

Basic Understanding of Quantitative Modelling

Vadim Strijov

Computing Center of the Russian Academy of Sciences

September 12th, 2012 RWTH Aachen, School of Business and Economics

with examples in Marketing/Financial/Environmental Engineering

The main goal is to show **how a quantitative model could be recognized** among daily routines.

The model is a mathematical representation of our knowledge about some investigated phenomenon.

The quantitative model

is based mainly on measured data and may concern our knowledge about processes underlying the phenomenon.

VERSUS

The mathematical model

is based on our knowledge about processes underlying the phenomenon and may concern measured data.

Data and Model	Classification	Forecasting	Decision making	Application
Notation				

The model is the parametric family of functions

The model

 $f: \mathbf{x} \mapsto \hat{y}$

maps the object description to its corresponding class label.

Classification, Recognition, Regression, Decision making are types of modelling problems.

Data and Model Classification Forecasting Decision making Application

Classification, RecognitioN, Regression, Decision making

The model

$$f: \mathbf{x} \mapsto \hat{y}.$$

- **1** \mathbf{x} patient \mapsto y treatment result
- 2 x bank client \mapsto y grant/reject a credit
- **3** \mathbf{x} stock share price \mapsto y buy/sell
- **4** \mathbf{x} telecom subscriber \mapsto y will go to another provider
- **5** \mathbf{x} photograph \mapsto y identity of the person
- **6** \mathbf{x} protein fragment \mapsto y type of secondary structure
- 7 x text message \mapsto y is spam or not
- **8** \mathbf{x} chemical combination structure \mapsto y its property
- **(9** \mathbf{x} technological process parameters \mapsto y product quality
- $\textcircled{0} x history of sales \mapsto y customer demand forecast$
- $\textcircled{1} \mathbf{x} \text{description of apartment} \mapsto \mathbf{y} \text{price to sell}$
- $\mathbf{I} \mathbf{V} \mathbf{x} \mathsf{pair} (\mathsf{client}, \mathsf{commodity}) \mapsto \mathsf{y} \mathsf{rating} \mathsf{of} \mathsf{commodity}$

Classification, Recognition, Regression, Decision making

The model

$$f: \mathbf{x} \mapsto \hat{y}.$$

1 [C] \mathbf{x} – patient \mapsto y – healthy or not 2 [C] \mathbf{x} – bank client \mapsto y – grant/reject a credit **3** [C] \mathbf{x} – stock share price \mapsto y – buy/sell **4** [C] \mathbf{x} – telecom subscriber \mapsto y – will go to another provider **(**N **x** – photograph \mapsto **y** – identity of the person **6** [C] \mathbf{x} – protein fragment \mapsto y – type of secondary structure **(**C] **x** – text message \mapsto y – is spam or not [R] \mathbf{x} – chemical combination structure \mapsto y – its property 8 0 [R] \mathbf{x} – technological process parameters \mapsto y-product quality [R] \mathbf{x} – history of sales \mapsto y – customer demand forecast 1 (**I**) [R] \mathbf{x} – description of apartment \mapsto y – price to sell \mathbb{D} [D] x – pair (client, commodity) \mapsto y – rating of commodity {C,N,R,D}.

Learning of the model

The problem above was [R], the recognition problem, where **x** is a text string (*in fact, your knowledge about it*), y is a label in the set {C,N,R,D}, the model is

$$f: \mathbf{x} \mapsto \hat{y}$$

and the error (or loss) function is

$$S = \frac{1}{12} \sum_{i=1}^{12} [y_i \neq \hat{y}_i],$$

where $[\cdot]$ means

$$[y_i \neq \hat{y}] = \begin{cases} 0, & \text{if } y = \hat{y}; \\ 1, & \text{if } y \neq \hat{y}. \end{cases}$$

Data and Model	Classification	Forecasting	Decision making	Application
Historical data	1			

There given the sample set
$$D = \left\{ (\mathbf{x}_i, y_i)
ight\}_{i=1}^m$$
,

D stands for "Data"

the object description (or object) x

- is a vector, $\mathbf{x}_i = [x_{i1}, \dots, x_{ij}, \dots, x_{in}]$ of *n* components, which are called **features**;
- or more complex structure;

the label y

- is a scalar and could be of
 - binary set, y ∈ {0,1};
 - countable finite set, $y \in \{1, \ldots, z\}$;
 - set of real numbers, $y \in \mathbb{R}$;
 - etc.

The pair (\mathbf{x}, y) is called a precedent or a historical sample.

Data and Model	Classification	Forecasting	Decision making	Application
Data scales				

Scale	Mathematical operations
Nominal	No linear operations allowed
Ordinal	Only comparison allowed
Linear (Real)	Linear operations: "+", " \times "
Interval	Linear operations with restrictions
Binary	Linear or Boolean operations (and, or, not)

Nominal, Ordinal, Linear, Interval, Binary, etc. (Unspecified)

- Education degrees
- Wind force
- 3 Moody's bank ratings
- BBC News titles
- **G** Google search results
- 6 Protein amino acids
- Spectrum colors
- 8 Time in physics
- 9 Facebook connections
- ① Diesel engine combustion pressure
- The distance to home
- Traffic light's lights

Nominal, Ordinal, Linear, Interval, Binary, etc. (Unspecified)

