
Speech-Driven 3D Stylish Avatar Animation by End-to-End Learning of Visemes Coefficients with Weak Loss Function Based on Landmarks Motions

Nurlanov Zhakshylyk, Ilya Krotov, Ivan Glazistov, Victor Lempitsky MIPT, Scoltech, Samsung SRR, Samsung AI Center 2018

Plan:

- 1. Introduction and Related Works
- 2. Available Datasets
- 3. Our approach
- 4. Short report
- 5. Results

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion, Karras et al., NVIDIA, 2017

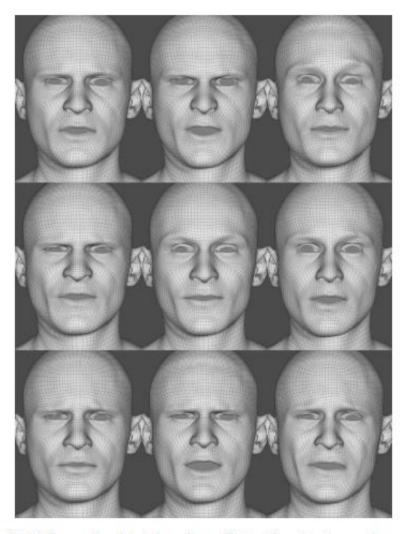


Fig. 6. The emotional state has a large effect on the animation, as shown on the accompanying video. These nine poses are inferred from the same audio window using different emotion vectors.

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion, Karras et al., NVIDIA, 2017

Fig. 1. VisemeNet is a deep-learning approach that uses a 3-stage LSTM network, to predict compact animator-centric viseme curves with proper co-articulation, and speech style parameters, directly from speech audio in near real-time (120ms lag).

VisemeNet: Audio-Driven Animator-Centric Speech Animation, Zhou et al., University of Massachusetts Amherst, 2018

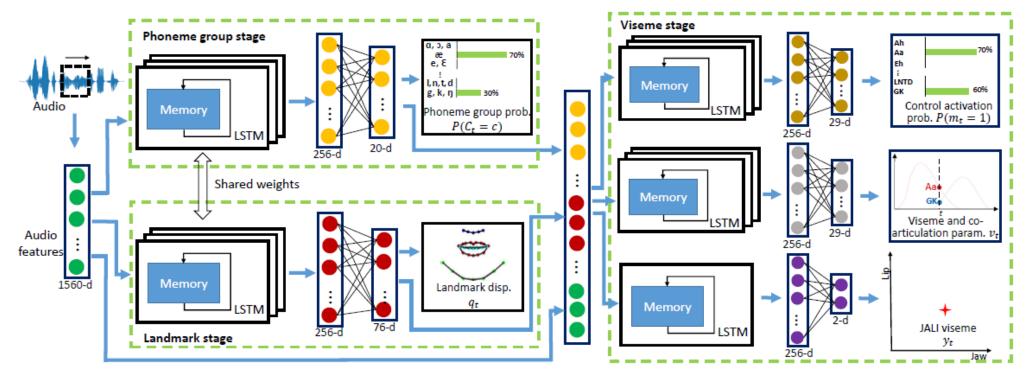


Fig. 3. Our architecture processes an audio signal (left) to predict JALI-based viseme representations: viseme and co-articulation control activations (top right), viseme and co-articulation rig parameters (middle right), and 2D JALI viseme field parameters (bottom right). Viseme prediction is performed in three LSTM-based stages: the input audio is first processed through the phoneme group stage (top left) and landmark stage (bottom left), then the predicted phoneme group and landmark representations along with audio features are processed through the viseme stage.

$$L_1(\theta, \phi, \omega) = w_c L_c(\theta, \phi) + w_q L_q(\theta, \omega) + w_q' L_q'(\theta, \omega) \tag{1}$$

where weights of the three losses are set as $w_c = 0.75$, $w_q = 0.25$, $w'_q = 0.1$ in all our experiments, computed via hold-out validation.

