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Intuition of adversarial learning

Generative adversarial learning for images:

Backpropagation
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GAN training overview.

Analogy for bank and a money counterfeiter (having a spy in the
bank).
@ they compete, until money counterfeiter learns to make perfect
money replicas!
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Seminal paper on GAN!

@ 2 multilayer perceptrons:
e generator G(z) = G(z|0g)
@ outputs generated object x
o discriminator D(x) = D(x|64)
@ probability that x is from training set and not generated by G.

https://arxiv.org/pdf/1406.2661.pdf
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Game

D and G play two-player game with minimax function V/(G, D)

min max V(D, G) = Exwp,,,,(x) [log D(X)]+Eznp, (2) [log(1 — D(G(2)))]

Incremental learning:

o £

T

T 7 7%

@ ® © @
black dotted: pgata(X); green: pgenerated(X); blue: D(x) = p(x is true|x)
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Losses
Score for discriminator (for fixed 6,):

Bopina() [108 DO + Bz ) [log(1 = D(6(2)))] — max
Score for generator (probability of being detected):

E;p.(2) [log(1 — D(G(2)))] — min

g

@ on early iterations generator is very unrealistic
e so D(G(z)) ~ 0, gradient of log(1 — D(G(z)) is small.

@ better works another score:

Ezpe(z) [l0g(D(6(2)))] = max
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Algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(), ..., (™} from noise prior p, ().
o Sample minibatch of m examples {(!),... x(™} from data generating distribution
Paata(T)-

o Update the discriminator by ascending its stochastic gradient:

Toie 3 s (a) 41 (10 (6 ()))]

end for
e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p, ().
e Update the generator by descending its stochastic gradient:

1 m .
= _ (@)
Vo, m Zlog <1 D (G (Z ))) ’
i=1
end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.
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Optimal value for discriminator

Theorem: For fixed G optimal discriminator is:

D*(X| G — pdata(X)
pdata(X) + Pg(X)
Proof:

V(G,D) = /pdata(x) log(D(x))dx + /pz(x) log(1 — D(g(z)))dz =

z

= /pdata(x) log(D(x))dx + pg(x)log(1 — D(x))dx

X

Since arg max, {alog(y) + blog(1 — y)} = ;75 for any a, b =>

pclata(X)
arg max V(G,D) =
gD ( ) Pdata(X) + Pg(X)

7/35



Generative adversarial networks - Victor Kitov

Optimal

Generator cost function:

c(G) = max V(G, D)
=Egnpllog DG ()] + Eznyp, [log(1 — D (G(2)))]
=Earpy, 108 DG(@)] + Eanp, [log(1 — D ()]

pda[a(m) ] |:
— | + Egp. lo
Paaa() + py () Py |8

Py()

:E ~ data log N . N
ep Ddaa(T) + py(x)

This is maximized for pg(x) = pdata(X):

C(G):Elog%—i-IElog%
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Generated images
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Latent space

Linear interpolation of objects in latent space:

ARARAE SISISIs|S

AVAYAYARARAVAVAVYAV
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Results

Parzen-window based log-likelihood:
e MNIST - dataset of digit images
@ TFD - Toronto faces dataset

Model | MNIST | TFD
DBN [3] 138 £2 1909 + 66
Stacked CAE [3] | 121 £1.6 | 2110 £ 50
Deep GSN [6] 2144+1.1 | 1890 £ 29
Adversarial nets 225+ 2 | 2057 + 26
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Application use-case

Table of Contents

@ Application use-case
@ Peak signal-to-noise ratio (PSNR)
@ Experiments
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Application use-case

Experiments?

e From transformed image->reconstruct original image
e denoising, super-resolution, deblurring.

@ Quality metric: peak signal-to-noise ratio (PSNR)

o Datasets:

e Human faces - Large-scale CelebFaces Attributes Dataset
o Natural scenes - MIT Places Database

2From

http://stanford.edu/class/ee367 /Winter2017/yan _wang ee367 winl7 _report.pdf
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Application use-case

Architecture

@ 2 networks: generator, discriminator.
@ Discriminator tries to discriminate whether:

e image came from the training set
e image came from the generator

@ Generator takes corrupted image as input and tries to
reconstruct original image.
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Application use-case

Losses

e Generator loss: 0.9Lcontent + 0.1LG advers

o Lecontent = HI — IAH , where [-original and I-reconstructed
image. '
o LG advers-standard generator adversarial loss.
e Discriminator loss: Lp advers
o Lp advers-standard discriminator adversarial loss.
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Application use-case

