Нейросетевые модели языка и отбор значимых фрагментов научных статей для безызбыточной передачи смысла

Михайлов Д. В., Емельянов Г. М.

Новгородский государственный университет имени Ярослава Мудрого

22-я Всероссийская конференция с международным участием «Математические методы распознавания образов» (ММРО-2025),

22-26 сентября 2025 г.

Россия, г. Муром

Формирование индивидуальной образовательной траектории студента

Составление подборки публикаций по заданной теме:

- анализ релевантности словаря каждой публикации интересующей пользователя теме;
- учёт конечной цели пользователя для решения каких именно задач делается подборка.

Подготовка электронного учебного материала:

- поиск оптимального порядка работы с первоисточниками от более общего к более специфическому;
- идеальный случай оценка взаимной смысловой зависимости текстов относительно наиболее рациональных (эталонных) вариантов описания представляемых ими фрагментов знаний.

«Эталонному» варианту отвечают публикации, для которых характерен:

- максимум среднего числа *наиболее значимых терминов* в расчёте на простое распространённое предложение при минимуме его длины;
- максимально полное раскрытие интересующей пользователя темы.

Нейросетевые модели BERT^1 и взаимная смысловая близость текстов

Языковые модели семейства BERT

- основаны на архитектуре Transformer;
- предварительно обучаются на больших текстовых коллекциях;
- с помощью указанных моделей предложения отображаются в многомерные векторы («эмбеддинги»);
- из известных моделей BERT наибольший интерес здесь представляют модели типа SciBERT, обучаемые на корпусах научных текстов.

Эмбеддинги (англ. embeddings)

- каждый такой вектор показывает встречаемость заданного предложения в определённом контексте;
- возможно их построение для произвольного законченного текстового фрагмента (слова, параграфа и т. п.);
- для анализируемых текстовых фрагментов оценка их смысловой близости (т. е. «силы» смысловой связи) может быть формально определена через меру близости соответствующих им векторов.

¹от англ. Bidirectional Encoder Representations from Transformers

«Сила» связи публикаций внутри коллекции и смысловая связность аннотаций

По каждому предложению Ts_j аннотации $\mathbb{T}s_i$ для отвечающего ему эмбеддинга вычисляется массив значений $\mathbb{C}s_j$ косинусной близости аналогичным векторам других предложений аннотации и выбирается предложение Ts_{\max} с максимальным суммарным значением близости до остальных предложений. Назовём далее Ts_{\max} центром масс $\mathbb{T}s_i$ относительно смысловой связности.

«Сила» смысловой связи публикаций и траектория навигации по подборке

- «точкой входа» в формируемой траектории работы пользователя с первоисточниками будет та публикация в составе ранжируемой коллекции, которая максимально связана по смыслу с остальными работами коллекции;
- среднеквадратическое отклонение оценки «силы» смысловой связи должно быть минимальным;
- анализируемыми фрагментами публикаций являются их аннотации вместе с заголовками как отражающие основное содержание каждой из работ и наиболее значимые результаты без излишних методологических деталей;
- для «силы» смысловой связи публикации с другими работами коллекции вводятся две независимые оценки: для полных текстов аннотаций публикаций и для центров масс аннотаций;
- степень полноты изложения основного содержания работы в её аннотации может быть увеличена путём повышения смысловой связности последней.

Результирующий рейтинг публикации и близость её аннотации эталону

Смысловую связность аннотации $\mathbb{T}\mathrm{s}_i$ можно формально определить как

$$\operatorname{cn}\left(\mathbb{T}\mathbf{s}_{i}\right) = \frac{\operatorname{max}\left(\mathbb{C}\mathbf{s}_{\operatorname{max}}\right)}{\left(1.0 + \operatorname{std}\left(\mathbb{C}\mathbf{s}_{\operatorname{max}}\right)\right)},\tag{1}$$

где $\operatorname{std}\left(\mathbb{C}\mathrm{s}_{\max}\right)$ — СКО значения косинусной близости предложения Ts_{\max} остальным предложениям аннотации,

 $\max\left(\mathbb{C}s_{\max}\right)$ — максимальное из значений в массиве $\mathbb{C}s_{\max}$.