VisemeNet: Audio-Driven Animator-Centric Speech Animation, Zhou et al., University of Massachusetts Amherst, 2018

Viseme	Phoneme	Output	Viseme	Phoneme	Output
Ah	a, ɔ, a	(e)	LNTD	1, n, t, d, ∫, L, ſ	(=)
Aa	æ	(e)	GK	g, k, ŋ, q, c	(=)
Eh	e, E	(e)	MBP	b, m, p	$\left(\frac{\tilde{z}}{2}\right)$
Ee	i	Ě	R	1	(ě/
Ih	I	ě/	WA_PED AL	w, v, m	~
Oh	ο, τ	(·	ЈҮ	j, dʒ, c, J	ě/
Uh	υ, Λ, Θ, υ , Œ, Ü, Of, i	ď/	s	s, z, y	Ě
U	u	()	ShChZh	∫, t∫, ʒ, ۥ l, lʒ,)
Eu	œ, y, ttt, ø, e	ě	Th	θ, ð	ě
Schwa	ə, 9	Ě	FV	f, v, m	Ě

Fig. 2. List of visemes along with groups of phonemes (in International Phonetic Alphabet format) and corresponding lower face rig outputs that our architecture produces.

VisemeNet: Audio-Driven Animator-Centric Speech Animation, Zhou et al., University of Massachusetts Amherst, 2018

Figure 1: The proposed end-to-end face synthesis model, capable of producing realistic sequences of faces using one still image and an audio track containing speech. The generated sequences exhibit smoothness and natural expressions such as blinks and frowns.

The accuracy of the spoken message is measured using the word error rate (WER) achieved by a pre-trained lip-reading model. We use the LipNet model [2], which surpasses the performance of human lipreaders on the GRID dataset. For bot h content metrics lower values indicate better accuracy.

Method	PSNR	SSIM	FDBM	CPBD	ACD	WER
Ground Truth Videos	N/A	N/A	0.121	0.281	$0.74 \cdot 10^{-4}$	21.40%
L_1 loss	28,47	0.859	0.101	0.210	$0.90 \cdot 10^{-4}$	27.90%
$L_1 + Adv_{img}$	27.71	0.840	0.114	0.274	$1.04 \cdot 10^{-4}$	27.94%
$L_1 + Adv_{img} + Adv_{seq}$	27.98	0.844	0.114	0.277	$1.02 \cdot 10^{-4}$	25.45 %

End-to-End Speech-Driven Facial Animation with Temporal GANs, Vougioukas et al., iBUG Group, Imperial College London, Samsung AI Centre, Cambridge, UK, 2018

Datasets

GRID	SAVEE	BIWI 3D	TCD-TIMIT	FaceWarehouse	RAVDESS	eNTERFACE'05
Cooke 2006	Wang 2010	Fanelli 2010	Harte 2015	Chen Cao 2012	Livingstone 2018	Martin 2005
t + a + v	t + a + v	t + a + v + RGBD	t + a + v	RGBD + emotions + a set of facial feature points	t + a + v (speech, song)	Audio-Visual Emotion Database
1000 sentences	480 sentences	1109 sentences	6913 sentences		2 sentences	
34 speakers (18 m, 16 f)	4 male speakers	14 speaker (6 m, 8 f)	62 speakers		24 speaker (Professional actors)	42 speakers
14 hours	30 min	1 hour			7356 recordings	
neutral style	5 emotions	various emotional and neutral style	Neutral style, 3 lipreaders, straight on and 30* angle		8 emotions with emotional intensity	6 emotions
freely available for research use	available free of charge for research purposes. Register.	The database can be obtained upon request, for research purposes only. A license agreement must first be signed (no students) and sent to .	available to members of collaborating academic institutions.	available for academic research purposes. We only send the data to approved researchers	free of charge and without restriction from the open access repository Zenodo	available, free of charge, for research purposes only

TABLE I LIST OF ENGLISH-LANGUAGE AVSR DATABASES (Some Information Taken From Tables in [7], [11], and [12]) (SR = Speech Recognition)

