Neural networks

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Introduction
- 2 Output generation
- Weight space symmetries
- 4 Neural network optimization
- Backpropagation algorithm
- 6 Invariances
- Case study: ZIP codes recognition

History

 Neural networks originally appeared as an attempt to model human brain

- Human brain consists of multiple interconnected neuron cells
 - cerebral cortex (the largest part) is estimated to contain 15–33 billion neurons
 - communication is performed by sending electrical and electro-chemical signals
 - signals are transmitted through axons long thin parts of neurons.

Simple model of a neuron

- Neuron get's activated in the half-space, defined by $w_0 + w_1 x^1 + w_2 x^2 + ... + w_D x^D \ge 0$.
- Each node is called a neuron
- Each edge is associated a weight
- Constant feature 1 stands for bias

Multilayer perceptron architecture¹

- Hierarchically nested set of neurons.
- Each node has its own weights.

This is structure of multilayer perceptron - acyclic directed graph.

 $^{^{1}\}mbox{Propose}$ neural networks estimating OR,AND,XOR functions on boolean inputs.

Layers

- Structure of neural network:
 - 1-input layer
 - 2-hidden layers
 - 3-output layer

Continious activations

- Pitfall of I[]: it causes stepwise constant outputs, weight optimization methods become inapliccable.
- We can replace $\mathbb{I}[w^T x + w_0 \ge 0]$ with smooth activation $\varphi(w^T x + w_0)$

Typical activation functions

- sigmoidal: $\sigma(x) = \frac{1}{1 + e^{-x}}$
 - 1-layer neural network with sigmoidal activation is equivalent to logistic regression
- hyperbolic tangent: $tangh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$

• ReLu: $\varphi(x) = [x]_+$.

Activation functions

Activation functions are smooth approximations of step functions:

 $\operatorname{tangh}(\mathit{ax})$ limits to -1/1-step function as $\mathit{a} \to \infty$

Definition details

- Label each neuron with integer j.
- Denote: I_j input to neuron j, O_j output of neuron j
- Output of neuron j: $O_j = \varphi(I_j)$.
- Input to neuron j: $I_j = \sum_{k \in inc(j)} w_{kj} O_k + w_{0j}$,
 - w_{0i} is the bias term
 - inc(j) is a set of neurons with outging edges incoming to neuron j.
 - further we will assume that at each layer there is a vertex with constant output $O_{const} \equiv 1$, so we can simplify notation

$$I_j = \sum_{k \in inc(j)} w_{kj} O_k$$

Table of Contents

- Introduction
- Output generation
- Weight space symmetries
- 4 Neural network optimization
- Backpropagation algorithm
- 6 Invariances
- Case study: ZIP codes recognition

Output generation

• Forward propagation is a process of successive calculations of neuron outputs for given features.

Activations at output layer

- Regression: $\varphi(I) = I$
- Classification:
 - binary: $y \in \{+1, -1\}$

$$\varphi(I) = p(y = +1|x) = \frac{1}{1 + e^{-I}}$$

• multiclass: $y \in 1, 2, ...C$

$$\varphi(O_1,...O_C) = p(y = j|x) = \frac{e^{O_j}}{\sum_{k=1}^C e^{O_k}}, j = 1, 2, ...C$$

where $O_1, ... O_C$ are outputs of output layer.

Generalizations

- ullet each neuron j may have custom non-linear transformation $arphi_j$
- weights may be constrained:
 - non-negative
 - equal weights
 - etc.
- layer skips are possible

• Not considered here: RBF-networks, recurrent networks.

Number of layers selection

- Number of layers usually denotes all layers except input layer (hidden layers+output layer)
- We will consider only continuous activation functions.
- Classification:
 - single layer network selects arbitrary half-spaces
 - 2-layer network selects arbitrary convex polyhedron (by intersection of 1-layer outputs)
 - therefore it can approximate arbitrary convex sets
 - 3-layer network selects (by union of 2-layer outputs) arbitrary finite sets of polyhedra
 - therefore it can approximate almost all sets with well defined volume (Borel measurable)

Number of layers selection

- Regression
 - single layer can approximate arbitrary linear function
 - 2-layer network can model indicator function of arbitrary convex polyhedron
 - 3-layer network can uniformly approximate arbitrary continuous function (as sum weighted sum of indicators convex polyhedra)

Sufficient amount of layers

Any continuous function on a compact space can be uniformly approximated by 2-layer neural network with linear output and wide range of activation functions (excluding polynomial).

