Neural networks - Victor Kitov

Neural networks

Victor Kitov

v.v.kitov@yandex.ru

1/46

v.v.kitov@yandex.ru

Neural networks - Victor Kitov

Introduction

Table of Contents

@ Introduction

2/46

Neural networks - Victor Kitov

Introduction

History

@ Neural networks originally appeared as an attempt to model
human brain

LA
@ Human brain consists of multiple interconnected neuron cells
o cerebral cortex (the largest part) is estimated to contain 15-33
billion neurons
e communication is performed by sending electrical and
electro-chemical signals

e signals are transmitted through axons - long thin parts of

neurons.
3/46

Neural networks - Victor Kitov

Introduction

Simple model of a neuron

I I[wo + wix! + wax? + ... + wpxP > 0] |—>

Wp

@ Neuron get's activated in the half-space, defined by
wo + wix! + wox? + ... + wpxP > 0.
@ Each node is called a neuron

@ Each edge is associated a weight

o Constant feature 1 stands for bias

4/46

Neural networks - Victor Kitov

Introduction

Multilayer perceptron architecture!

@ Hierarchically nested set of
neurons.

e Each node has its own
weights.

V&

This is structure of multilayer perceptron - acyclic directed graph.

'Propose neural networks estimating OR,AND,XOR functions on boolean

inputs.
5/46

Neural networks - Victor Kitov

Introduction

Layers

@ Structure of neural network:
e l-input layer
e 2-hidden layers
e 3-output layer
6/46

Neural networks - Victor Kitov

Introduction

Continious activations

o Pitfall of I[]: it causes stepwise constant outputs, weight
optimization methods become inapliccable.

o We can replace I[w x + wy > 0] with smooth activation
o(w’x + wp)

7/46

Neural networks - Victor Kitov

Introduction

Typical activation functions

1
14+e—x

o 1-layer neural network with sigmoidal activation is equivalent
to logistic regression

e sigmoidal: o(x) =

@ hyperbolic tangent: tangh(x) = ?::
1.0
— o(x)
0.3/ — tangh(z)
0.0
-0.5
10 —4 -2 0 2 4 6

8/46

Neural networks - Victor Kitov

Introduction

Activation functions

Activation functions are smooth approximations of step functions:

1.

1.0 W:
) —%
0.0

-0.5
-6

-4 -2 0 2 4

o(ax) limits to 0/1-step function as a — oo

1.0

0.5 g ; Z
0.0

-0.5 E i %

-1.0

-1.

26 -4 -2 0 2 4

tangh(ax) limits to -1/1-step function as a — oo

9/46

Neural networks - Victor Kitov

Introduction

Definition details

Label each neuron with integer j.
Denote: /; - input to neuron j, O; - output of neuron j

Output of neuron j: O; = ¢(;).

Input to neuron j: [, = Zkemc(j) wy; Ok + wyj,

o wy; is the bias term

e inc(j) is a set of neurons with outging edges incoming to
neuron j.

o further we will assume that at each layer there is a vertex with
constant output Ognst = 1, so we can simplify notation

= Y wgOk

keinc(j)

10/46

Neural networks - Victor Kitov

Output generation

Table of Contents

@ Output generation

11/46

Neural networks - Victor Kitov

Output generation

Output generation

@ Forward propagation is a process of successive calculations of
neuron outputs for given features.

Input Hidden Qutput

layer layer layer

12/46

Neural networks - Victor Kitov

Output generation

Activations at output layer

@ Regression: (/) =1
o Classification:

o binary: y € {+1,-1}

Al = ply = +11x) = 1
e multiclass: y €1,2,...C
. % .
©(04,...0¢c) = ply = j|x) = 25:1 eOk’J =12,..C

where Og,...O¢ are outputs of output layer.

13/46

Neural networks - Victor Kitov

Output generation

Generalizations

@ each neuron j may have custom non-linear transformation ¢;
@ weights may be constrained:

e non-negative
e equal weights
e etc.