Замечания

- в случае оценки «силы» смысловой связи относительно центров масс аннотаций в роли массива \mathbb{C}_{Smax} будет массив значений косинусной близости вектора центра масс анализируемой аннотации аналогичным векторам центров масс аннотаций остальных публикаций коллекции;
- при оценке «силы» смысловой связи относительно полных текстов аннотаций указанный массив будет состоять из значений косинусной близости эмбеддинга для текста анализируемой аннотации и эмбеддингов аннотаций остальных публикаций.

Утверждение 1

- результирующий рейтинг публикации, ассоциируемый с близостью её аннотации эталону, определяется произведением оценки «силы» смысловой связи работы с коллекцией и оценки смысловой связности аннотации анализируемой публикации;
- траектория навигации пользователя по коллекции строится «сверху вниз» от работы с большим рейтингом к ближайшей ей публикации с меньшим рейтингом.

Полнота изложения основного содержания работы в её аннотации

Текущее состояние вопроса

Текст аннотации расширяется предложениями из вводного (introduction) и заключительного (conclusions) разделов анализируемой работы, при этом контролируется изменение оценки (1) для расширенной аннотации.

- Вычисляется значение оценки (1) для исходного (нерасширенного) варианта аннотации, это значение принимается за текущее.
- Далее в аннотацию добавляется то предложение из объединённого множества предложений introduction и conclusions, для которого величина оценки (1) по расширенной аннотации будет максимальной.
- Если новое значение оценки (1) больше текущего, то на следующей итерации оно становится текущим, а процесс повторяется для объединённого introduction и conclusions, из которого удаляется только что добавленное в аннотацию предложение.
- lacktriangled Процесс завершается, когда на очередной итерации новое значение оценки (1) оказывается меньше текущего, а в качестве результата возвращается аннотация из предвдущей итерации.

Очевидный недостаток данного варианта решения

Расширение аннотаций статей коллекции происходит независимо друг от друга, что критично для их взаимной оценки близости смысловому эталону.

Полнота изложения основного содержания работы в её аннотации

В целях согласованности расширения аннотаций:

- переопределим оценку (1) для смысловой связности коллекции. При такой постановке $\mathbb{C}_{\mathrm{Smax}}$ содержит значения «силы» смысловой связи каждой из работ с остальными работами коллекции (относительно центров масс или полных текстов, соответственно);
- для указанной «силы» воспользуемся двумя независимыми оценками, содержательно близкими оценке (1);
- ullet в случае оценки относительно центров масс $\mathbb{C}\mathrm{s}_{\mathrm{max}}$ включает значения косинусной близости вектора центра масс анализируемой аналогичным векторам центров масс аннотаций других работ коллекции;
- ullet при оценке относительно полных текстов $\mathbb{C}\mathrm{s}_{\mathrm{max}}$ состоит из значений косинусной близости эмбеддинга анализируемой и соответствующих векторов остальных аннотаций;
- из вариантов расширения рассмотрим два: до максимальной связности и первым из предложений объединённого introduction и conclusions, с которого было начато расширение аннотации до максимальной связности.

Замечание

Смысловая связность коллекции в целом определяется по аналогии с оценкой «силы» смысловой связи публикации с остальной коллекцией и показывает, насколько входящие в неё тексты (аннотации или рефераты, соответственно) взаимно связаны по смыслу.

Максимизация смысловой связности коллекции

Суть метода

Для каждой аннотации берётся её исходный и расширенный варианты. Далее строится декартово произведение получившихся пар вариантов аннотации для всех публикаций и выбирается элемент с наибольшим значением связности коллекции.