- [O] Education degrees
- ② [I] Wind force
- 3 [O] Moody's bank ratings
- IN] BBC News titles
- **5** [O] Google search results
- 6 [N] Protein amino acids
- [I] Spectrum colors
- 8 [L] Time in physics
- 9 [B] Facebook connections
- ① [I] Diesel engine combustion pressure
- [L] The distance to home
- [U] Traffic light's lights

Data and Model	Classification	Forecasting	Decision making	Application

Data type conversion: binarization

Applicant's industry, nominal scale					
Nominal	Tourism	Banking	Telecom		
John	1	0	0		
Thomas	0	1	0		
Sara	0	0	1		

Applicant	Applicant's education, ordinal scale				
Ordinal	Primary	Secondary	Higher		
John	1	0	0		
Thomas	1	1	0		
Sara	1	1	1		

Data and Model	Classification	Forecasting	Decision making	Application
Parametric mo	odel			

Introduce model parameters, the vector \mathbf{w} and call f the parametric model:

The element-wise mapping

$$f: (\mathbf{w}, \mathbf{x}) \mapsto \hat{y},$$

the vector mapping

$$f: (\mathbf{w}, X) \mapsto \hat{\mathbf{y}},$$

or

$$\mathbf{f}:\begin{bmatrix}w_1\\w_2\\\cdots\\w_m\end{bmatrix},\begin{bmatrix}x_{11}&x_{12}&\cdots&x_{1n}\\x_{21}&x_{22}&\cdots&x_{2n}\\\cdots&\cdots\\x_{m1}&x_{m2}&\cdots&x_{mn}\end{bmatrix}\mapsto\begin{bmatrix}\hat{y}_1\\\hat{y}_2\\\cdots\\\hat{y}_m\end{bmatrix}.$$

Classification of patients with Cardio-Vascular Disease

There given two groups of patients: $y \in \{A1, A3\}$; each patient is described by a set of markers **x**.

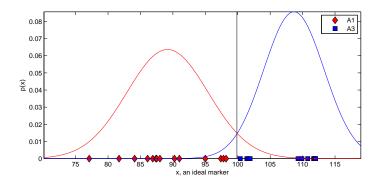
$\begin{array}{rcl} Classes & \longrightarrow & Groups & of \\ & & patients \end{array}$	The patients have classification labels "A1" and "A3".
$Objects \longrightarrow Patients$	We have measured data for 14 patients in the group "A1" and 17 patients in the group "A3".
$Features \longrightarrow Markers$	We have 20 markers: K, L, K/M, L/M, K/N, K/O, L/O, K/P, L/P, K/Q, K/R, L/R, L/R/SA, L/T/SA, L/T/SO, U/V, U/W, U/X, U/Y, U/Z

Object-Feature (Patient-Marker) table, an extract

Class	Patient name	K	L	K/M	L/M	
A1	C001	58.3	16.7	0.52	0.00	
A1	C004	40.2	6.0	NaN	NaN	
A1	C005	54.3	13.1	NaN	NaN	
A1	C008	48.7	9.8	0.05	0.02	etc.
A3	023	46.6	21.2	0.40	0.08	
A3	026	50.7	26.2	0.12	0.00	
A3	027	45.3	24.5	0.05	0.02	
A3	D037	46.3	13.1	1.23	0.13	
				etc.		

Can we show that the groups are significantly different?

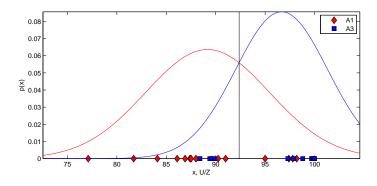
One-dimensional analysis, ideal example



Separate two groups using statistical hypothesis;

try the null-hypothesis in one of the following tests: Student's t-test, Welch's t-test or Mann-Whitney's U-test.

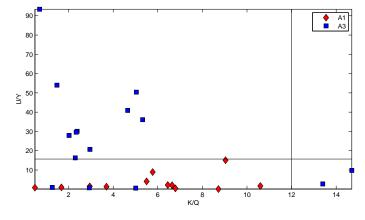
One-dimensional analysis, real data



✓ It is very simple to visualize one-dimensional data.

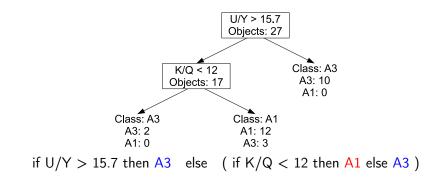
- \checkmark One-dimensional statistics is well-developed and recognized.
- $\times\,$ And give poor results if one deals with a complex problem.

Classification rules and decision trees



if U/Y > 15.7 then A3 else (if K/Q < 12 then A1 else A3)

Data and Model	Classification	Forecasting	Decision making	Application
Decision tree				



 $\checkmark\,$ Different subsets of markers produce trees of different quality.

 \checkmark One can use several trees to make a voting algorithm.

Decision forest and voting algorithms

- 1 If U/Y < 15.7 then A1 else A3
- 2 If U/Z < 88.2 then A1 else (if U/V < 51.9 then A1 else A3)
- **3** If U/Z < 88.2 then A1 else (if K/N < 31.9 then A3 else A1)

Class	Patient	Rule 1	Rule 2	Rule 3	Vote
	C014	A1	A3	A1	A1
A1	C015	NaN	A1	A1	A1
	D034	A1	A1	A3	A1
	L107	A1	NaN	A3	NaN
	etc.	•••	• • •	•••	
	023	A3	A3	A3	A3
A3	026	A1	A3	A3	A3
	027	A3	NaN	NaN	NaN
	009	A1	A3	A3	A3
	etc.			•••	

Data and Model	Classification	Forecasting	Decision making	Application
Linear classifi	٥r			

The equation

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = b$$

describes a separating hyperplane in the feature space.