@ layer skips are possible

Z2
T3 Y2
inputs z] outputs
I Y1
z3

@ Not considered here: RBF-networks, recurrent networks.
14/46

Neural networks - Victor Kitov

Output generation

Number of layers selection

@ Number of layers usually denotes all layers except input layer
(hidden layers+output layer)

o We will consider only continuous activation functions.
o Classification:

o single layer network selects arbitrary half-spaces
o 2-layer network selects arbitrary convex polyhedron (by
intersection of 1-layer outputs)

o therefore it can approximate arbitrary convex sets

o 3-layer network selects (by union of 2-layer outputs) arbitrary
finite sets of polyhedra

o therefore it can approximate almost all sets with well defined
volume (Borel measurable)

15/46

Neural networks - Victor Kitov

Output generation

Number of layers selection

@ Regression
e single layer can approximate arbitrary linear function

@ 2-layer network can model indicator function of arbitrary
convex polyhedron

o 3-layer network can uniformly approximate arbitrary
continuous function (as sum weighted sum of indicators
convex polyhedra)

Sufficient amount of layers

Any continuous function on a compact space can be uniformly
approximated by 2-layer neural network with linear output and wide
range of activation functions (excluding polynomial).

@ In practice often it is more convenient to use more layers with
less total amount of neurons
e model becomes more interpretable and easy to fit.

16/46

Neural networks - Victor Kitov

Output generation

Neural network architecture selection

@ Network architecture selection:

e increasing complexity (control by validation error)
o decresing complexity (“optimal brain damage”)

@ may be used for feature selection

17/46

Neural networks - Victor Kitov

Weight space symmetries

Table of Contents

© Weight space symmetries

18/46

Neural networks - Victor Kitov

Weight space symmetries

Weight space symmetries

o Consider a neural network with 1 hidden layer

e with tangh(x) activation functions
e consisting of M neurons

Input Hidden Output

layer layer layer

19/46

Neural networks - Victor Kitov

Weight space symmetries

Weight space symmetries

@ The following transformations in weight space lead to neural
networks with equivalent outputs:
o for any neuron in hidden layer: simultaneous change of sign of
input and output weights
o 2M possible equivalent transformations of such kind
e for any pair of neurons in the hidden layer: interchange of
input weights between the neurons and simultaneous
interchange of output weights
o this is equivalent to reordering of neurons in the hidden layer,
so there are M! such orderings
o 2M M\ equivalent transformations exist in total.
e For neural network with K hidden layers, consisting of
My, k =1,2,...K neurons each, we obtain Hszl 2Mi M 1
equivalent neural networks.
o In general case these are the only symmetries existing in the
weights space.

20/46

Neural networks - Victor Kitov

Neural network optimization

Table of Contents

@ Neural network optimization

21/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: regression

@ Single output:
LN
N Z(yn(xn) - yn)2 - mvin

n=1

22/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: regression

@ Single output:
L
N Z()?n(xn) - yn)2 - mmi/n
n=1
e K outputs

N K
1 R .
NK Z Z(ynk(xn) — Yok)? — min

n=1 k=1

22/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classification

e Two classes (y € {0,1}, p=P(y =1)):

N
T plyn = 1hxa)"[1 = plyn = Lixa)]* ™ — max

n=1

23/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classification

e Two classes (y € {0,1}, p=P(y =1)):

N
T plyn = 1hxa)"[1 = plyn = Lixa)]* ™ — max

n=1

o C classes (ync = I{yn = c}):

N C
H H p(yn = c|xn)’™ — max

n=1c=1

23/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classification

e Two classes (y € {0,1}, p=P(y =1)):

N
T plyn = 1hxa)"[1 = plyn = Lixa)]* ™ — max

n=1

o C classes (ync = I{yn = c}):
N C
H H p(yn = c|xn)’™ — max
n=1 c=1

@ In practice log-likelihood is maximized.

23/46

Neural networks - Victor Kitov

Neural network optimization

Neural network optimization

@ Let W denote the total dimensionality of weights space
o Let E(y,y) denote the loss function of output
@ We may optimize neural network using gradient descent:

k=0
initialize randomly w?®

while (stop criteria not met):
wkt = wk — npVE(wk)
k=k+1

e Standardization of features makes gradient descend converge
faster

@ Other optimization methods are more efficient (such as
conjugate gradients)

@ Denote W - total number of edges (and weights) in the neural

net.
24/46

Neural networks - Victor Kitov
Neural network optimization

Gradient calculation

@ Direct VE(w) calculation, using

gvl_; _ E(W—i—s;E)—E(W) +0(6)

or better
0E E(W+6;)—E(W—6;) 2
= o
ow; 2e +0()
has complexity O(W?2) [W forward propagations to evaluate
W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all J

derivatives.

