Эксплуатационные ошибки

Терехов Олег

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

10 апреля 2019 г.

Precision-Recall

Основные метрики

- Recall or Sensitivity or TPR (True Positive Rate): Number of items correctly identified as positive out of total true positives-TP/(TP+FN)
- Specificity or TNR (True Negative Rate): Number of items correctly identified as negative out of total negatives-TN/(TN+FP)
- Operation: Number of items correctly identified as positive out of total items identified as positive- TP/(TP+FP)
- False Positive Rate or Type I Error: Number of items wrongly identified as positive out of total true negatives- FP/(FP+TN)
- False Negative Rate or Type II Error: Number of items wrongly identified as negative out of total true positives- FN/(FN+TP)

Терехов Олег 2 / 9

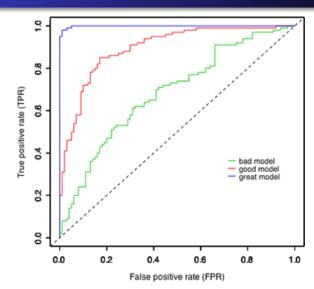
F_{β} -measure

$$F_{\beta} = (1 + \beta^2) \frac{precision \times recall}{(\beta^2 precision) + recall}$$

The F-measure reaches a maximum with completeness and accuracy equal to one, and is close to zero if one of the arguments is close to zero.

F1 Score: a harmonic mean of precision and recall

$$F1 = 2 \frac{PrecisioniRecall}{Precision + Recall}$$


Терехов Олег 3 / 9

Confusion Matrix

	Actual = Yes	Actual = No
Predicted = Yes	TP	FP
Predicted = No	FN	TN

Терехов Олег 4 /

ROC-curve

Терехов Олег 5 / 9

Accuracy

Accuracy: Percentage of total items classified correctly $Accuracy = \frac{\#correctly \ classified \ items}{\#all \ classified \ items}$

Терехов Олег 6 / 9

Log-Loss

Log-loss is a measurement of accuracy that incorporates the idea of probabilistic confidence given by following expression for binary class

$$logloss = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i))$$

Терехов Олег 7 / 9

RMSE, MAE

RMSE

It represents the sample standard deviation of the differences between predicted values and observed values (called residuals). Mathematically, it is calculated using this formula:

$$RMSE = \sqrt{1n \times \sum_{j=1}^{n} (y_j - \hat{y_j})^2}$$

MAE

MAE is the average of the absolute difference between the predicted values and observed value. The MAE is a linear score which means that all the individual differences are weighted equally in the average. For example, the difference between 10 and 0 will be twice the difference between 5 and 0. However, same is not true