- $oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}}}}$
- ② Из получившихся n вариантов преобразования коллекции отбирается тот, который получил максимум оценки смысловой связности согласно формуле (1).
- Полученное значение сравнивается со значением смысловой связности для исходной коллекции.
- lacktriangle Если имеем рост смысловой связности, то продолжаем работу с оставшимися (n-1) аннотациями, иначе выход.
- На каждой последующей итерации в качестве исходного берётся результирующий вариант коллекции из предыдущей.
- Окончательный вариант коллекции фиксируется (каждый из получившихся рефератов при этом представляется в виде полного текста и списка составляющих его предложений) с выдачей для последующей обработки.

Точность траектории навигации по коллекции и пути её повышения

Текущее состояние вопроса

- работа, предшествующая текущей в траектории, должна быть максимально близкой ей по смыслу из работ, имеющих больший рейтинг по сравнению с ней в анализируемой подборке;
- если максимально близкая по смыслу работа имеет меньший рейтинг, то считается, что для изучения текущей работы достаточно ознакомиться с одной из предшествующих в траектории возникает неоднозначность.

Предлагаемый вариант решения проблемы

- кластеризация методом k-means эмбеддингов полных текстов аннотаций, поиск оптимального числа кластеров «методом локтя»;
- выбирать предшествующую публикацию в траектории из имеющих больший рейтинг среди находящихся в одном кластере с текущей;
- при этом предпочтение отдаётся работе, более близкой к центру кластера;
- если в ходе кластеризации *не получилось кластеров* с числом элементов, большим 1, то результат максимизации смысловой связности коллекции считается неудовлетворительным.

Замечание

Ранжируемыми текстами здесь являются результирующие версии рефератов для соответствующих вариантов коллекции с достигнутым максимумом смысловой связности.

Экспериментальные исследования

Экспериментальный материал

Представлен статьями по разделу «Статистическая теория обучения» сборника трудов 15-й Всероссийской конференции «Математические методы распознавания образов» (11–17 сентября 2011 г., Петрозаводск).

Получение эмбеддингов анализируемых текстов

Модель SciRus-tiny архитектуры RoBERTa, разработанная в Институте искусственного интеллекта МГУ и реализованная в системе поиска семантически схожих публикаций электронной библиотеки eLibrary.ru.

Вычисление косинусной близости эмбеддингов:

- функция cosine_similarity библиотеки sklearn.metrics.pairwise для центров масс анализируемых аннотаций;
- для полных текстов аннотаций аналогичная функция pytorch_cos_sim из библиотеки sentence_transformers.util.

Peaлизация на Python 3.10 (Jupyter Notebook, исходные данные и результаты)

Пример расширения аннотации до максимальной связности

Исходная аннотация вместе с заголовком [Гуз И. С., ММРО-15]

Гибридные оценки полного скользящего контроля для монотонных классификаторов. Рассматривается задача обучения монотонного классификатора по выборке, которая не обязательно является монотонной. Цель работы — получение оценки полного скользящего контроля, которая могла бы быть использована для повышения обобщающей способности монотонных алгоритмических композиций.

Расширение

Цель работы состоит в получении как можно более точной верхней оценки полного скользящего контроля для монотонных классификаторов. В данной работе снимается требование монотонности выборки, и точность оценки повышается за счёт сужения семейства до множества монотонных классификаторов ближайшего соседа.

Примечание

В данном примере максимизируем связность коллекции относительно центров масс аннотаций путём расширения их исходных вариантов фразами введения и заключения (без ограничения числа максимизирующих предложений).

Ранжирование исходных аннотаций по близости смысловому эталону

Таблица 1. Ранжирование исходной коллекции.