Let \mathbf{x}_i be the patient's markers and \mathbf{w} be the parameters. Then

$$\hat{y}_i = f(\mathbf{w}, \mathbf{x}_i) = \operatorname{sign}\left(\sum_j w_j x_{ij} - b\right) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i - b)$$

is the class of the *i*-th patient.

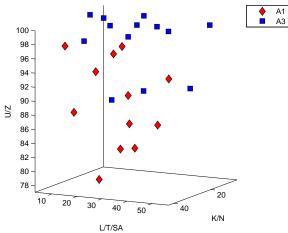
Decision tree

 \checkmark assumes the markers do not depend on each other.

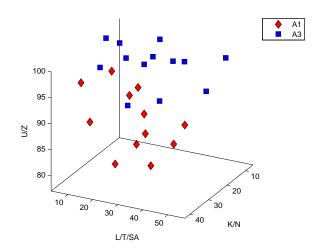
Linear classifier

 $\checkmark\,$ assumes the markers depend on each other.

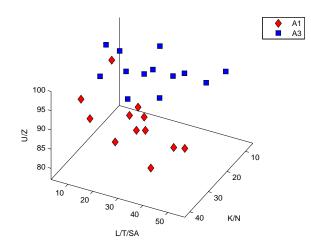
Data and Model	Classification	Forecasting	Decision making	Application
Linear classif	or			



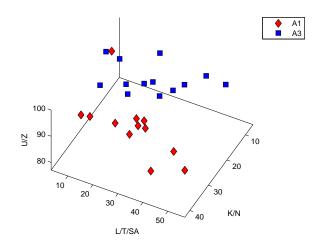
Data and Model	Classification	Forecasting	Decision making	Application
Linear classifi	er			



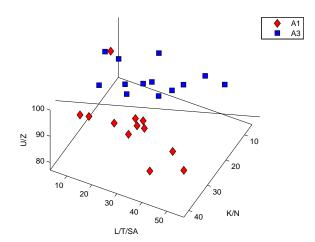
Data and Model	Classification	Forecasting	Decision making	Application
Linear classifie	r			



Data and Model	Classification	Forecasting	Decision making	Application
Linear classifie	r			



Data and Model	Classification	Forecasting	Decision making	Application
Linear classifie	r			



Data and Model	Classification	Forecasting	Decision making	Application
Classification	results			

After classification a pair (A1 vs. A3) we obtain the following information:

classified patients

(C014, D034, L107, ..., C008, 023, 026, ..., C015),

2 classification error

$$\frac{|a1|}{|A1|} + \frac{|a3|}{|A3|},$$

3 most important markers

(L, K/N, U/Z),

4 parameters of the algorithm

$$\hat{y}_i = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i - b) = \operatorname{sign}([0.35, 0.72, 0.29]^{\mathsf{T}}\mathbf{x}_i - 34.16).$$

Database from R. A. Fisher: Iris data, 1936

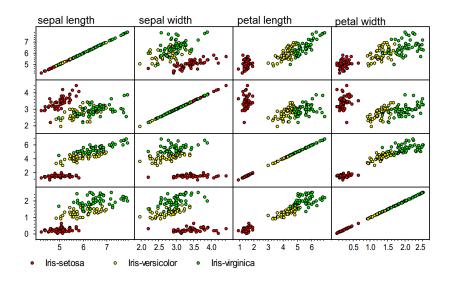
Object description, x:

- sepal length in cm,
- sepal width in cm,
- petal length in cm,
- petal width in cm.

Class label, y:

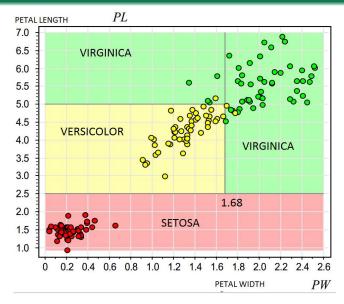
- Iris Setosa,
- Iris Versicolour,
- Iris Virginica.

Scatterplot for Iris data



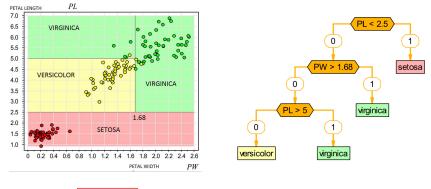
Data and Model	Classification	Forecasting	Decision making	Application

Classify the Iris

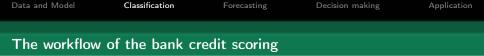


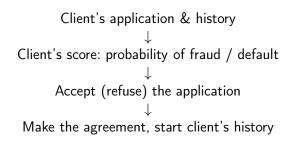
Data and Model	Classification	Forecasting	Decision making	Application
Classify the la	ie.			