25/46

Neural networks - Victor Kitov

Neural network optimization

Multiple local optima problem

@ Optimization problem for neural nets is non-convex.
o Different optima will correspond to:

o different starting parameter values
o different training samples

@ So we may solve task many times for different conditions and
then

o select best model
e alternatively: average different obtained models to get
ensemble

26/46

Neural networks - Victor Kitov

Backpropagation algorithm

Table of Contents

© Backpropagation algorithm

27/46

Neural networks - Victor Kitov

Backpropagation algorithm

Definitions

@ Denote wj; be the weight of edge, connecting i-th and j-th

neuron.

_ OE _ 9E 90
("] Deflne (5 BT Wil

@ Since E depends on wj; through the following functional
relationship E(w;;) = E(O;(/j(w;j))), using the chain rule we

obtain:
0E OFE 0l

8W,'j a ({)7/1'8W,'j

= 5;0;

ol; . "
because 5, = Gw,, (ZkEInc(j) Wi Ok> = Oj, where inc(j) is a
set of all neurons with outgoing edges to neuron j.

9E _ Q9E 00; _ JE _i(y. : - :
° 3r =30, a7 = 90,¥ (;), where ¢ is the activation function.

28/46

Neural networks - Victor Kitov

Backpropagation algorithm

Output layer

@ If neuron j belongs to the output node, then error 680E‘ is

calculated directly.
@ For output layer deltas are calculated directly:

= 56 5 = 367D (1)
@ example for training set = {single point x and true vector of
outputs (y1,---yjor|)}:
o for E = % JEOL(O v

9E
a0;

=0 -y
o for ¢(1) = sigm(l):
¢'(l) = a(h) (1 =o(l)) = 0;(1 -)

o finally
0 = Qi ¥) 0;(1 - O)

Neural networks - Victor Kitov

Backpropagation algorithm

Inner layer

@ If neuron j belongs some hidden layer, denote
out(j) = {ki, ka2, ...km} the set of all neurons, receiving output
from neuron j.

o The effect of O; on E is fully absorbed by /Iy, Ik,, ...Ik,, so

00; 00; keout(j) 0l 90 keout(j)

@ So for layers other than output layer we have:

OE_DEI0 - S b)) @

keout(f)

0~ 00; 0

o Weight derivatives are calculated using errors and outputs:
OE OE 0
aW,'j N 6IJ 8W,‘j

30/46

= 6;0; (3)

Neural networks - Victor Kitov

Backpropagation algorithm

Backpropagation

@ Backpropagation algorithm:

© Forward propagate x, to the neural network, store all inputs /;
and outputs O; for each neuron.

@ Calculate 6; for all i €output layer using (1).

© Backpropagate §; from final layer backwards layer by layer
using (2).

@ Using calculated deltas and outputs calculate W|th (3)-

o Algorithm complexity: O(W), where W is total number of
edges.
e Updates:

e batch
e stochastic

@ using minibatches of objects

31/46

Neural networks - Victor Kitov

Backpropagation algorithm

Regularization

e Constrain model complexity directly

e constrain number of neurons
e constrain number of layers
e impose constraints on weights

o Take a flexible model

o use early stopping during iterative evaluation (by controlling
validation error)
e quadratic regularization

E(w) = E(w) +)\Z w?

32/46

Neural networks - Victor Kitov

Invariances

Table of Contents

@ Invariances

33/46

Neural networks - Victor Kitov

Invariances

Invariances

@ It may happen that solution should not depend on certain
kinds of transformations in the input space.
@ Example: character recognition task

translation invariance

scale invariance

invariance to small rotations
invariance to small uniform noise

Y
Y

34/46

Neural networks - Victor Kitov
Invariances

Invariances

@ Approaches to build an invariant model:

e augment training objects with their transformed copies
according to given invariances

@ amount of possible transformations grows exponentially with
the number of invariances

e add regularization term to the target cost function, which
penalizes changes in output after invariant transformations

