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Abstract: The paper describes a method for fully 
automatic 3D-reconstruction of mouse brain from a 
sequence of histological coronal 2D slices. The model is 
constructed via non-linear transformations between 
neighboring slices and further morphing for 
interpolation. We also use rigid-body transforms in pre- 
and post-processing stages for smoothing transitions. The 
obtained 3D-model is then used for getting 2D-images of 
brain in arbitrary section-plane. We use this approach for 
automatic annotation of brain structures with the aid of 
Allen Brain Atlas which is available in electronic form. 

Keywords: 3D-Reconstruction, neuroimaging, image 
transformations, morphing. 

1. INTRODUCTION 
The problem of automatic annotating of brain 

structures using only images of histological brain slices is 
very important in modern brain research [1]. Biologists 
are now able to monitor the activity of various genes. This 
is usually done in vitro, i.e. on dead species. The 
extracted brain is frozen and then cut into slices. Each 
slice is double-stained by Nissl method to highlight 
histology and by special stain which reveals the neurons 
with expression of corresponding genes. The main 
problem is to determine brain structures where active 
genes are located. This problem is difficult even for 
experts especially in cases when slices are obtained using 
non-standard section-plane. However there are several 
atlases for various animals which contain both 
histological images and the corresponding images where 
all brain structures are marked by expert [2]. The 
intriguing problem is to use such atlases for constructing 
annotated 2D-image in arbitrary section-plane. 

In the paper we suggest an algorithm which is fully 
automatic and allows one to get such 2D-images in 
various sections. To do this we use histological images 
from atlas to construct brain 3D-model. First we perform 
rigid-body transforms to align the neighboring slices and 
eliminate contour fluctuations. Second we find non-linear 
transforms which map each slice to the previous ones in 
the best way. The family of B-splines is used as a set of 
basis deformations. We use morphing approach to 
compute virtual intermediate sections between real slices. 
Our 3D-model is not voxel-based. Instead we keep the 
initial slices and a set of B-spline coefficients. This allows 
us to save memory and at the same time supply high 
spatial resolution which is important for obtaining virtual 
slices in different planes. When 3D-model is constructed 
we use it to synthesize 2D virtual slice by setting arbitrary 
section-plane. Then we use the same transforms to 
calculate the anatomic structure for this virtual slice. 

The rest of paper is organized as follows. In section 2 
we briefly characterize particular brain atlas we use - 

Allen Brain Atlas [4]. Section 3 gives a list of steps for 
3D-modelling. We describe preprocessing of brain images 
in section 4 and non-linear interpolation of slices in 
section 5. Section 6 contains some experimental results. 
Some conclusions are given in the last section. 

2. ALLEN BRAIN ATLAS 
The Allen Brain Atlas [3, 4] is a set of full-color, 

high-resolution coronal digital images (132 images) of 
mouse brain accompanied by a systematic, hierarchically 
organized taxonomy of mouse brain structures. The Allen 
Brain Atlas is obtained from 8-week old C57Bl/6J male 
mouse brain prepared as unfixed, fresh-frozen tissue. 

Fig.1 – Allen Brain Atlas image. 
 

On Fig.1 the left half is a histological image of one 
slice of mouse brain, the right half is a structural color 
segmentation of mouse brain. 

3. STAGES OF MOUSE BRAIN 3D MODELLING 
Here we consider the problem of 3D mouse brain 

model reconstruction using a set of coronal 2D slice 
images obtained from Allen Brain Atlas. In the paper we 
propose to solve this problem using 3 main steps: 

1) Illumination correction. For different brain images 
illumination level is different and even within one 
separate image there are areas with different illumination 
levels. 

2) Proportional alignment. Due to technological 
aspects of brain cutting procedure some brain slices may 
change a little in their actual size and shape. This 
deformation can be significant for automatic 3D model 
reconstruction. 

3) Non-linear transformation between neighboring 
slices. Such transformation allows to find the 
correspondence not only between brain shapes but also 
between internal structures of mouse brains. 

In the paper we provide methods for solving all three 
mentioned problems. 

Although atlas images are given as positives we 
decided to work with negatives due to some 



implementation aspects. Hence all further illustrations are 
given as negatives. 