Classify the Iris



$$\label{eq:rescaled_$$





Type of detection

Fraud: deliquency 90+ on
$$3^{rd}$$

 $0 \longrightarrow 30+ \longrightarrow 60+ \longrightarrow 90+ \longrightarrow 120+$ $\longrightarrow 150+$
Default: deliquency 90+ on any, but 1^{st}

- Loans of 90+ delinquency, default cases, applications
- The fraud cases are rejected
- Overall number of cases
 - $\sim 10^4$ for long-term credits
 - $\sim 10^6$ point-of-sale credits
 - $\sim 10^7$ for churn analysis
- Default rate \sim 8–16%
- Period of observing: no less 91 days after approval
- Number of source variables \sim 30–50
- Number records with missing data > 0, usually very small
- Number of cases with outliers > 0, $3\sigma^2$ -cutoff

. . .

List of features (fields in questionary)

. . .

Variable	Туре	Categories
Loan currency	Nominal	3
Applied amount	Linear	
Monthly payment	Linear	
Term of contract	Linear	
Region of the office	Nominal	7
Day of week of scoring	Linear	
Hour of scoring	Linear	
Age	Linear	
Gender	Nominal	2
Marital status	Nominal	4
Education	Ordinal	5
Number of children	Linear	
Industrial sector	Nominal	27
Salary	Linear	

. . .

Data and Model	Classification	Forecasting	Decision making	Application
Scoring problem	n statement			

1 The data set:
$$\mathbf{x} \in \mathbb{R}^n$$
, $y \in \{0, 1\}$,

$$D = \{(\mathbf{x}_i, y_i)\}, i \in \{1, ..., m\};$$

2 the design matrix $X \in \mathbb{R}^{m \times n}$,

$$X = [\mathbf{x}_1^\mathsf{T}, \ldots, \mathbf{x}_m^\mathsf{T}]^\mathsf{T};$$

 ${f 3}$ class labels ${f y} \sim$ Bernoulli;

$$\mathbf{y} = [y_1, \ldots, y_m]^{\mathsf{T}},$$

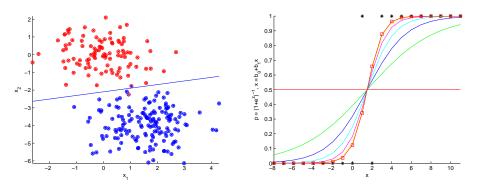
4 the model

0

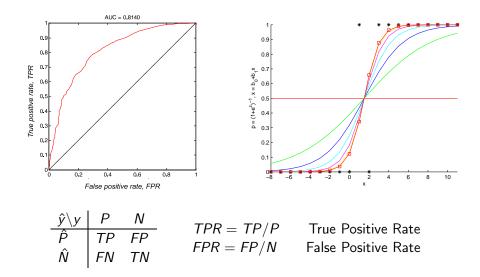
$$\mathbf{f}(\mathbf{w},X) = \frac{1}{1 + \exp(-X\mathbf{w})}.$$

Data and	Model	Classification	Forecasting	Decision making	Application
•		c.			

Separating surface



ROC-curve (receiver operating characteristic) as quality criterion



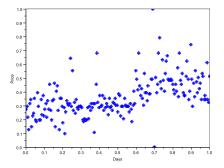
Data and Model Class	ification Forecasting	Decision making	Application
Linear regression			

The data set
$$D = \{(\mathbf{x}_i, y_i)\}_{i=1}^m = (X, \mathbf{y}),$$

where $\mathbf{y} = [y_1, \dots, y_m]^T$ is the target vector and X is the design matrix

$$X = \begin{bmatrix} \mathbf{x}^1 \\ \vdots \\ \mathbf{x}^m \end{bmatrix} = [\mathbf{x}_1, \dots, \mathbf{x}_n].$$

White bread prices: m = 195 pairs (x_i, y_i) , the data are mapped to the segment (0, 1).



Approximate the prices using the linear model

$$y_i = f(\mathbf{w}, x_i) + \varepsilon_i = w_2 x_i + w_1, \quad \mathbf{w} = [w_1, w_2]^T.$$

Data and Model Classification Forecasting Decision making Application

Univariate linear regression

Use mapping
$$g_1 = (\cdot)^0$$
, $g_2 = (\cdot)^1$ obtain the matrix

$$X = \begin{bmatrix} g_1(x_1) & g_2(x_1) \\ g_1(x_2) & g_2(x_2) \\ \dots & \dots \\ g_1(x_m) & g_2(x_m) \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_m \end{bmatrix}$$

According to the Least Squares,

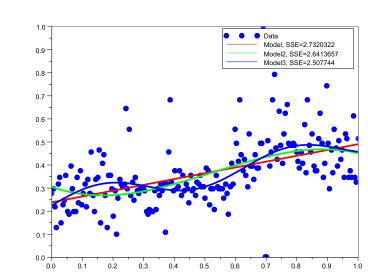
$$\hat{\mathbf{w}} = (X^T X)^{-1} X^T \mathbf{y}, \text{ where } y = [y_1, \dots, y_m]^T.$$

In the matrix notation, the linear model is

$$\mathbf{y} = X\mathbf{w} + \boldsymbol{\varepsilon},$$

and the regression function $\hat{\mathbf{y}} = X\hat{\mathbf{w}}$. The error function is the Sum of Squared Errors,

$$SSE = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 = (\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}}).$$



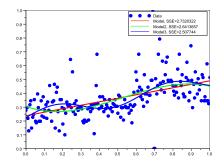
41/90

Introduce the set of the primitives:

$$G = \{g_1, \dots, g_5\} = \{x^0, x^1, x^2, x^3, sin(10x)\} \text{ and the linear model}$$

$$\hat{y}_i = \sum_{j \in \mathcal{A}} w_j g_j(x_i), \text{ for short } \hat{\mathbf{y}} = X_{\mathcal{A}} \mathbf{w}, \text{ where } \mathcal{A} \subseteq \{1, \dots, 5\};$$

and obtain the regression functions.