- In practice often it is more convenient to use more layers with less total amount of neurons
 - model becomes more interpretable and easy to fit.

Neural network architecture selection

- Network architecture selection:
 - increasing complexity (control by validation error)
 - decresing complexity ("optimal brain damage")
 - may be used for feature selection

Table of Contents

- Introduction
- Output generation
- Weight space symmetries
- 4 Neural network optimization
- Backpropagation algorithm
- 6 Invariances
- Case study: ZIP codes recognition

Weight space symmetries

- Consider a neural network with 1 hidden layer
 - with tangh(x) activation functions
 - consisting of *M* neurons

Weight space symmetries

- The following transformations in weight space lead to neural networks with equivalent outputs:
 - for any neuron in hidden layer: simultaneous change of sign of input and output weights
 - 2^M possible equivalent transformations of such kind
 - for any pair of neurons in the hidden layer: interchange of input weights between the neurons and simultaneous interchange of output weights
 - this is equivalent to reordering of neurons in the hidden layer, so there are M! such orderings
 - 2^M M! equivalent transformations exist in total.
 - For neural network with K hidden layers, consisting of M_k , k = 1, 2, ...K neurons each, we obtain $\prod_{k=1}^K 2^{M_k} M_k!$ equivalent neural networks.
 - In general case these are the only symmetries existing in the weights space.

Table of Contents

- Introduction
- Output generation
- Weight space symmetries
- 4 Neural network optimization
- Backpropagation algorithm
- 6 Invariances
- Case study: ZIP codes recognition

Network optimization: regression

• Single output:

$$\frac{1}{N}\sum_{n=1}^{N}(\widehat{y}_n(x_n)-y_n)^2\to\min_{w}$$

Network optimization: regression

Single output:

$$\frac{1}{N}\sum_{n=1}^{N}(\widehat{y}_n(x_n)-y_n)^2\to\min_{w}$$

K outputs

$$\frac{1}{NK}\sum_{n=1}^{N}\sum_{k=1}^{K}(\widehat{y}_{nk}(x_n)-y_{nk})^2\to \min_{w}$$

Network optimization: classification

• Two classes $(y \in \{0, 1\}, p = P(y = 1))$:

$$\prod_{n=1}^{N} p(y_n = 1|x_n)^{y_n} [1 - p(y_n = 1|x_n)]^{1-y_n} \to \max_{w}$$

Network optimization: classification

• Two classes $(y \in \{0, 1\}, p = P(y = 1))$:

$$\prod_{n=1}^{N} p(y_n = 1|x_n)^{y_n} [1 - p(y_n = 1|x_n)]^{1-y_n} \to \max_{w}$$

• C classes $(y_{nc} = \mathbb{I}\{y_n = c\})$:

$$\prod_{n=1}^{N}\prod_{c=1}^{C}p(y_{n}=c|x_{n})^{y_{nc}}\rightarrow\max_{w}$$

Network optimization: classification

• Two classes $(y \in \{0, 1\}, p = P(y = 1))$:

$$\prod_{n=1}^{N} p(y_n = 1|x_n)^{y_n} [1 - p(y_n = 1|x_n)]^{1-y_n} \to \max_{w}$$

• C classes $(y_{nc} = \mathbb{I}\{y_n = c\})$:

$$\prod_{n=1}^{N} \prod_{c=1}^{C} p(y_n = c|x_n)^{y_{nc}} \to \max_{w}$$

• In practice log-likelihood is maximized.

Neural network optimization

- Let W denote the total dimensionality of weights space
- Let $E(\hat{y}, y)$ denote the loss function of output
- We may optimize neural network using gradient descent:

```
k=0 initialize randomly w^0 # small values for sigmoid and tangh while (stop criteria not met): w^{k+1}:=w^k-\eta\nabla E(w^k) k:=k+1
```

- Standardization of features makes gradient descend converge faster
- Other optimization methods are more efficient (such as conjugate gradients)
- Denote W total number of edges (and weights) in the neural net.

Gradient calculation

• Direct $\nabla E(w)$ calculation, using

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w)}{\varepsilon} + O(\varepsilon)$$

or better

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w - \varepsilon_i)}{2\varepsilon} + O(\varepsilon^2)$$

has complexity $O(W^2)$ [W forward propagations to evaluate W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all derivatives.