N_1	Автор (ы) и заголовок статьи	N_2
1	Ивахненко А. А., Воронцов К. В. Критерии информативности пороговых логических правил с поправкой на переобучение порогов	1
2	Сенько О.В., Кузнецова А.В. Системы достоверных эмпирических закономерностей в моделях оптимальных разбиений и методы их анализа	3
3	Животовский Н.К. Комбинаторные оценки вероятности отклонения тестовой ошибки от ошибки скользящего контроля	2
4	Неделько В. М. Эмпирические доверительные интервалы для условного риска в задаче классификации	5
5	Каневский Д. Ю. Переобучение и комбинаторная радемахеровская сложность в задачах восстановления регрессии	4
6	Фрей А. И. Метод порождающих и запрещающих множеств для рандомизированной минимизации эмпирического риска	6
7	Гуз И. С. Гибридные оценки полного скользящего контроля для монотонных клас- сификаторов	8
8	Хачай М.Ю. Сходимость эмпирических случайных процессов, порождаемых процедурами обучения	10
9	Ботов П. В. Уменьшение вероятности переобучения итерационных методов статистического обучения	9
10	Воронцов К.В., Махина Г.А. Принцип максимизации зазора для монотонного классификатора ближайшего соседа	7

Здесь N_1 и N_2 — порядковые номера статьи в ранжированных списках по близости смысловому эталону относительно центров масс и полных текстов аннотаций, соответственно.

Ранжирование после расширения аннотаций

Таблица 2. Ранжирование после расширения каждой аннотации до достижения ей

_	Marchimarianon Christian .											
	N_1	1	2	3	4	5	6	7	8	9	10	
	N_{13}	2	3	1	6	7	8	4	9	5	10	
Γ	N_{23}	3	4	1	7	6	8	2	10	5	9	
Γ	N_{14}	1	2	3	4	5	6	7	8	9	10	
	N_{24}	1	3	2	5	4	6	8	10	9	7	

Таблица 3. Ранжирование после расширения аннотаций на одно из предложений объединённого introduction и conclusions.

N_1	1	2	3	4	5	6	7	8	9	10
N_{15}	1	3	4	5	7	8	2	10	6	9
N_{25}	1	4	2	5	7	9	3	10	6	8
N_{16}	1	2	3	4	5	6	7	8	9	10
N_{26}	1	3	2	5	4	6	8	10	9	7

Порядковые номера в ранжированных списках по близости эталону (БЭ) отвечают ранжированию аннотаций (рефератов) относительно центров масс и полных текстов, соответственно:

- ullet N_{i3} и N_{i4} после расширения каждой аннотации до достижения ей максимума связности;
- ullet N_{i5} и N_{i6} после расширения каждой аннотации первым из предложений объединённого introduction и conclusions, с которого было начато расширение до максимума связности.

i в нижнем индексе при N — вид оценки связности коллекции (центры масс или полные тексты).

¹ Светло-серый фон — результирующие аннотации (PA) совпали с исходными

² Тёмно-серый — РА совпали по разным видам расширения, но не совпадают с исходными

Кластеризация методом k-means

Таблица 4. Результаты кластеризации методом k-means (исходная коллекция).

Оптимальное количество кластеров для метода k -means 3								
№ кластера Порядковые номера (N_1) текстов, ближайших к центру кластера								
0	1, 3, 5							
1	1 4,6,2							
2	7, 10							

Таблица 5. Результаты кластеризации методом k-means после расширения каждой аннотации до достижения ей максимальной связности.

	Оптимальное количество кластеров для метода k -means (оценка связности коллекции относительно центров масс аннотаций/рефератов) 2								
№ кластера	№ кластера Порядковые номера (N_1) текстов, ближайших к центру кластера								
0	0 1,4,3								
1	1 6, 10, 8								
	Оптимальное количество кластеров для метода k-means (оценка связности коллекции относительно полных текстов аннотаций/рефератов)								
№ кластера	Порядковые номера (N_1) текстов, ближайших к центру класт	гера							
0	0 1, 3, 5								
1	1 4, 6, 2								
2									

Далее: $\Delta_{avg}\,N_{2j}\,(N_1)$ — средняя разница в рейтиинге по БЭ для элементов кластеров (по всем, попарно, по мере удаления от центра кластера); N_{elem} — среднее число элементов в кластере.