The set of retailers problems:

- custom inventory,
- calculation of optimal insurance stocks,
- consumer demand forecasting.

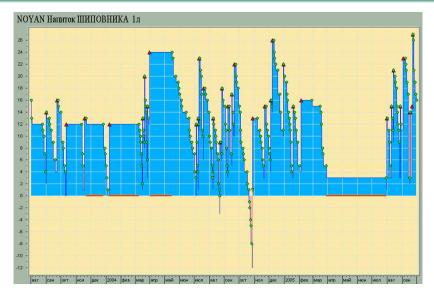
There given:

- time-scale,
- historical time series,
- additional time series;

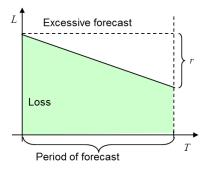
We must forecast the time series.

The quality of forecasting is the minimum loss of money.

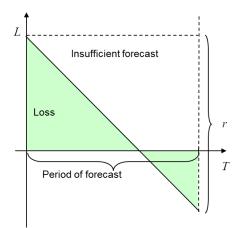
Custom inventory

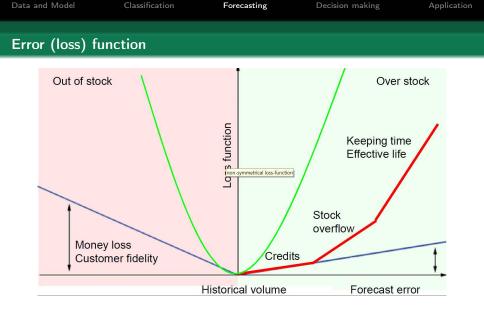


Data and Model	Classification	Forecasting	Decision making	Application
Excessive for	ecast			



Data and Model	Classification	Forecasting	Decision making	Application
Insufficient f	orecast			





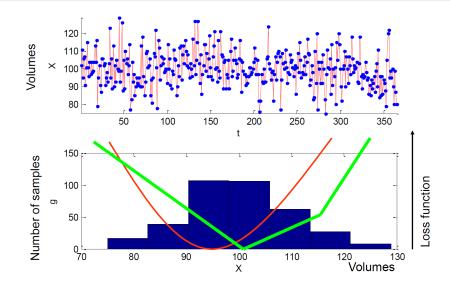
Quadratic function, Linear function, Asymmetric function

Noisy time series forecasting

- There is a historical time series of the volume off-takes (i.e. foodstuff).
- Let the time series be homoscedastic (its variance is the time-constant).
- Using the loss function one must forecast the next sample.

Data and Model Classification Forecasting Decision making Application

The time series and the histogram



Let there be given:

the historgam
$$H = \{X_i, g_i\}, i = 1, \dots, m;$$

the loss function L = L(Z, X);

for example,
$$L = |Z - X|$$
 or $L = (Z - X)^2$.
The problem:

For given H and L, one must find the optimal forecast value \tilde{X} . Solution:

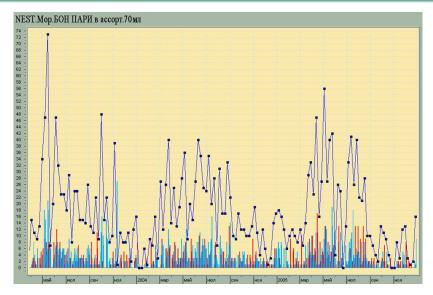
$$ilde{X} = \arg\min_{Z \in \{X_1, \dots, X_m\}} \sum_{i=1}^m g_i L(Z, X_i).$$

Result:

 \tilde{X} is the optimal forecast of the time series.

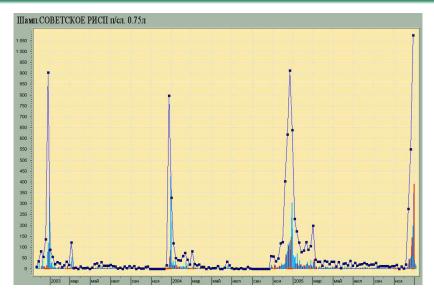
- There is a trend total increase or decrease in sales volume,
- periodic component week and year cycles,
- aperiodic component promotional actions and holidays,
- life cycle of goods mobile phones.

Year seasonality

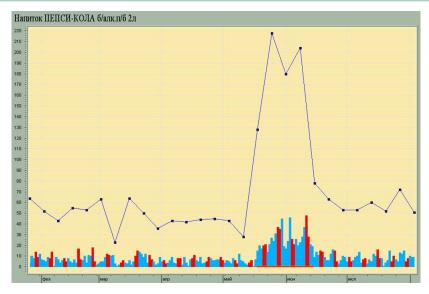


Week seasonality

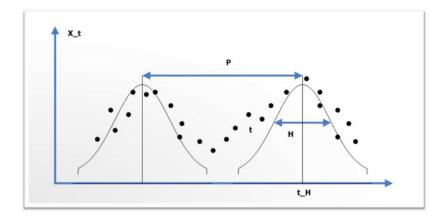
Holidays and week-ends



Promotional actions



How to forecast quasi-periodical time series



Split the time series into the periods.