Multiple local optima problem

- Optimization problem for neural nets is **non-convex**.
- Different optima will correspond to:
 - different starting parameter values
 - different training samples
- So we may solve task many times for different conditions and then
 - select best model
 - alternatively: average different obtained models to get ensemble

Table of Contents

- Introduction
- Output generation
- Weight space symmetries
- 4 Neural network optimization
- Backpropagation algorithm
- 6 Invariances
- Case study: ZIP codes recognition

Definitions

- Denote w_{ij} be the weight of edge, connecting i-th and j-th neuron.
- Define $\delta_j = \frac{\partial E}{\partial I_j} = \frac{\partial E}{\partial O_j} \frac{\partial O_j}{\partial I_j}$
- Since E depends on w_{ij} through the following functional relationship $E(w_{ij}) \equiv E(O_j(I_j(w_{ij})))$, using the chain rule we obtain:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial I_j} \frac{\partial I_j}{\partial w_{ij}} = \delta_j O_i$$

because $\frac{\partial I_j}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \left(\sum_{k \in inc(j)} w_{kj} O_k \right) = O_i$, where inc(j) is a set of all neurons with outgoing edges to neuron j.

• $\frac{\partial E}{\partial I_i} = \frac{\partial E}{\partial O_i} \frac{\partial O_j}{\partial I_i} = \frac{\partial E}{\partial O_i} \varphi'(I_j)$, where φ is the activation function.

Output layer

- If neuron j belongs to the output node, then error $\frac{\partial E}{\partial O_j}$ is calculated directly.
- For output layer deltas are calculated directly:

$$\delta_{j} = \frac{\partial E}{\partial O_{j}} \frac{\partial O_{j}}{\partial I_{j}} = \frac{\partial E}{\partial O_{j}} \varphi'(I_{j}) \tag{1}$$

- example for training set = {single point x and true vector of outputs $(y_1, ... y_{|OL|})$ }:
 - for $E = \frac{1}{2} \sum_{j \in OL} (O_j y_j)^2$:

$$\frac{\partial E}{\partial O_i} = O_j - y_j$$

• for $\varphi(I) = sigm(I)$:

$$\varphi'(I_i) = \sigma(I_i) (1 - \sigma(I_i)) = O_i (1 - O_i)$$

finally

$$\delta_i = (Q_{i_0} - y_i) O_i (1 - O_i)$$

Inner layer

- If neuron j belongs some hidden layer, denote $out(j) = \{k_1, k_2, ... k_m\}$ the set of all neurons, receiving output from neuron j.
- ullet The effect of O_j on E is fully absorbed by $I_{k_1},I_{k_2},...I_{k_m}$, so

$$\frac{\partial E(O_j)}{\partial O_j} = \frac{\partial E(I_{k_1}, I_{k_2}, \dots I_{k_m})}{\partial O_j} = \sum_{k \in out(j)} \left(\frac{\partial E}{\partial I_k} \frac{\partial I_k}{\partial O_j} \right) = \sum_{k \in out(j)} (\delta_k w_{jk})$$

• So for layers other than output layer we have:

$$\delta_{j} = \frac{\partial E}{\partial I_{j}} = \frac{\partial E}{\partial O_{j}} \frac{\partial O_{j}}{\partial I_{j}} = \sum_{k \in out(j)} (\delta_{k} w_{jk}) \varphi'(I_{j})$$
 (2)

• Weight derivatives are calculated using errors and outputs:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial I_j} \frac{\partial I_j}{\partial w_{ij}} = \delta_j O_i \tag{3}$$

Backpropagation

- Backpropagation algorithm:
 - Forward propagate x_n to the neural network, store all inputs I_i and outputs O_i for each neuron.
 - **2** Calculate δ_i for all $i \in \text{output layer using } (1)$.
 - 3 Backpropagate δ_i from final layer backwards layer by layer using (2).
 - **4** Using calculated deltas and outputs calculate $\frac{\partial E}{\partial w_{ij}}$ with (3).
- Algorithm complexity: O(W), where W is total number of edges.
- Updates:
 - batch
 - stochastic
 - using minibatches of objects

Regularization

- Constrain model complexity directly
 - constrain number of neurons
 - constrain number of layers
 - impose constraints on weights
- Take a flexible model
 - use early stopping during iterative evaluation (by controlling validation error)
 - quadratic regularization

$$\tilde{E}(w) = E(w) + \lambda \sum_{i} w_i^2$$

Table of Contents

- Introduction
- Output generation
- Weight space symmetries
- 4 Neural network optimization
- Backpropagation algorithm
- **6** Invariances
- Case study: ZIP codes recognition

