Kernel methods

Victor Kitov

v.v.kitov@yandex.ru

Kernel trick

Perform feature transformation: $x \rightarrow \phi(x)$. Scalar product becomes $\left\langle x, x^{\prime}\right\rangle \rightarrow\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle=K\left(x, x^{\prime}\right)$

Kernel trick

Define not the feature representation x but only scalar product function $K\left(x, x^{\prime}\right)$

- Comments:
- required that the solution depends only on scalar products.Kernels can be constructed from other kernels, for example from:
(1) scalar product $\left\langle x, x^{\prime}\right\rangle$
(2) constant $K\left(x, x^{\prime}\right) \equiv 1$
(3) $x^{T} A x$ for any $A \succcurlyeq 0^{1}$
- feature representation $\phi(x)$ not needed
- $\left\langle x, x^{\prime}\right\rangle$ has complexity $O(D)$. Complexity of $K\left(x, x^{\prime}\right)$ may be $O(1)$.

Kernelizable algorithms

- ridge regression:
- K-NN
- K-means
- PCA
- SVM
- many more...

Kernel trick use cases

- high-dimensional data
- polynomial of order up to M
- Gaussian kernel $K\left(x, x^{\prime}\right)=e^{-\frac{1}{2 \sigma^{2}}\left\|x-x^{\prime}\right\|^{2}}$ corresponds to infinite-dimensional feature space.
- hard to vectorize data
- strings, sets, images, texts, graphs, 3D-structures, sequences, etc.
- natural scalar product exist
- strings: number of co-occuring substrings
- sets: size of intersection of sets
- example: for sets S_{1} and $S_{2}: K\left(S_{1}, S_{2}\right)=2^{\left|S_{1} \cap S_{2}\right|}$ is a possible kernel.
- etc.
- scalar product can be computed efficiently

General motivation for kernel trick

- perform generalization of linear methods to non-linear case
- as efficient as linear methods
- local minimum is global minimum
- no local optima=>less overfitting
- non-vectorial objects
- hard to obtain vector representation

Kernel definition

- x is replaced with $\phi(x)$
- Example: $[x] \rightarrow\left[x, x^{2}, x^{3}\right]$

Kernel

Function $K\left(x, x^{\prime}\right): X \times X \rightarrow \mathbb{R}$ is a kernel function if it may be represented as $K\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle$ for some mapping $\phi: X \rightarrow H$, with scalar product defined on H.

- $\left\langle x, x^{\prime}\right\rangle$ is replaced by $\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle=K\left(x, x^{\prime}\right)$

Illustration

Specific types of kernels

- $K\left(x, x^{\prime}\right)=K\left(x-x^{\prime}\right)$ - stationary kernels (invariant to translations)
- $K\left(x, x^{\prime}\right)=K\left(\left\|x-x^{\prime}\right\|\right)$ - radial basis functions

Polynomial kernel ${ }^{2}$

- Example 1: let $D=2$.

$$
\begin{aligned}
K(x, z) & =\left(x^{T} z\right)^{2}=\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2}= \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} z_{1} x_{2} z_{2} \\
& =\phi^{T}(x) \phi(z)
\end{aligned}
$$

for $\phi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)$
${ }^{2}$ What kind of feature transformation will correspond to $K(x, z)=\left(x^{T} z\right)^{M}$ for arbitrary M and D ?

Polynomial kernel ${ }^{3}$

- Example 2: let $D=2$.

$$
\begin{aligned}
K(x, z) & =\left(1+x^{T} z\right)^{2}=\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}= \\
& =1+x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} z_{1}+2 x_{2} z_{2}+2 x_{1} z_{1} x_{2} z_{2} \\
& =\phi^{T}(x) \phi(z)
\end{aligned} \text { for } \phi(x)=\left(1, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x_{2}\right) .
$$

${ }^{3}$ What kind of feature transformation will correspond to $K(x, z)=\left(1+x^{T} z\right)^{M}$ kernels for arbitrary M and D ?

Kernel properties

Theorem (Mercer): Function $K\left(x, x^{\prime}\right)$ is a kernel is and only if

- it is symmetric: $K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right)$
- it is non-negative definite:
- definition 1: for every function $g: X \rightarrow \mathbb{R}$

$$
\int_{X} \int_{X} K\left(x, x^{\prime}\right) g(x) g\left(x^{\prime}\right) d x d x^{\prime} \geq 0
$$

- definition 2 (equivalent): for every finite set $x_{1}, x_{2}, \ldots x_{M}$ Gramm matrix $\left\{K\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{M} \succeq 0$ (p.s.d.)