Hour by Hour Energy Forecasting

Data:

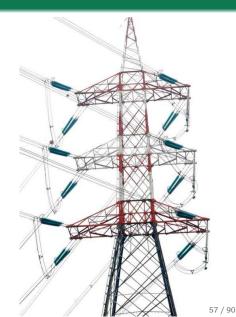
 historical consumption and prices, multivariate time series.

To forecast:

- hour-by-hour, the next day
 - ✓ consumption and✓ price.

Solution:

• the autoregressive model generation and model selection.



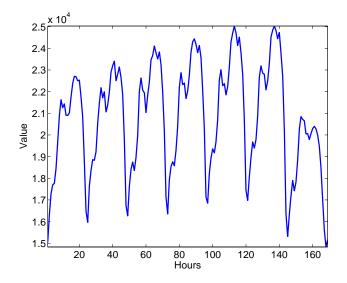
The periodic components of the multivariate time series

The time series:

- energy price,
- consumption,
- daytime,
- temperature,
- humidity,
- wind force,
- holiday schedule.

Periods:

- one year seasons (temperature, daytime),
- one week,
- one day (working day, week-end),
- a holiday,
- aperiodic events.



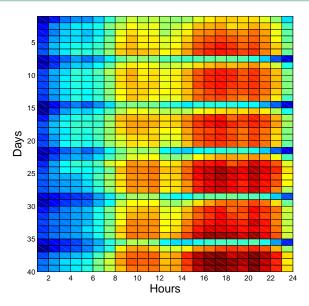
The autoregressive matrix to forecast periodic time series

- There given the time series $\{s_1, \ldots, s_{\tau}, \ldots, s_{T-1}\}$, the length of a period is κ .
- One must to forecast the next sample T.
- The autoregressive matrix:
 - its *i*-th row is a period of samples,
 - its *j*-th column is a phase of the period and
 - they map into the time series sample number such that $(i-1)\kappa \mapsto \tau$; let $\operatorname{mod} \frac{T}{\kappa} = 0$;

$$X^{*}_{(m+1)\times(n+1)} = \begin{pmatrix} s_{T} & s_{T-1} & \dots & s_{T-\kappa+1} \\ s_{(m-1)\kappa} & s_{(m-1)\kappa-1} & \dots & s_{(m-2)\kappa+1} \\ \dots & \dots & \dots & \dots \\ s_{n\kappa} & s_{n\kappa-1} & \dots & s_{n(\kappa-1)+1} \\ \dots & \dots & \dots & \dots \\ s_{\kappa} & s_{\kappa-1} & \dots & s_{1} \end{pmatrix}$$

Data and Model Classification Forecasting Decision making Application

The autoregressive matrix, five week-ends



.

The autoregressive matrix and the linear model

$$X^{*}_{(m+1)\times(n+1)} = \begin{pmatrix} s_{T} & s_{T-1} & \dots & s_{T-\kappa+1} \\ s_{(m-1)\kappa} & s_{(m-1)\kappa-1} & \dots & s_{(m-2)\kappa+1} \\ \dots & & \dots & \dots & \dots \\ s_{n\kappa} & s_{n\kappa-1} & \dots & s_{n(\kappa-1)+1} \\ \dots & & \dots & \dots & s_{1} \end{pmatrix}$$

In a nutshell,

$$X^* = \begin{bmatrix} s_T & \mathbf{x}_{m+1} \\ \frac{1 \times 1}{1 \times n} & \frac{1}{1 \times n} \\ \mathbf{y} & \mathbf{X} \\ \frac{\mathbf{y}}{m \times 1} & \frac{\mathbf{X}}{m \times n} \end{bmatrix}$$

٠

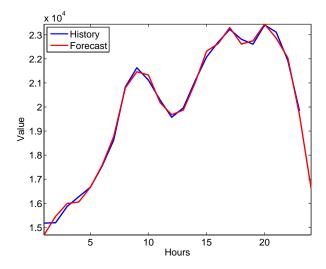
In terms of linear regression:

$$\hat{\mathbf{y}} = X \mathbf{w}, \quad \text{the forecast} \quad \hat{y}_{m+1} = \hat{s}_T = \mathbf{w}^{\mathsf{T}} \mathbf{x}_{m+1}^{\mathsf{T}}.$$

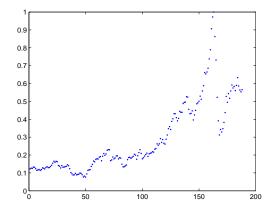
62 / 90

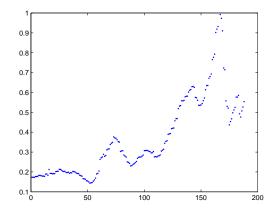
Data and Model Classification Forecasting Decision making Application

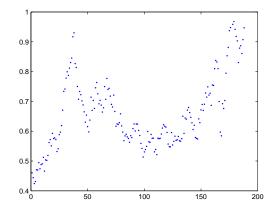
The one-day forecast, an example

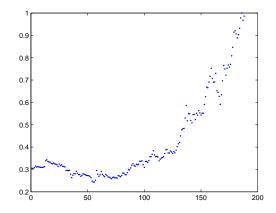


Time series with a bubble, example 1

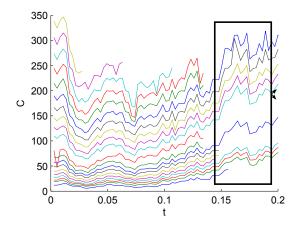








Time series trends/events forecasting, example



Event forecasting; One must forecast $s_{1,T+1} \in \mathbb{M} \ni \mathbb{R}$.

