EM algorithm

Victor Kitov

Latent variables ML

Suppose objects have observed features x and unobserved (latent) features z^1 .

- $[x,z] \sim p(x,z,\theta), x \sim p(x,\theta)$
- denote $X = [x_1, x_2, ...x_N], Z = [z_1, z_2, ...z_N].$

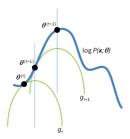
To find $\widehat{\theta}$ we need to solve

$$L(\theta) = \ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta) \rightarrow \max_{\theta}$$

- This is intractable for unknown Z.
- We need to fallback to iterative optimization, such as SGD.
- Alternatively, we may use EM algorithm, which "averages" over different fixed variants of Z.

 $^{^{1}}$ They are considered discrete here. Everything holds true for continious latent variables if everywhere you replace summation over Z with integration

General idea of EM algorithm



- Initialize $\widehat{\theta}_0$ randomly, t=0
- Repeat until convergence:
 - **1** $g_t(\theta)$ is estimated as lower bound for $\ln p(X|\theta)$, tight for $\widehat{\theta}_t$
 - $\widehat{\theta}_{t+1} = \arg\max_{\theta} g_t(\theta)$
 - 0 t = t + 1

Distribution of latent variables

Let's introduce q(Z) - some distribution over latent variables Z, $q(Z) \ge 0$, $\sum_{Z} q(Z) = 1$. Then

$$L(\theta) = \ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)$$
$$= \ln \sum_{Z} q(Z) \frac{p(X, Z|\theta)}{q(Z)}$$
(1)

$$\geq \sum_{Z} q(Z) \ln \frac{p(X, Z|\theta)}{q(Z)} = g(\theta)$$
 (2)

On the last step we used Jensen's inequality $\ln (\mathbb{E} u_n) \geq \mathbb{E} (\ln u_n)$ applied to

- 1 In x which is strictly concave, because $(\ln x)'' = -\frac{1}{x^2} < 0$
- ② for r.v. $U \in \mathbb{R}$ with distribution $p\left(U = \frac{p(X,Z,\theta)}{q(Z)}\right) = q(Z)$ for different Z.

Making lower bound tight

We can select q(Z) so that at fixed θ $L(\theta) = g(\theta)$:

- Since $\ln x$ is strictly concave, equality in inequality (1)-(2) is achieved $<=> U=\mathbb{E} U$ with probability 1.
- This happens when $\frac{p(X,Z|\theta)}{q(Z)} = c$ for some constant $c \ \forall Z$.
- Using property $\sum_{Z} q(Z) = 1$ we have

$$c\sum_{Z} q(Z) = c = \sum_{Z} p(X, Z|\theta) = p(X|\theta)$$

• So for lower bound $g(\theta)$ to be tight at θ , we need to take

$$q(Z) = \frac{p(X, Z|\theta)}{p(X|\theta)} = p(Z|X, \theta)$$

EM algorithm

INPUT:

training set $X=[x_1,...x_N]$ some initialization for $\hat{\theta}$ some predefined convergence criteria

ALGORITHM:

$$t=0$$
 , θ_0 - init randomly

repeat until convergence:

E-step: set distribution over latent variables:

$$q(Z) = p(Z|X, \hat{\theta}_t)$$

M-step: improve estimate of θ :

$$\hat{ heta}_{t+1} = rg \max_{ heta} \{ \sum_{Z} q(Z) \ln rac{p(X,Z| heta)}{q(Z)} \}$$
 $t = t+1$

OUTPUT:

ML estimate $\hat{\theta}_{t+1}$ for the training set.

Equivalent M-step

M-step can be equivalently represented as

$$\begin{split} \hat{\theta}_{t+1} &= \arg\max_{\theta} \{ \sum_{Z} q(Z) \ln \frac{p(X,Z|\theta)}{q(Z)} \} \\ &= \arg\max_{\theta} \{ \sum_{Z} q(Z) \ln p(X,Z|\theta) - \sum_{Z} q(Z) \ln q(Z) \} \\ &= \arg\max_{\theta} \{ \sum_{Z} q(Z) \ln p(X,Z|\theta) \} \\ &= \arg\max_{\theta} \{ \sum_{Z} p(Z|X,\widehat{\theta}_{t}) \ln p(X,Z|\theta) \} \\ &= \arg\max_{\theta} \{ \mathbb{E}_{Z} \{ \ln p(X,Z|\theta) \}, \quad Z \sim q(Z) = p(Z|X,\widehat{\theta}_{t}) \} \end{split}$$

Comments

Theorem 1

EM estimates of θ on each iteration $\widehat{\theta}_1,\widehat{\theta}_2,\widehat{\theta}_3,...$ lead to non-decreasing sequence of likelihoods $L(\widehat{\theta}_1) \geq L(\widehat{\theta}_2) > L(\widehat{\theta}_3) > ...$

Proof. • Suppose that at iteration t we have $L(\widehat{\theta}_t)$.

- ② At the E-step among all lower bounds $g(\theta) \leq L(\theta) \forall \theta$ we select such lower bound $g_t(\cdot)$, that $L(\widehat{\theta}_t) = g_t(\widehat{\theta}_t)$ (by selecting $q_n(Z)$).
- **3** On M-step we find $\widehat{\theta}_{t+1} = \arg \max_{\theta} g_t(\theta)$, so $g_t(\widehat{\theta}_{t+1}) \geq g_t(\widehat{\theta}_t)$
- **3** Since $g_t(\cdot)$ is lower bound, we have $L(\widehat{\theta}_{t+1}) > g_t(\widehat{\theta}_{t+1}) > g_t(\widehat{\theta}_t) = L(\widehat{\theta}_t)$

Since $L(\widehat{\theta}_t)$ is non-decreasing and is bounded from above $(L(\theta) \leq \sum_{n=1}^{N} \ln 1 = 0)$ it converges.

