2

|
\l/
wMZ

Substituting (51) into (49) with 43 = = we obtain

Elp (Tn,y) — ¢ (2, 7y)]

1 N (B-1) 3(710)2 1
< L)*nr2t InG>+ 22— ) =
1

k=1
N
_ 3ko?]  9knG?
_ _ )220 2 '
’YN,;qn (kpL)™T, +n 2her? +t—

3ko’n 28
If 0 >0 then 7, = ( ) > k72 is the minimizer of square

2(8 —1)(kpL)?

brackets. Plugging this 7 in (52) and using two inequalities: for the expression

N
in square brackets > k718 < BNY? (if B > 2) and for the term after square
k=1

N
brackets % <1+1InN we get
k=1

1 1 n
Elo (Tn,y) — ¢ (z,¥ S—(n2_ﬂ — + Ay————
o (o) o (T < - (77 + A

with A; and As from the formulation of Theorem 3.

Taking the minimum over x and the maximum over y we finally obtain

E [@(fNay*) - (P(x*,y]\f)] < maXE[ (xN,y)] mlnE[ (IagN)]

yeY reX
1 1 A l1+InN

S - (712_6 51_1 + AQw) .
gl N7 N

Theorem 4. Let ¢ € ®5(L) with L > 0 and § > 2. Let Assumption
1 hold and let Z be a convex compact subset of R". Let ¢ be G-Lipschitz on

the Euclidean 7i-neighborhood of Z (7 is parameter from Theorem 3 for the
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regularized function ¢.(z) whose description is given below). Let Zy denote
N
k=1

 Proof. Let’s define N(e):

71 AL 2(1+p) pltr
N(g) = max { (R\/ 2141) 9y Z (R\/ 2C/A2) m} ,

51

where Ay = 38(ko?) 7 (IQBL)%, Ay = 9xG? — constants from Theorem 3, p > 0
— arbitrarily small positive number, ¢ — constant which depends on p.
Then the rate of convergence is given by the following expression:

Elo@n,y") — @(x",7y)] < nyfleagE p(@n,y)] —minEp(z,yy)] < e (53)

after N () steps of Algorithm 2 with settings from Theorem 3 for the regularized
function: ¢,(2) := @(2)+ 3|z —zol*—=Zlly—wol|*, where v < &, R = ||z0—2*]],
29 € Z — arbitrary point.

Proof. Step 1. Let z* = (2%, y") and 27 = (1, ) denote the solutions
of the saddle-point problems for functions ¢(z) and ¢, (z) respectively. Let Ty
denote Ty — xy, ?N denote Y — yo respectively. Let & denote x — z¢, ¢ denote
y — yo and z denote z — zy, where z = (z,y), 20 = (x0, yo) and so on.

3

Setting v = & and using the inequality ¢, (Zn,y") — ¢, (2%, 7x) <
Py (EN, yi‘;) — Py (:z;;,yN) we obtain

Elp(@y, y)] — Elp(a”, gy)] < max Efp(zy, y)] - minE [o(z, 7y)]

reX

- o2 09 °9 22
= max_E |¢, (Ty,y) — oy (2,7y) — T T B ]

rEX e 9 2 2 2
- 09
_ _ vz (54)
< _ -
< xg?f;éyE _QOW (TN, y) — oy (2, 7n) + 5

IS
< a _ m _
< megl{éy};yE [0 (TN, Y) — @y (2, TN)] + 5

DO ™

= I;leaji(E [QOV(EN, y)] - {Crél)rc‘lE [SO’Y(CC??N)] +

Step 2. Now we apply Theorem 3 for ¢, (z) until function error is not
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E.

greater than 5

_ ) _ 1 1 A n(l+InN
max oy (Zx, y)]—min B [y (@, 7)) < - <n2 o +A2¥> <

yey reX N 5 N

\_/[\:)|(‘r)

%5}

~

Using that v = 5% the inequality (55) is done if

1 A n(l+1nN) ve o g?
=5 LA G 56
ma {23ty "I < 2 (50

It is true that 1 +In N < ¢ N#71 for some ¢ > 0. So the inequality (56)
holds if

28 2455 2(1+p) pltp
N > max { (R\/QAl) R (R\/QC’A2> ’ %} . (5T)
e2tr1

£

The inequalities (54) and (55) yield (53).

5 Numerical experiment

In our experiment we compare the Algorithm 1 (with § = 3 and § = 5)
proposed here with Gasnikov’s one-point method for the minimization problem:.

We consider the problem of the minimization of the following function

on the Euclidean ball Q = {x € R : ||z|| < 1}.

The starting point is xy with ||zg|| = 1/2. The dependency of f(ZTy) —
f(x*) (optimization error) on N (iteration number) is presented on Figure
2. The optimization error has its mean and 0.95-confidence interval. As the
constant L for Algorithm 1 with § = 5 is equal to zero we choose L = 0.001.

We see on Figure 2 that the usage of higher-order smoothness by Algo-
rithm 1 helps to overcome the methods which do not use this.

Moreover, from Table 3 we see that the dependence of € on N is better

when we use higher-order smoothness.
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L method

1 == —— Gasnikov (2015)
Algorithm 1 (B =3)
------- Algorithm 1 (B =5)

1071 4

optimization error €

1072 1

102 103 104 10°
iteration number N

Figure 2: Dependency of optimization error of Algorithm 1 on iteration

Table 3: The dependence of optimization error € on iteration number N

theory | experiment

Gasnikov, e N-O5 | o o N061
b8 =2, 2015

Algorithm 1, o N2 | 2 0 NOT3
5 =3, 2020

Algorithm 1, e N=Y5 | 2 o N-001
B =5, 2020

6 Conclusion

We have got to the best of out knowledge the best upper bounds (dependence
of € on n (dimension)) among optimal dependencies of ¢ on N for the problem
of minimization of strongly-convex and convex functions. However, the lower
bound is not achieved yet.

Possible genelization is obtaining the large probability bounds for opti-
mization error. We cannot obtain upper bounds in terms of large deviation
probability (not in terms of expectation) under the Assumption 1. The exploit-
ing of higher order smoothness with the help of kernels under rather general

noise assumptions (non-zero mean) causes big variation ||gr — V f ()| and this
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can causes the problems with large deviation probability rates.

It remains an open question whether large deviation probability can be
obtained under non-zero mean noise. And also it remains an open question
whether better dependence of optimization error on the dimenstion n and strong

convexity parameter v can be obtained.
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