Кластеризация методом k-means

Таблица 6. Результаты кластеризации методом k-means (расширение аннотаций на одно из предложений объединённого introduction и conclusions).

	Оптимальное количество кластеров для метода k -means (оценка связности коллекции относительно центров масс аннотаций/рефератов)								
№ кластера	Порядковые номера (N_1) текстов, ближайших к центру кластера								
0	3, 1, 5								
1	4, 7, 6								
2	10								
3	8								
	количество кластеров для метода k -means (оценка связности ии относительно полных текстов аннотаций/рефератов)	3							
№ кластера	Порядковые номера $\left(N_1 ight)$ текстов, ближайших к центру класт	гера							
0	1, 3, 5								
1	4, 6, 2								
2	7, 10								

Качественная оценка коллекции с достигнутым максимумом смысловой связности

- ullet $\Delta_{avg}\,N_{2j}\,(N_1)\,/N_{elem},\,j=\{3,4\}$ случаи расширения до максимальной смысловой связности без ограничения числа максимизирующих предложений;
- ullet аналогично с $j=\{5,6\}$ расширение предложением объединённого introduction и conclusions, с которого было начато расширение до максимальной связности.

Качественная оценка коллекции для рассматриваемого примера

Для экспериментов с расширением каждой аннотации до достижения максимальной смысловой связности аннотацией при ранжировании относительно центров масс 3 имеем:

$$\Delta_{1,4} = |3-7| = 4, \Delta_{4,3} = |7-1| = 6, \Delta_{6,10} = |8-9| = 1, \Delta_{10,8} = |9-10| = 1.$$

При этом $N_{elem} = (3+3)/2 = 3$, а сама оценка

$$\Delta_{avg}N_{23}(N_1)/N_{elem} = ((4+6+1+1)/4)/3 = 1.$$

то же при ранжировании аннотаций относительно их полных текстов:

$$\begin{split} \Delta_{1,3} &= |1-2| = 1, \Delta_{3,5} = |2-4| = 2, \Delta_{4,6} = |5-6| = 1, \Delta_{6,2} = |6-3| = 3, \\ \Delta_{7,10} &= |8-7| = 1, \text{при этом } N_{elem} = (3+3+2)/3 \approx 2,67, \text{ а сама оценка} \\ \Delta_{avg} N_{24} \left(N_1\right)/N_{elem} = \left(\left(1+2+1+3+1\right)/5\right)/2,67 \approx 0,599. \end{split}$$

Для экспериментов с расширением каждой аннотации на одно из предложений объединённого introduction и conclusions при ранжировании относительно центров масс 4 имеем:

$$\Delta_{3,1} = |2-1| = 1, \Delta_{1,5} = |1-7| = 6, \Delta_{4,7} = |5-3| = 2, \Delta_{7,6} = |3-9| = 6.$$

При этом $N_{elem} = (3+3+1+1)/4 = 2$, а сама оценка

$$\Delta_{avg} N_{25} (N_1) / N_{elem} = ((1+6+2+6)/4)/2 \approx 1,875.$$

то же при ранжировании аннотаций относительно их полных текстов:

$$\begin{split} \Delta_{1,3} &= |1-2| = 1, \Delta_{3,5} = |2-4| = 2, \Delta_{4,6} = |5-6| = 1, \Delta_{6,2} = |6-3| = 3, \\ \Delta_{7,10} &= |8-7| = 1, \text{при этом } N_{elem} = (3+3+2)/3 \approx 2,67, \text{ а сама оценка} \\ \Delta_{avg} N_{26} \left(N_1\right)/N_{elem} = \left(\left(1+2+1+3+1\right)/5\right)/2,67 \approx 0,599. \end{split}$$