Kernel construction

- Kernel learning - separate field of study.
- Hard to prove non-negative definitness of kernel in general.
- Kernels can be constructed from other kernels, for example from:
(1) scalar product $\left\langle x, x^{\prime}\right\rangle$
(2) constant $K\left(x, x^{\prime}\right) \equiv 1$
(3) $x^{T} A x$ for any $A \succcurlyeq 0^{4}$

[^0]
Constructing kernels from other kernels

If $K_{1}\left(x, x^{\prime}\right), K_{2}\left(x, x^{\prime}\right)$ are arbitrary kernels, $c>0$ is a constant, $q(\cdot)$ is a polynomial with non-negative coefficients, $h(x)$ and $\varphi(x)$ are arbitrary functions $\mathcal{X} \rightarrow \mathbb{R}$ and $\mathcal{X} \rightarrow \mathbb{R}^{M}$ respectively, then these are valid kernels ${ }^{5}$:
(1) $K\left(x, x^{\prime}\right)=c K_{1}\left(x, x^{\prime}\right)$
(2) $K\left(x, x^{\prime}\right)=K_{1}\left(x, x^{\prime}\right) K_{2}\left(x, x^{\prime}\right)$
(3) $K\left(x, x^{\prime}\right)=K_{1}\left(x, x^{\prime}\right)+K_{2}\left(x, x^{\prime}\right)$
(4) $K\left(x, x^{\prime}\right)=K_{1}\left(\varphi(x), \varphi\left(x^{\prime}\right)\right)$
(3) $K\left(x, x^{\prime}\right)=h(x) K_{1}\left(x, x^{\prime}\right) h\left(x^{\prime}\right)$
(6) $K\left(x, x^{\prime}\right)=e^{K_{1}\left(x, x^{\prime}\right)}$

Commonly used kernels

Let x and x^{\prime} be two objects.

Kernel	Mathematical form		
linear	$\left\langle x, x^{\prime}\right\rangle$		
polynomial	$\left(\gamma\left\langle x, x^{\prime}\right\rangle+r\right)^{d}$		
RBF	$\exp \left(-\gamma\left\\|x-x^{\prime}\right\\|^{2}\right)$		

- Standard transformation is also sigmoid $=\operatorname{tangh}(\gamma\langle x, y\rangle+r)$ but its not a Mercer kernel.

Addition ${ }^{6}$

- Other kernelized algorithms: K-NN, K-means, K-medoids, nearest medoid, PCA, SVM, etc.
- Kernelization of distance:

[^1]
Addition ${ }^{6}$

- Other kernelized algorithms: K-NN, K-means, K-medoids, nearest medoid, PCA, SVM, etc.
- Kernelization of distance:

$$
\begin{aligned}
\rho\left(x, x^{\prime}\right)^{2} & =\left\langle\phi(x)-\phi\left(x^{\prime}\right), \phi(x)-\phi\left(x^{\prime}\right)\right\rangle \\
& =\langle\phi(x), \phi(x)\rangle+\left\langle\phi\left(x^{\prime}\right), \phi\left(x^{\prime}\right)\right\rangle-2\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \\
& =K(x, x)+K\left(x^{\prime}, x^{\prime}\right)-2 K\left(x, x^{\prime}\right)
\end{aligned}
$$

${ }^{6}$ How can we calculate scalar product between normalized (unit norm) vectors $\phi(x)$ and $\phi\left(x^{\prime}\right)$?

Table of Contents

(1) Kernel support vector machines
(2) Kernel ridge regrssion

Linear SVM reminder

- Solution for weights:

$$
w=\sum_{i \in \mathcal{S} \mathcal{V}} \alpha_{i} y_{i} x_{i}
$$

Discriminant function

$$
\begin{gathered}
g(x)=\sum_{i \in \mathcal{S V}} \alpha_{i} y_{i}\left\langle x_{i}, x\right\rangle+w_{0} \\
w_{0}=\frac{1}{n_{\widetilde{\mathcal{S V}}}}\left(\sum_{i \in \widetilde{\mathcal{S V}}} y_{j}-\sum_{j \in \widetilde{\mathcal{S}}} \sum_{i \in \mathcal{S V}} \alpha_{i} y_{i}\left\langle x_{i}, x_{j}\right\rangle\right)
\end{gathered}
$$

where $\left.S V=\left\{i: y_{i}\left(x_{i}^{T} w+w_{0}\right) \leq 1\right)\right\}$ are indexes of all support vectors and $\tilde{S V}=\left\{i: y_{i}\left(x_{i}^{T} w+w_{0}\right)=1\right\}$ are boundary support vectors.

Kernel SVM

Discriminant function

$$
\begin{gathered}
g(x)=\sum_{i \in \mathcal{S V}} \alpha_{i} y_{i} K\left(x_{i}, x\right)+w_{0} \\
w_{0}=\frac{1}{n_{\widetilde{\mathcal{S V}}}}\left(\sum_{j \in \widetilde{\mathcal{S V}}} y_{j}-\sum_{j \in \widetilde{\mathcal{S}}} \sum_{i \in \mathcal{S V}} \alpha_{i} y_{i} K\left(x_{i}, x_{j}\right)\right)
\end{gathered}
$$

Kernel results

Sepal length

SVC with RBF kernel

Sepal length

LinearSVC (linear kernel)