Stated Purpose	Video Resolution, FPS	Content e.g. isolated words	Speakers # (# Female)	Database Acronym
N/A	720x480	78 isolated words	10 (3 F)	AMP/CMU [13]
Letter recognition	80x60, 25fps	Alphabet set	10 (5 F)	AVletters [14]
Continuous SR	720x480, 30fps	TIMIT-SX sentences	223 (106 F)	AV-TIMIT [15]
SR in a car	720x480, 30fps	Digits, TIMIT sentences	86 (40 F)	AVICAR [16]
Continuous SR	720x480, 30fps	Digits, continuous speech	20 (10 F)	AVOZES [4]
Speaker verification	720x576, 25fps	Numbers, names, addresses	208 (104 F)	BANCA [17]
Speaker-independent digit recognition	720x480, 30fps	Digits	36 (17 F)	CUAVE [18]
Speaker/SR	560x480, 25fps	Digits, alphabet, syllables and phrases	258 (126 F)	DAVID [19]
Small-vocab CSR	720x576, 25fps	Command sentences	36 (16 F)	GRID [20]
LVCSR	740x480, 30fps	Continuous speech	290	IBM LVCSR [21]
AVCSR	512x384, 25fps	TIMIT sentences	43 (19 F)	VidTIMIT [22]
Speaker/SR	720x576, 25fps	Digit strings + sentence	106	Valid [23]
Isolated digits	100x75, 30fps	First 4 English digits	12 (3 F)	TULIPS1 [24]
Speaker/SR	720x576, 25fps	Digit strings + sentence	295	XM2VTS [25]
	720x576, 25fps	Digit strings + sentence	N/A	QuLips [8]
Profile vs from view lip features	640x480, 30fps	150 isolated words	10	CMU-AVPFV [26]
View angle for speaker and SR	N/A	Digits, English and Chinese phrases	30 (15 F)	HIT-AVDB-II [12]
View angle for SR	N/A	200 sentences	1	LiLIR [27]
	640x480, 32fps	Command sentences	20 (9 F)	WAPUSK20
Visual and depth feature examination	640x480, 20fps	Connected digits	15	BAVCD [28]
Environments and SR	708x640, 25fps	digits, TIMIT sentences	123 (49 F)	UNMC-VIER [29]
Speaker/SR	640x480, 48fps	Digits, isolated words, SCRIBE sentences	1000	AusTalk [30]

Our approach: FACS (Visemes) training with weak loss function based on landmarks motions

Short report

Our solution consists of "Phonemes-Landmarks Predictor" and "Visemes Post-processing module".

"Phonemes-Landmarks Predictor" takes audio features as input. If given an audio signal, we extract a feature vector for each frame. Our feature vector concatenates 13 Mel Frequency Cepstral Coefficients (MFCCs) that have been widely used for speech recognition, 26 raw Mel Filter Bank (MFB) features, and finally 26 Spectral Subband Centroid. Features are extracted every 10 ms. The frequency analysis is performed within windows of size 25 ms in the input audio. Finally, input vectors for each frame overlay 250 ms, and has dimensions 24x65.

"Phonemes-Landmarks Predictor" outputs visemes coefficients (which are then transformed into landmarks) and phoneme group probabilities for each frame.

In next stage "Visemes Post-processing module" mixes phonemes and raw visemes and outputs final visem mesh coefficients.

Short report

As ground truth we used GRID dataset, for landmarks detection we used SRR-design detector, for phonemes estimation from text we used Montreal Aligner.

For all samples in dataset we estimated landmarks shifts from base frame to current frame. And using predefined matrix, we converted predicted visemes coefficients to these shifts.

On training stage we construct multi term loss function. First term calculated as mean square error for predicted landmarks and ground truth landmarks. Second and third terms calculates as finite differences of the first and second orders respectively.

Overall_loss =
$$||l - l^*|| + \lambda_1 \sum_{k=0}^{n=18} w_i (1 - p_i) + \lambda_2 MSE(\dot{l}, 0) + \lambda_3 MSE(\ddot{l}, 0)$$

Results

- Phonemes accuracy is equal to 85%.
- The Inter Ocular Distance error is equal to 1.5%. (< 5% is normal)
- The network infers with a lag of 130 ms (~650 ms for Visemenet)
- Comparison with other state-of-the-art models is being prepared