³ согласно данным *Таблиц 2* и 5

⁴ согласно данным Таблиц 3 и 6

Качественная оценка коллекции: обсуждение результатов

Основные выводы

- Как следует из определения оценки, предпочтение отдаётся варианту расширения с меньшим значением отвечающего ему соотношения средней разницы в рейтинге по близости эталону для элементов кластеров и среднего числа элементов в кластере.
- Поскольку кластеризация выполняется для эмбеддингов полных текстов аннотаций, то решающими будут качественные оценки, полученные при ранжировании аннотаций относительно их полных текстов.
- Отметим, что метод расширения на одно предложение объединённого introduction и conclusions уступает расширению до максимальной связности при ранжировании относительно центров масс.
- Несмотря на вышесказанное, использование метода расширения на одно предложение объединённого introduction и conclusions на практике предпочтительнее в плане сокращения вычислительных затрат.

N_{26}	1	2	3	4	5	6	7
2							
3							
4							
5							
6							
7							
8							
9							
10							

Рис. 1. Первоначальный вариант траектории после расширения аннотаций на одно из предложений объединённого *introduction* и *conclusions*, ранжирование относительно полных текстов.

<u>Пр</u>имечание

- светло-серый фон ячеек таблицы на рисунке означает, что для ознакомления с работой, представляемой строкой, достаточно ознакомиться с одной из предшествующих работ, столбцы которых в строке выделены фоном;
- тёмно-серый фон показывает необходимость изучить предыдущую работу в траектории.

Оптимизация исходной траектории навигации по подборке

N_{26}	1	2	3	4	5	6	7
2							
3							
4							
5							
6							
7							
8							
9							
10							

Рис. 2. Для работ с порядковыми номерами $N_{26}=3$ и $N_{26}=6$ находим работы, лежащие с ними в одном кластере согласно данным $Ta6nuyu\ 6$.

Примечание

Заметим, что для работы с порядковым номером $N_{26}=7$ согласно $\mathit{Ta6}\mathit{nuqe}\ 6$ нет вышестоящих по рейтингу работ из одного кластера с ней, поэтому в траектории навигации здесь остаются работы, ближайшие к центрам своих кластеров.

Окончательный вариант траектории навигации по коллекции

N_{26}	1	2	3	4	5	6	7
2							
3							
4							
5							
6							
7							
8							
9							
10						·	·

Рис. 3. Окончательный вариант траектории навигации по коллекции.

Примечание

Поскольку работы с порядковыми номерами $N_{26}=1$ и $N_{26}=5$ не лежат в одном кластере с работой под номером $N_{26}=7$, то для её изучения не требуется ознакомления с обеими вышестоящими работами, достаточно ознакомиться с одной из них. Фон соответствующих ячеек на рис. 3. оставлен светло-серым.

Краткие итоги

- Основной результат настоящей работы методика повышения полноты изложения основного содержания научной статьи в её аннотации и заголовке с целью последующего ранжирования статей по близости эталонному варианту передачи смысла в их кратком изложении.
- Принципиально новым здесь является предположение о неполноте представления смысла в анализируемом тексте и возможности его воссоздания из контекста (вводного и заключительного разделов статьи) оценкой близости соответствующих многомерных векторов (эмбеддингов).
- ▶ Результаты экспериментов проиллюстрировали почти троекратное уменьшение степени неоднозначности при выборе предшествующей работы в траектории навигации пользователя по подборке.
- lacktriangled В качестве альтернативы «методу локтя» для повышения точности априорной оценки оптимального числа кластеров на выходе алгоритма k-теапs в рассматриваемой задаче заслуживает интерес использование коэффициента «силуэт» для оценки правильности отнесения образца данных к кластеру на основе среднего внутрикластерного расстояния и среднего расстояния до ближайшего кластера по каждому из образцов.
- Представляется перспективным здесь задействовать нейросетевые модели из ориентированных на работу с парафразами, а именно: rut5-base-paraphraser и paraphrase-multilingual-MiniLM-L12-v2.