Методы оптимизации, ВМК, осень 2018

Домашняя работа 2: Выпуклые множества и функции

Срок сдачи: 18 октября 2018 (четверг), 23:59

- 1 Пусть K конус в вещественном векторном пространстве¹. Покажите, что конус K является выпуклым, если и только если он замкнут относительно суммирования, т. е. $x + y \in K$ для всех $x, y \in K$.
- **2** Пусть C выпуклое множество в вещественном нормированном векторном пространстве. Покажите, что замыкание \overline{C} и внутренность $\operatorname{int}(C)$ множества C также являются выпуклыми.
- **3** Пусть V вещественное векторное пространство, и пусть $P: V \times \mathbb{R}_{++} \to V$ перспективное преобразование P(x,t) := x/t. Покажите, что:
 - (a) Если множество $Q \subseteq V \times \mathbb{R}_{++}$ выпуклое в пространстве $Y \oplus \mathbb{R}$, то его образ $P(Q) := \{P(x,t) : (x,t) \in Q\}$ является выпуклым множеством в пространстве V.
 - (b) Если C выпуклое множество в пространстве V, то его прообраз $P^{-1}(C) := \{(x,t) \in V \times \mathbb{R}_{++} : P(x,t) \in C\}$ является выпуклым конусом в пространстве $V \oplus \mathbb{R}$. (Подсказка: Покажите, что $P^{-1}(C) = \mathbb{R}_{++}Q$ для некоторого выпуклого множества Q.)
- **4** Пусть C и D множества в вещественном векторном пространстве. Покажите, что:
 - (a) $Conv(C \cup D) = Conv(Conv(C) \cup Conv(D))$.
 - (b) $\operatorname{Conv}(C \cap D) \subseteq \operatorname{Conv}(C) \cap \operatorname{Conv}(D)$, причем равенство может не достигаться (приведите пример).
- **5** Пусть V и W вещественные векторные пространства, $A:V\to W$ аффинное преобразование, и пусть S множество в пространстве V. Покажите, что $\mathrm{Conv}(A(S))=A(\mathrm{Conv}(S))$, т. е. операции взятия выпуклой оболочки и аффинного преобразования коммутируют. Установите отсюда в частности, что если $c\in\mathbb{R}$, то $\mathrm{Conv}(cS)=c\,\mathrm{Conv}(S)$, и если $b\in V$, то $\mathrm{Conv}(S+b)=\mathrm{Conv}(S)+b$.
- **6** Пусть V и W вещественные векторные пространства, S и T множества в пространствах V и W соответственно. Покажите, что $\mathrm{Conv}(S \times T) = \mathrm{Conv}(S) \times \mathrm{Conv}(T)$. Используя это и коммутативность операций взятия выпуклой оболочки и аффинного преобразования, установите, что если V = W, то $\mathrm{Conv}(S+T) = \mathrm{Conv}(S) + \mathrm{Conv}(T)$.
- 7 Покажите, что $\mathrm{Conv}\{xx^T:x\in\mathbb{R}^n;\ \|x\|=1\}=\{A\in\mathbb{S}^n_+:\mathrm{Tr}(A)=1\}.$
- 8 Пусть $n \geq 2$, и пусть $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ функция $f(X) := \sigma_{\min}(X)$ (наименьшее сингулярное число). Покажите, что функция f не является ни выпуклой, ни вогнутой.
- 9 Пусть E выпуклое множество в вещественном нормированном векторном пространстве, и пусть $f: \overline{E} \to \mathbb{R}$ функция, определенная на замыкании множества E. Покажите, что если f непрерывная, то из выпуклости сужения $f|_E: E \to \mathbb{R}$ следует выпуклость f.
- **10** Опираясь на стандартные примеры выпуклых функций и утверждение об операциях, сохраняющих выпуклость, объясните, почему каждая из следующих функций f является выпуклой:
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \max\{0, \langle a, x \rangle b\}$, где $a \in \mathbb{R}^n$, $b \in \mathbb{R}$.
 - (b) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \sum_{i=1}^n c_i \ln(1 + e^{\langle a_i, x \rangle}) + \frac{\mu}{2} ||x||^2$, где $\mu, c_1, \ldots, c_n \geq 0, a_1, \ldots, a_n \in \mathbb{R}^n$.
 - (c) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \max_{1 \le i \le n} c_i \ln(1 + e^{|x_i|})$, где $c_1, \dots, c_n \ge 0$.
 - (d) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \ln(\sum_{i=1}^n e^{\max^2\{0, x_i\}})$.
 - (e) $f: E \to \mathbb{R}$ функция $f(x) := -\ln \mathrm{Det}(B x_1A_1 \dots x_nA_n)$, где $A_1, \dots, A_n, B \in \mathbb{S}^n$, $E := \{x \in \mathbb{R}^n : x_1A_1 + \dots + x_nA_n \prec B\}$.