@ see tangent propagation

e extract features that are invariant to transformations
o build the invariance properties into the structure of neural
network

@ see convolutional neural networks

35/46

Neural networks - Victor Kitov

Invariances

Augmentation of training samples

© generate a random set of invariant transformations

@ apply these transformations to training objects

& b 4

© obtain new training objects

36/46

Neural networks - Victor Kitov

Invariances

Tangent propagation

@ Denote s(x, &) be vector x after invariant transformation
parametrized by &.
@ Denote

695()Qh 5)‘
2 P
e We want %}2 o to be as small, as possible.
@ Sensitivity of y, to small invariant transformation:
D D
Oyk Z yk Ox; Z
S| = g = 2 JkiTi
O lemo Z 0608 3

@ Tangent propagation - modify target cost function:

5 2
E= E+)\ZZ (ZJnkiTni)
n k i=1

37/46

_ Iy

3 Jki - 8X,‘

Tp =

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

@ Convolutional neural network:

e Used for image analysis
o Consists of a set of convolutional layer / sub-sampling layer
pairs and aggregating layer

— —
——

Sub-sampling

Input image Convolutional layer
put imag: voluti ! layer

38/46

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

e Convolutional layer

o Convolutional layer consists of a number of feature maps

o Feature map has the same dimensionality as input layer

o Locality: each neuron in the feature map takes output from
small neigborhood of input layer neurons

e Equivalence: the same transformation is applied by each
neuron in the feature map

@ obtained by constraining sets of weights to each feature map
layer neuron to be equal

@ similar to convolution with moving adaptive kernel
o effectively it is feature extraction from a region

39/46

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

@ Sub-sampling layer

o Consists of a number of planes, each corresponding to
respective feature map on the previous convolutional layer

o Locality: Sub-sampling layer neurons take output from small
neigborhood of respective feature map neurons

@ neigbourhoods are chosen to be contiguous and
non-overlapping

o Aggregation: input of each neuron i is: wjg + w;1 F, where
Wi, w1 are adjustable weights and F is aggregation function
(sum or max of activations of respective feature map neurons)

o Implements small translational invariance

@ There may be a sequence of convolutional and sub-sampling
layers

e gradual dimensionality reduction

40/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Table of Contents

@ Case study: ZIP codes recognition

41/46

Case study (due to Hastie et al. The Elements of

Statistical Learning)

ZIP code recognition task

SICCICICY
0 @ v @ 0
N~
SUNUINIRSIN
w0 nwv
TIF>D>
M0 m
A NAY A
=] [=]] o] =]
QO0eAdn

42/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Neural network structures

Netl: no hidden layer

Net2: 1 hidden layer, 12 hidden units fully connected

Net3: 2 hidden layers, locally connected

Net4: 2 hidden layers, locally connected with weight sharing

Net5: 2 hidden layers, locally connected, 2 levels of weight sharing

f | f Lo

| \

| \

| \

| \
1 |
16x16

Net-1 Net2

BxBx2

|

|

|

|
16x16

Net-3
Local Connectivity

16x16

16x16

Net-4 Shared Weights

Net-5

43/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Results
1004
] 90
o
a
®
[
E
s 80
°
£ Net-1
o
o
O\u 70,
60 -
T T T T T T T
0 5 10 15 20 25 30

Training Epochs

44/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Addition

@ Deep learning

@ Neural networks weights may be constrained to belong to
mixture density
o E «— E— \P(w), where P(w) is the mixture probability of
weights
e soft forcing of weights to group into similar clusters

@ Neural networks may model not only real value outputs, but
densities

e each output - frequency of histogram bin
e each output - either prior or mean or variance of mixture of
parametrized density (normal, beta, etc.)

45/46

Neural networks - Victor Kitov
Case study: ZIP codes recognition

Conclusion

e Advantages of neural networks:

e can model accurately complex non-linear relationships
o easily parallelizable

@ Disadvantages of neural networks:

o hardly interpretable (“black-box" algorithm)
e optimization requires skill

@ too many parameters
@ may converge slowly
e may converge to inefficient local minimum far from global one

46/46

	Introduction
	Output generation
	Weight space symmetries
	Neural network optimization
	Backpropagation algorithm
	Invariances
	Case study: ZIP codes recognition