Atlas images resolution is very high. In our 
implementation image resolution was reduced because of 
computational costs. Resolution decreasing gives an 
additional image smoothing as well. 

4. ILLUMINATION CORRECTION 
For illumination correction we apply a gauss filter 

with large radius. Then initial image is divided by 
obtained filtered image. Fig. 2 and fig. 3 illustrate this 
procedure. 

Fig.2 – Atlas image without illumination correction. 

Fig.3 – Atlas image after illumination correction. 

5. ALLIGNMENT OF ATLAS IMAGES 
For alignment of atlas images we find the smallest 

surrounding rectangle for each slice. Afterwards we 
consider rectangle border as a function of slice number. 
Fig. 4 shows top and bottom borders of brain rectangles 
without alignment. These functions are not smooth 
enough for building 3-dimensional model. Here we apply 
Savitzky-Golay filter to smooth these functions. 

Savitzky-Golay filters can be thought of as a 
generalized moving average. For each point we fit a 
polynomial to the points in the moving window using 
least squares (we used window width 15), and then set the 
new value to be the value of that polynomial at the same 
position. Such choice of coefficients preserves higher 
moments in the data, thus reducing the distortion of 
essential features of the data like peak heights and line 
widths in a spectrum, while the efficiency of the 
suppression of random noise is effectively unchanged. 

Fig. 5 shows top and bottom borders of brain 
rectangles after alignment. 

Fig.4 – Not aligned top (U) and bottom (D) borders of mouse 
brain. 

Fig.5 – Aligned top (U) and bottom (D) borders of mouse 
brain. 

If we are interested in any specific section of mouse 
brain we can make additional alignment in appropriate 
plane. Such alignment makes specific section smother but 
the whole model becomes less smooth. So in general we 
don’t use specific plane alignment for 3D-model 
reconstruction.  

6. NON LINEAR DEFORMATIONS 
A 3D model of mouse brain is a function: 

3: [0,1]F →� . (1) 

From atlas slices we know F values only at some 
discrete points. In slice plains expansion of discrete 
function to its continuous version is a weighted sum of 
surrounding discrete point color. Expansion in other 
plains can be done in the same way (weighted sum of 
neighboring slices). However, this simple solution makes 
a 3D model not smooth enough. A better solution can be 
obtained using nonlinear image deformations.  

The input images are given as two 2-dimensional 
discrete functions: 

2
1 2, : [0,1]f f I Z⊂ → . (2) 

Here I is a 2-dimensional discrete interval covering 
the set of all pixels in the image. Functions values stand 
for intensities of corresponding pixels. 

Denote continuous expansions of two images as 



1 2,c cf f . 
Our goal is to find a deformation of the first image to 

the second one in the following way: 

1 2( ( , )) ( , )cf g x y f x y≈ . (3) 

Here 2 2( , ) :g x y →� �  is a deformation 
(correspondence) function between pixels. 

We measure the difference between images by SSD 
(sum of squared deviations) criterion: 

2
1 2

( , )
( ( ( , )) ( , ))s

i j I
E f g i j f i j

∈

= −∑ . (4) 

So the problem is to minimize E with respect to 
deformation function g. 

We consider deformation function as a linear 
combination of some basis functions: 

( , ) ( , ).k k
k K

g x y c b x y
∈

= ∑ r
 (5) 

Here K is a set of the basis function indexes. 
Family of deformation functions (5) transforms 

optimization problem in functional space into finite-
dimensional optimization problem. 

We use uniformly spaced cubic B-splines as basis 
functions. 

A B-spline rβ  of degree r  is recursively defined as 

1 0 , 0r r rβ β β−= ∗ > . (6) 

0β  is a characteristic function of [ 0.5,0.5]− , * is 
convolution operator. 

Specifically cubic B-spline is the following function: 
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So we are looking for deformation function in the 
family: 
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Centers of B-spline functions are placed on the regular 
grid ( , )x x y yk h k h . Working with uniform splines is 
significantly faster with respect to nonuniform splines. In 
order to get complete control over g, we put some spline 
knots outside the image. 