Invariances

- It may happen that solution should not depend on certain kinds of transformations in the input space.
- Example: character recognition task
 - translation invariance
 - scale invariance
 - invariance to small rotations
 - invariance to small uniform noise

Invariances

- Approaches to build an invariant model:
 - augment training objects with their transformed copies according to given invariances
 - amount of possible transformations grows exponentially with the number of invariances
 - add regularization term to the target cost function, which penalizes changes in output after invariant transformations
 - see tangent propagation
 - extract features that are invariant to transformations
 - build the invariance properties into the structure of neural network
 - see convolutional neural networks

Augmentation of training samples

- generate a random set of invariant transformations
- 2 apply these transformations to training objects
- obtain new training objects

Tangent propagation

- Denote $s(x, \xi)$ be vector x after invariant transformation parametrized by ξ .
- Denote

$$\tau_n = \left. \frac{\partial s(x_n, \xi)}{\partial \xi} \right|_{\xi=0}, \quad J_{ki} = \frac{\partial y_k}{\partial x_i}$$

- We want $\frac{\partial y_k}{\partial \xi}\Big|_{\xi=0}$ to be as small, as possible.
- Sensitivity of y_k to small invariant transformation:

$$\left. \frac{\partial y_k}{\partial \xi} \right|_{\xi=0} = \sum_{i=1}^D \frac{\partial y_k}{\partial x_i} \frac{\partial x_i}{\partial \xi} = \sum_{i=1}^D J_{ki} \tau_i$$

• Tangent propagation - modify target cost function:

$$\tilde{E} = E + \lambda \sum_{n} \sum_{k} \left(\sum_{i=1}^{D} J_{nki} \tau_{ni} \right)^{2}$$

Convolutional neural networks

- Convolutional neural network:
 - Used for image analysis
 - Consists of a set of convolutional layer / sub-sampling layer pairs and aggregating layer

Convolutional neural networks

- Convolutional layer
 - Convolutional layer consists of a number of feature maps
 - Feature map has the same dimensionality as input layer
 - Locality: each neuron in the feature map takes output from small neigborhood of input layer neurons
 - Equivalence: the same transformation is applied by each neuron in the feature map
 - obtained by constraining sets of weights to each feature map layer neuron to be equal
 - similar to convolution with moving adaptive kernel
 - effectively it is feature extraction from a region

Convolutional neural networks

- Sub-sampling layer
 - Consists of a number of planes, each corresponding to respective feature map on the previous convolutional layer
 - Locality: Sub-sampling layer neurons take output from small neigborhood of respective feature map neurons
 - neigbourhoods are chosen to be contiguous and non-overlapping
 - Aggregation: input of each neuron i is: $w_{i0} + w_{i1}F$, where w_{i0} , w_{i1} are adjustable weights and F is aggregation function (sum or max of activations of respective feature map neurons)
 - Implements small translational invariance
- There may be a sequence of convolutional and sub-sampling layers
 - gradual dimensionality reduction

Table of Contents

- Introduction
- Output generation
- Weight space symmetries
- 4 Neural network optimization
- Backpropagation algorithm
- 6 Invariances
- Case study: ZIP codes recognition

Case study (due to Hastie et al. The Elements of Statistical Learning)

ZIP code recognition task

Neural network structures

Net1: no hidden layer

Net2: 1 hidden layer, 12 hidden units fully connected

Net3: 2 hidden layers, locally connected

Net4: 2 hidden layers, locally connected with weight sharing

Net5: 2 hidden layers, locally connected, 2 levels of weight sharing

Results

Addition

- Deep learning
- Neural networks weights may be constrained to belong to mixture density
 - $\tilde{E} \leftarrow E \lambda P(w)$, where P(w) is the mixture probability of weights
 - soft forcing of weights to group into similar clusters
- Neural networks may model not only real value outputs, but densities
 - each output frequency of histogram bin
 - each output either prior or mean or variance of mixture of parametrized density (normal, beta, etc.)

Conclusion

- Advantages of neural networks:
 - can model accurately complex non-linear relationships
 - easily parallelizable
- Disadvantages of neural networks:
 - hardly interpretable ("black-box" algorithm)
 - optimization requires skill
 - too many parameters
 - may converge slowly
 - may converge to inefficient local minimum far from global one