¹Напомним, что множество K в вещественном векторном пространстве называется конусом, если $tx \in K$ для всех $x \in K$ и всех t > 0.

 $^{^2}$ Здесь и далее для двух пространств V и W символ $V\oplus W$ обозначает прямое произведение этих пространств, т. е. множество $V\times W$ с естественными операциями суммы, нормы и т. д.

11 Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — функция $f(x) := \sum_{i=1}^k x_{[i]}$, где $1 \le k \le n$, а символ $x_{[i]}$ обозначает i-ую компоненту отсортированного по убыванию вектора x. Покажите, что функция f выпуклая. (Подсказка: Представьте f в виде максимума линейных функций.)

Бонусные задачи

- 1 Пусть V и W вещественные векторные пространства. Пусть $A:V\to W$ и $\lambda:V\to \mathbb{R}$ аффинные преобразования, $E:=\{x\in V:\lambda(x)>0\}$, и пусть $F:E\to W$ дробно-аффинное преобразование $F(x):=A(x)/\lambda(x)$. Покажите, что если $Q\subseteq E$ и S выпуклые множества в пространствах V и W соответственно, то их образ $F(Q):=\{F(x):x\in Q\}$ и прообраз $F^{-1}(S):=\{x\in E:F(x)\in S\}$ также являются выпуклыми множествами. (Подсказка: Используйте ранее доказанное свойство про перспективное преобразование и тот факт, что образ и прообраз при аффинном преобразовании переводят выпуклое множество в выпуклое.)
- **2** Пусть C множество в вещественном нормированном векторном пространстве V, и пусть $x_0 \in C$. Направление $d \in V$ называется рецессивным направлением множества C в точке x_0 , если $x_0 + td \in C$ для всех t > 0. Множество всевозможных рецессивных направлений C в точке x_0 называется рецессивным конусом множества C в точке x_0 и обозначается $\operatorname{Rec}_{x_0}(C)$. Покажите, что если множество C выпуклое и замкнутое, то рецессивный конус множества C является одинаковым в любой точке, т. е. $\operatorname{Rec}_x(C) = \operatorname{Rec}_{x_0}(C)$ для всех $x \in C$. (Таким образом, можно говорить о рецессивном конусе $\operatorname{Rec}(C)$ множества C без необходимости указания точки x_0 .)
- **3** Покажите, что множество $\{x \in \mathbb{R}^n : \langle Px, x \rangle \leq \langle c, x \rangle^2; \ \langle c, x \rangle \geq 0\}$, где $P \in \mathbb{S}^n_{++}, \ c \in \mathbb{R}^n$, является выпуклым. (Подсказка: Используйте свойство о том, что прообраз выпуклого множества при аффинном преобразовании является выпуклым множеством.)
- 4 Покажите выпуклость функции

$$f(x) := \frac{1}{x_1 - \frac{1}{x_2 - \frac{1}{x_n}}},$$

определенной на подмножестве \mathbb{R}^n , где каждый знаменатель строго положительный. ($\Pi odc\kappa as\kappa a$: Используйте индукцию и утверждение об операциях, сохраняющих выпуклость.)

- **5** Пусть E множество в вещественном векторном пространстве V, и пусть $f: E \to \mathbb{R}$ выпуклая функция. Пусть $G:=\{(x,t)\in V\times\mathbb{R}_{++}: x/t\in E\}$, и пусть $g: G\to \mathbb{R}$ перспективная функция g(x,t):=tf(x/t). Покажите, что g выпуклая. (Подсказка: Рассмотрите надграфик функции g.)
- **6** Пусть V и W вещественные векторные пространства, E непустое множество в пространстве $V \oplus W$, пусть $f: E \to \mathbb{R}$ ограниченная снизу выпуклая функция. Пусть $G:=\{x: (x,y) \in E\}$ проекция множества E на пространство V, и пусть $g: G \to \mathbb{R}$ маргинальная функция $g(x):=\inf_{u\in W:(x,u)\in E}f(x,y)$. Покажите, что g выпуклая.