Finally the problem is to optimize SSD criteria E w.r.t. 
set of parameters c. Here we use gradient descent 
algorithm with feedback step size adjustment. In this 
algorithm parameter update rule is ( )cc E cμΔ = − ∇ . 
After a successful step μ  is multiplied by some value 

fμ , otherwise it is divided by some other value fμ
∗ . 

An example of deformation field obtained from B-
spline basis functions for a pair from Allen Atlas is shown 

in Fig, 6. 
 

Fig.6 – Deformation field for B-spline method. This 
deformation field is obtained by applying deformation of 

neighbouring slices to regular grid. 
After we have deformation of the first image to the 

second one and vice versa, we can fill gaps between atlas 
slices with weighted sum of deformated neighbouring 
slices:  

1
1, 1 2,( , , ) ( , ) (1 )k kF x y z f x y fα αα α −

−= + − . (9) 

Here 1 1( ) / ( )k k kz z z zα − −= − − , 1k kz z z− ≤ < , 

kz  is a z-coordinate of slice number k. 

1, 1 1 1(( , ) ( ( , ) ( , )))k
k k kf f x y g x y x yα α− − −= + − . (10) 

1
2, (( , ) ( ( , ) ( , )))k

k k kf f x y g x y x yα α −= + − . (11) 

Here ( , )j
ig x y  is a deformation function of slice 

number i to slice number j. 

6. EXPERIMENTAL RESULTS 
Our 3D model allows to reconstruct brain image for 

arbitrary section plane. Fig. 7 shows sagittal brain view 
for 3D-model reconstructed from atlas without 
illumination correction, proportional alignment and 
nonlinear deformations between neighboring slices. Fig. 8 
shows the same view for 3D-model built with 
illumination correction and atlas image alignment. Fig. 9 
shows the result obtained with nonlinear deformations 
between neighboring slices. 

It is easy to see that 3D model from Fig. 9 is much 
smoother than the previous ones. Besides, it provides 
better information about internal structures of mouse 
brain. 

We can also reconstruct brain structure segmentation 
for each section plane using right parts of initial atlas 
images. Fig. 10 shows this result for the image from 
Fig. 9. This colored image can be compared to sagittal 
view taken from another atlas (Fig. 11). It is easy to see 
that this is a strong correspondence  between two images 
with respect to brain structures. 

Analogous results can be obtained for axial view (Fig. 
12-16). 



Fig.7 – Sagittal view of 3D model without illumination 
correction, alignment and nonlinear deformations. 

Fig.8 – Sagittal view of 3D model with illumination 
correction and alignment. 

Fig.9 – Sagittal view of 3D model with illumination 
correction, alignment and nonlinear deformations. 

Fig.10 – Sagittal view of 3D model with structure color 
segmentation. 

Fig.11 – Sagittal view from another atlas. 

 

Fig.12 – Axial view of 3D model without illumination 
correction, alignment and nonlinear deformations 



Fig.13 – Axial view of 3D model with illumination correction 
and alignment. 

Fig.14 – Axial view of 3D model with illumination 
correction, alignment and nonlinear deformations. 

7. CONCLUSION 
We proposed an algorithm that constructs virtual 

slices of brain w.r.t. arbitrary section-plane. We have 
shown that this algorithm allows us to get synthetic 
images of relatively good quality both with histological 
and anatomical structure. The algorithm opens great 
perspectives for further brain research as it provides the 
opportunity of discovering anatomical structures in a 
single slice of real mouse brain. The procedure of slices’ 
preparation is very time and labor consuming, that is why 
it is highly desirable to reduce the number of slices 
obtained from real mouse to minimum (in the limit to one 
which is of interest for biologists). The slice can be made 
in non-standard (coronal, sagittal, or axial) section-plane 
and it should be mapped into 3D-model of atlas brain. 
Our algorithm allows us to synthesize the image of an 
atlas brain w.r.t. any section-plane and hence is the key 
part of future method which will compute the best 
mapping. When it is computed the anatomical structures 
in real brain slice can be found easily by projecting 
anatomical structure of atlas brain onto the virtual slice 
with further performing inverse mapping to adapt it to 

real brain slice. The algorithm for automatic histological 
mapping of arbitrary slice to 3D model of atlas brain is 
our future work.

Fig.15 – Axial view of 3D model with structure color 
segmentation. 

Fig.16 – Axial view from another atlas. 
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