There are N time series of length T (an element $s_{n,t} \in \mathbb{M}$). Form the matrix

Denote Δ the time-lag and for the time series $[s_{1,t}], t \in {\Delta + 1, ..., T}$ form the matrix

and vectorizing it, obtain the sample \mathbf{x}_t

$$\mathbf{x}_t = [\mathbf{s}_{1,t-\Delta}, \mathbf{s}_{2,t-\Delta}, \dots, \mathbf{s}_{N,t-\Delta}, \mathbf{s}_{1,t-\Delta+1}, \dots, \mathbf{s}_{N,t-1}]^T.$$

Event forecasting is a classification problem

Introduce the data set $D = (X, \mathbf{y})$, where

$$X = \begin{bmatrix} \mathbf{x}_1^{\mathsf{T}} \\ \mathbf{x}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_{\mathcal{T}-\Delta}^{\mathsf{T}} \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{\mathcal{T}-\Delta} \end{bmatrix}$$

٠

Treat this classification problem as the logistic regression

$$\mathbf{f}(\mathbf{w}, X) = \frac{1}{1 + \exp(-X\mathbf{w})}.$$

Decision support and Integral indicator construction

The integral indicator is a measure

of object's quality. It is a scalar, corresponded to an object.

The integral indicator is an aggregation

of object's features that describe various components of the term "quality". *Expert estimation of object's quality could be an integral indicator, too.*

Data and Model	Classification	Forecasting	Decision making	Application
Examples				

Index name	Objects	Features	Model
TOEFL exams	Students	Tests	Sum of scores
Eurovision	Singers	Televotes,	Linear
		Jury votes	(weighted sum)
S&P500, NASDAQ	Time-ticks	Shares	Non-linear
		(prices, volumes)	
Bank ratings	Banks	Requirements	By an expert
			commission
Integral Indicator	Power Plants	Waste	Linear
of Croatian PP's		measurements	



Croatian Thermal Power Plants and Combined Heat and Power Plants

- Plomin 1 TPP
- 2 Plomin 2 TPP
- 8 Rijeka TPP
- 4 Sisak TPP
- TE-TO Zagreb CHP
- 6 EL-TO Zagreb CHP
- TE-TO Osijek CHP
- 8 Jetrovac TPP

Outcomes and Waste measurements

- **1** Electricity (GWh)
- 2 Heat (TJ)
- 3 Available net capacity (MW)
- 4 SO₂ (t)
- **5** NOX (t)
- 6 Particles (t)
- 7 CO2 (kt)
- 8 Coal (kt)
- Sulphur content in coal (%)
- ① Liquid fuel (kt)
- Sulphur content in liquid fuel(%)
- Natural gas (10⁶ m³)

Assign a comparison criterion

Ecological footprint of the Croatian Power Plants

Gather a set of comparable objects

TPP and CHP (Jetrovac TPP excluded)

Gather features of the objects

Waste measurements

Make a data table: objects/features

See 7 objects and 10 features in the table below

Select a model

Linear model (with most informative coefficients)

Data table and feature optimums

N	Power Plant	Electricity (GWh)	Heat (TJ)	Available net capacity (MW)	SO2 (t)	NOx (t)	Particles (t)	CO2 (kt)	Coal (kt)	Sulphur content in coal (%)	Liquid fuel (kt)	Sulphur content in liquid fuel (%)	Natural gas (10 ⁶ m ³)
1	Plomin 1 TPP	452	0	98	1950	1378	140	454	198	0.54	0.43	0.2	0
2	Plomin 2 TPP	1576	0	192	581	1434	60	1458	637	0.54	0.37	0.2	0
3	Rijeka TPP	825	0	303	6392	1240	171	616	0	0	200	2.2	0
4	Sisak TPP	741	0	396	3592	1049	255	573	0	0	112	1.79	121
5	TE-TO Zagreb CHP	1374	481	337	2829	705	25	825	0	0	80	1.83	309
6	EL-TO Zagreb CHP	333	332	90	1259	900	19	355	0	0	39	2.1	126
7	TE-TO Osijek CHP	114	115	42	1062	320	35	160	0	0	37	1.1	24
				max	min	min	min	min	min	min	min	min	min

Data and Model	Classification	Forecasting	Decision making	Application
Notations				

$$X = \{x_{ij}\}$$
 is the $(n \times m)$ is the real matrix, the data set;
 $\mathbf{y} = [y_1, \dots, y_m]^{\mathsf{T}}$ is the vector of integral indicators;
 $\mathbf{w} = [w_1, \dots, w_n]^{\mathsf{T}}$ is the vector of feature importance weights;

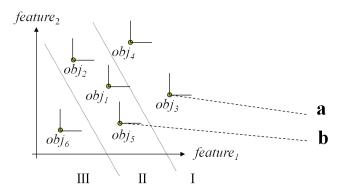
 $\mathbf{y}_0, \mathbf{w}_0$ are the expert estimations of the indicators and the weights;

				w_1	<i>W</i> ₂		Wn
I	т		<i>y</i> 1	<i>x</i> ₁₁	<i>x</i> ₁₂		x _{1n} x _{2n} .
	\mathbf{w}^{T}	=	<i>y</i> ₂	<i>x</i> ₂₁	<i>x</i> ₂₂		x_{2n} .
У	^					÷	
			Уm	x _{m1}	 X _{m2}		x _{mn}

Usually, data prepared so that

- the minimum of each feature equals 0, while the maximum equals 1;
- the bigger value of each implies better quality of the index.