Sepal length
SVC with polynomial (degree 3) kernel

Sepal length

Linear kernel - variable C

Linear kernel, $\mathrm{C}=0.01$

Linear kernel - variable C

Linear kernel - variable C

Linear kernel - variable C

Linear kernel, $\mathrm{C}=100$

RBF kernel - variable γ

RBF kernel, $\gamma=0.01, C=1$

RBF kernel - variable γ

RBF kernel, $\gamma=0.1, C=1$

RBF kernel - variable γ

RBF kernel, $\gamma=1, C=1$

RBF kernel - variable γ

RBF kernel - variable C

RBF kernel - variable C

RBF kernel - variable C

Polynomial kernel - variable d

Polynomial kernel - variable C

Polynomial kernel, $d=4, C=0.001$

Polynomial kernel - variable C

Polynomial kernel, $d=4, C=0.1$

Polynomial kernel - variable C

Polynomial kernel, $d=4, C=10$

Sigmoid kernel - variable γ

Sigmoid kernel, $\gamma=0.1$

Sigmoid kernel - variable γ

Sigmoid kernel, $\gamma=1$

Sigmoid kernel - variable γ

Sigmoid kernel, $\gamma=10$

Sigmoid kernel - variable C

Table of Contents

(1) Kernel support vector machines

(2) Kernel ridge regrssion

Ridge regression

- Ridge regression criterion:

$$
Q(\beta)=\sum_{n=1}^{N}\left(x_{n}^{T} \beta-y_{n}\right)^{2}+\lambda \sum_{d=1}^{D} \beta_{d}^{2} \rightarrow \min _{\beta}
$$

- Stationarity condition:

$$
\frac{d Q(\beta)}{d \beta}=2 \sum_{n=1}^{N}\left(x_{n}^{T} \beta-y_{n}\right) x_{n}+2 \lambda \beta=0
$$

- In vector form:

$$
X^{T}(X \beta-Y)+\lambda \beta=0
$$

Ridge regression

- Primal solution:

$$
\begin{gathered}
X^{T} X+\lambda I \beta=X^{T} Y \\
\beta=\left(X^{T} X+\lambda I\right)^{-1} X^{T} Y
\end{gathered}
$$

- Comment: $X^{\top} X \succcurlyeq 0$ (positive semi-definite) and $X^{\top} X+\lambda I \succ 0$ (positive definite), so ridge regression is always identifiable.
- Cost of estimation:
- $X^{\top} X+\lambda /: N D^{2}+D$
- $X^{\top} Y: D N$
- $\left(X^{\top} X+\lambda I\right)^{-1}: D^{3}$
- $\left(X^{\top} X+\lambda /\right)^{-1} X^{\top} Y: D^{2}$
- Total training cost is $O\left(N D^{2}+D^{3}\right)=O\left(D^{2}(N+D)\right)$.
- Cost of prediction $\hat{y}(x)=\langle x, \beta\rangle$ is D.

Dual solution

From vector stationarity condition:

$$
X^{T}(X \beta-Y)+\lambda \beta=0
$$

follows the dual solution (a linear combination of training vectors):

$$
\begin{equation*}
\beta=\frac{1}{\lambda} X^{T}(Y-X \beta)=X^{T} \alpha \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{\lambda}(Y-X \beta) \tag{2}
\end{equation*}
$$

is called a vector of dual variables.

Prediction:

$$
\widehat{y}(x)=x^{T} \beta=x^{T} X^{T} \alpha=\sum_{i=1}^{N} \alpha_{i}\left\langle x, x_{i}\right\rangle
$$

Dual solution

To find α we plug (1) into (2):

$$
\begin{gathered}
\alpha=\frac{1}{\lambda}(Y-X \beta)=\frac{1}{\lambda}\left(Y-X X^{T} \alpha\right) \\
\left(X X^{T}+\lambda I\right) \alpha=Y \\
\alpha=\left(X X^{T}+\lambda I\right)^{-1} Y
\end{gathered}
$$

Cost of estimation:
$X X^{T}+\lambda I: N^{2} D+N$
$\left(X X^{T}+\lambda I\right)^{-1}: N^{3}$
$\left(X X^{T}+\lambda I\right)^{-1} Y: N^{2}$
Total training cost is $O\left(N^{2} D+N^{3}\right)=O\left(N^{2}(D+N)\right)$.
Cost of prediction $\widehat{y}(x)=\langle x, \beta\rangle$ is $N D$.

Dual solution motivation

- Optimal α depends not on exact features but only on scalar products:

$$
\alpha=\left(X X^{T}+\lambda I\right)^{-1} Y=(G+\lambda I)^{-1} Y
$$

where $G \in \mathbb{R}^{N x N}$ and $\{G\}_{i j}=\left\langle x_{i}, x_{j}\right\rangle-G$ is called Gram matrix.

- Prediction also depends only on scalar products:

$$
\widehat{y}(x)=\sum_{i=1}^{N} \alpha_{i}\left\langle x, x_{i}\right\rangle=\alpha^{T} v
$$

where $v \in \mathbb{R}^{N}$ and $v_{i}=\left\langle x, x_{i}\right\rangle$.

[^0]: ${ }^{4}$ Under what feature transformation will case 1 transform to cases 2 and 3? You may use Choletsky decomposition.

[^1]: ${ }^{6}$ How can we calculate scalar product between normalized (unit norm) vectors $\phi(x)$ and $\phi\left(x^{\prime}\right)$?