Comments on EM algorithm

- On M-step q(Z) does not depend on θ , since this parameter was taken fixed from E-step.
- Possible convergence criteria:

$$\bullet \ \left\| \widehat{\theta}_{t+1} - \widehat{\theta}_{t} \right\| < \varepsilon$$

•
$$L(\widehat{\theta}_{t+1}) - L(\widehat{\theta}_t) < \varepsilon$$

- maximum number of iterations reached
- EM converges to local optimum
 - to improve quality it is good to
 - re-run algorithm from different initial conditions
 - select estimate that gives the greatest likelihood
- To guarantee convergence it is not required to solve $\widehat{\theta}_{t+1} = \arg\max_{\theta} g_t(\theta)$ precisely.
 - we can make very coarse (e.g. single step) optimization here
 - this is called GEM algorithm (generalized EM)

Comments on EM algorithm

- EM can also be applied for MAP optimization
- Define $J(Q, \theta) = \sum_{Z} q(Z) \ln \frac{p(X, Z|\theta)}{q(Z)}$.
- We know that $L(\theta) \geq J(Q, \theta)$ for all Q = Q(Z).
- EM algorithm can be viewed as coordinate ascent:
 - E-step maximizes $J(Q, \theta)$ w.r.t. Q^2
 - M-step maximizes $J(Q, \theta)$ w.r.t. θ

 $^{^2}$ We know that, because we chose such ${\it Q}$ that ensure equality in Jensen's inequality.

Table of Contents

- Independent observations
- 2 EM for MAP estimates

Independent observations

- Consider special case, when (x_n, z_n) are i.i.d.³
 - Examples:.
 - z_n is unknown mixture component, generating x_n
 - z_n are missing variables in i.i.d. x_n
- E-step becomes:

$$q(Z) = p(Z|X,\theta) = p(z_1|x_1,\theta)...p(z_N|x_N,\theta) = q_1(z_1)...q_N(z_N)$$

for

$$q_n(z_n) = p(z_n|x_n,\theta)$$

³i.i.d.=independent and identically distributed.

Independent observations

M-step becomes:

$$\begin{split} \hat{\theta} &= \arg\max_{\theta} \{ \sum_{Z} q(Z) \ln p(X, Z|\theta) \} \\ &= \arg\max_{\theta} \{ \sum_{Z} q(Z) \sum_{n=1}^{N} \ln p(x_{n}, z_{n}|\theta) \} \\ &= \arg\max_{\theta} \{ \sum_{n=1}^{N} \sum_{z_{1}, \dots z_{N}} q(z_{1}, \dots z_{N}) \ln p(x_{n}, z_{n}|\theta) \} \\ &= \arg\max_{\theta} \{ \sum_{n=1}^{N} \sum_{z_{1}, \dots z_{N}} q_{1}(z_{1}) \dots q_{N}(z_{N}) \ln p(x_{n}, z_{n}|\theta) \} \\ &= \arg\max_{\theta} \{ \sum_{n=1}^{N} \sum_{z_{n}} q_{n}(z_{n}) \ln p(x_{n}, z_{n}|\theta) \} \end{split}$$

Table of Contents

- Independent observations
- 2 EM for MAP estimates

Distribution of latent variables-MAP estimate

Consider r.v. θ with prior distribution $\theta \sim p(\theta)$. A prosteriori likelihood:

$$L(\theta) = \ln p(\theta) + \ln p(X|\theta) = \ln p(X,\theta) = \ln \sum_{Z} p(X,Z,\theta)$$

$$= \ln \sum_{Z} q(Z) \frac{p(X,Z,\theta)}{q(Z)}$$

$$\geq \sum_{Z} q(Z) \ln \frac{p(X,Z,\theta)}{q(Z)} = \sum_{Z} q(Z) \ln \frac{p(X,Z|\theta)p(\theta)}{q(Z)}$$

$$= \sum_{Z} q(Z) \ln p(X,Z|\theta) + \ln p(\theta) - \sum_{Z} q(Z) \ln q(Z) = g(\theta)$$
(3)

(5)

 $const(\theta)$

Once again here we used Yensen's inequality.

Making lower bound tight-MAP estimate

We can select q(Z) so that at fixed θ $L(\theta) = g(\theta)$:

- Since $\ln x$ is strictly concave, equality in inequality (3)-(4) is achieved $<=> U = \mathbb{E}U$ with probability 1.
- This happens when $\frac{p(X,Z,\theta)}{q(Z)} = c$ for some constant $c \ \forall Z$.
- Using property $\sum_{Z} q(Z) = 1$ we have

$$c\sum_{Z} q(Z) = c = \sum_{Z} p(X, Z, \theta) = p(X, \theta)$$

• So for lower bound $g(\theta)$ to be tight at θ , we need to take

$$q(Z) = \frac{p(X, Z, \theta)}{p(X, \theta)} = p(Z|X, \theta)$$

EM algorithm - MAP

INPUT:

training set $X=[x_1,...x_N]$ some initialization for $\hat{\theta}$ some predefined convergence criteria

ALGORITHM:

$$t=0$$
 , $\hat{ heta}_0$ - init randomly

repeat until convergence:

E-step: set distribution over latent variables:

$$q(Z) = p(Z|X, \hat{\theta}_t)$$

M-step: improve estimate of θ

$$\hat{\theta}_{t+1} = \arg\max_{\theta} \left\{ \sum_{Z} q(Z) \ln \frac{p(X,Z|\theta)}{q(Z)} + \ln p(\theta) \right\}$$

$$t = t+1$$

OUTPUT:

ML estimates $\hat{\theta}_{t+1}$ for the training set.