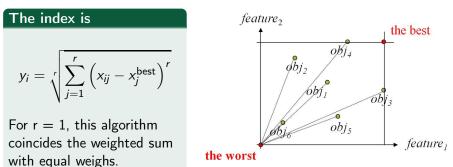
Find the non-dominated objects at each slicing level.



The object a is non-dominated

if there is no \mathbf{b}_i such that $b_{ij} \ge a_j$ for all features index j.

The best (worst) object is an object that contains the (maximum) minimum values of the features.

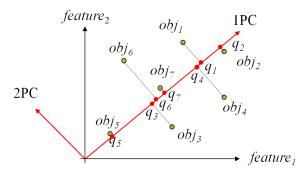


Data and Model	Classification	Forecasting	Decision making	Application
Weighted sum				

$$\mathbf{y}_1 = X \mathbf{w}_0,$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_m \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \cdots & \cdots & \vdots & \cdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \cdots \\ w_m \end{bmatrix}.$$

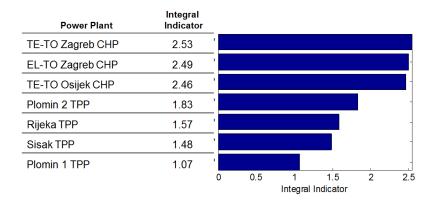
Y = XV, where V is the rotation matrix of the principal components. The indicators $\mathbf{y}_{PCA} = X\mathbf{w}_{1PC}$, where \mathbf{w}_{1PC} is the 1st column vector of the matrix V in the singular values decomposition $X = ULV^{T}$.



PCA gives minimum mean square error between objects and their projections.

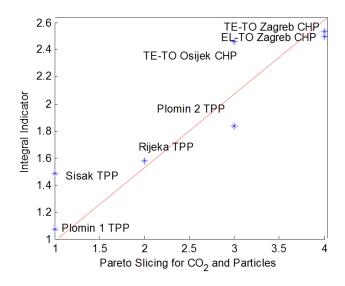
Data and Model	Classification	Forecasting	Decision making	Application
The Integral	Indicator			

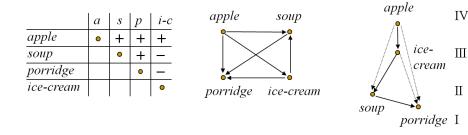
Ecological Impact of the Croatian Power Plants



The Importance Weights of the Features

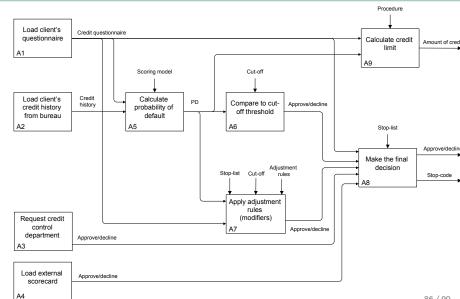
Feature	Weight	_
Coal (t)	0.38	
Sulphur content in coal (%)	0.37	
NOx (t)	0.35	
Liquid fuel (t)	0.34	
SO2 (t)	0.34	
Particles (t)	0.33	
Natural gas (103 m3)	0.30	
CO2 (kt)	0.29	
Sulphur content in I.fuel (%)	0.18	
Available net capacity (MW)	0.12	0 0.05 0.1 0.15 0.2 0.25 0.3 0.3 Features' importance





If an object in a row is better than the other one in a column then put "+", otherwise "-". Make a graph, *row* + *column* means *row* • • *column*. Find the top and remove extra nodes.

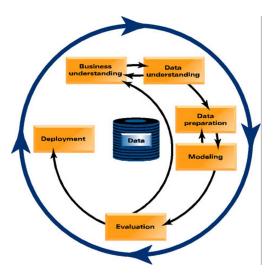
Role of quantitative model in business process



CRISP-DM: Cross Industry Standard Process for Data Mining

Six major phases:

- Business
 Understanding
- Data Understanding
- Data Preparation
- Modelling
- Evaluation
- Deployment



Data and Model	Classification	Forecasting	Decision making	Application
Project descr	intion			

The description of the project is intended to secure the understanding of the goals, methods and results of the project.

- 1 Goal
 - The main goal, general description of the project
- Ø Motivation
 - Where and how the results of the project will be used
- 8 Data
 - Description of the sample set
- Quality measurement
 - The target quality function description
- 6 Requirements
 - The conditions of successful project termination
- 6 Feasibility
 - The possible obstacles that arise during the project
- Methods
 - Some recommendations on methods and algorithms which will be used

Tools for quantitative modelling

- Matlab, Scilab, Octave
- Mathematica, Maple
- SPSS, Statistica, R-project
- SAS-Enterprize, SAS-Data Miner
- ORACLE SQL, SQL-Developer
- Ksema-XSEN
- Phyton, C-languages
- ...
- MS-Excel

Data and Model	Classification	Forecasting	Decision making	Application
Resume				

- Data and Model
- 2 Classification
- **3** Forecasting
- Decision making
- **5** Application

The lectures and updates are on Twitter @strijov

The link to the slides: strijov.com/papers/Strijov2012QuantitativeModelling.pdf