Generator, discriminator structure

5 Residue layers

A
h h

Generator network

n64s2 n128s2 n256s2 n512s2

I

Discriminator network
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Application use-case

Generator details

@ Residual networks are used in generator.?
o Key idea of residual network:
o use much more layers
o layers grouped into groups with similar structure

e each group learns small correction to identity function (to
prevent overfitting)

Building block of residual network:

X
F(x) .
identity
F(x)+x

3https:/ /arxiv.org/pdf/1512.03385.pdf
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Application use-case

Peak signal-to-noise ratio (PSNR)

@ Application use-case
@ Peak signal-to-noise ratio (PSNR)
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Application use-case

Peak signal-to-noise ratio (PSNR)

Definitions

I original image
K: reconstructed image

m, n: image dimensions
Mean squared error (MSE):

o for grayscale images:

MSE =SS 116) — KO

i=1 j=1

o for (r,g,b) images (let ¢ be color channel):

m n 3
MSE = #ZZZ[K’)J?C) - K(I.,j,C)]z

i=1 j=1 c=1

@ MAX: maximum possible pixel value
o for B-bit image MAX =28 —1
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Application use-case

Peak signal-to-noise ratio (PSNR)

Peak signal-to-noise ratio (PSNR)*

PSNR measures quality of image reconstruction:

MAX?

*https://en.wikipedia.org/wiki/Peak _signal-to-noise_ ratio
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Application use-case

Experiments

@ Application use-case

@ Experiments
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Application use-case

Experiments

Super-resolution

@ Super-resolution: recover higher resolution image from its
low resolution variant.

e e.g. from limited device zoom capacity (camera, microscope)
e Baseline algorithms:

e naive scaling (LRes)

o bicubic interpolation (Bicubic)
o Results:

o PSNR of bicubic is best, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
o GAN super-resolution for faces works better than for places
(which are less typical)
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Application use-case

Experiments

Super-resolution outputs (subsampling=2)

Origin LRes

Bicubic DCGAN Bicubic DCGAN
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Application use-case

Experiments

Super-resolution outputs (subsampling=4)

Original LRes Original LRes

Bicubic DCGAN Bicubic DCGAN
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Application use-case

Experiments

Baselines

e Denoising: noisy image->clean image
e e.g. from measurement imperfection.
e Baseline algorithms:

e median filter
e non-local means

@ Results:

o PSNR are comparable, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
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Application use-case

Experiments

Non-local means baseline®

where we used definitions:
@ v(-): original image with noise
u(+): denoised image
p, q: image locations
f(p, q): similarity of pixels p, g by their neighborhoods R(-)

C(p) = gea (P, q)
f(p.q) = o~ w2 |B@-B(p)?

° B(p) = (s Licr(p) (1)

®https://en.wikipedia.org/wiki/Non-local _means
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Application use-case

Experiments

Denoising outputs

Original Noisy Med-filter NLM  DCGAN
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Application use-case

Experiments

Deblurring

e Deblurring: images blurred and small Gaussian noise added.
e e.g. from camera motion.
e Baseline algorithms:
o Wiener filter
o alternating direction method of multipliers (ADMM)
@ Results:
o PSNR of GAN is lower, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
o GAN super-resolution for faces works better than for places
(which are less typical)
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Application use-case

Experiments

Deblurring faces outputs

Original Blurry Wiener ADMM  DCGAN

o
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Application use-case

Experiments

Deblurring places outputs (not accurate)

‘Original Blurry Wiener ADMM  DCGAN
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Application use-case

Experiments

Analysis of experiments

@ Unequal conditions:

o Baseline methods use only test image.
o GAN uses information from the whole training set.

@ GANs give smaller PSNR
e may be attributed to small training set
@ GANs give more sharp output

o to fool “blurry-based” discriminator
e do not fallback to averaging as standard methods
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Application use-case

Experiments

Analysis of experiments

@ GANSs reproduce small details on images
o details learned from other images of the training set.

@ GAN performance can be improved by training on specific
subsets of objects
e e.g. train separate face models for different sex, age,
nationality, etc.
e especially important for diverse objects such as places.
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Supplement

Table of Contents

© Supplement

33/35



Generative adversarial networks - Victor Kitov
Supplement

Yet another possible application: impainting
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Supplement

Joining GAN and VAE®

@ GAN generator learns to produce

e sharp realistic images
e some subset of objects in training set

@ problem called “model collapse”
@ Decoder of variational autoencoder (VAE) learns to produce
e most training objects.
e but generates oversmoothed results
e Combine strong sides of GAN and VAE: train generator on
combination of GAN and VAE loss!

®https://arxiv.org/pdf/1512.09300.pdf
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