
Neural networks - Victor Kitov

Neural networks

Victor Kitov

v.v.kitov@yandex.ru

1/46

v.v.kitov@yandex.ru

Neural networks - Victor Kitov

Introduction

Table of Contents

1 Introduction

2 Output generation

3 Weight space symmetries

4 Neural network optimization

5 Backpropagation algorithm

6 Invariances

7 Case study: ZIP codes recognition

2/46

Neural networks - Victor Kitov

Introduction

History

Neural networks originally appeared as an attempt to model
human brain

Human brain consists of multiple interconnected neuron cells

cerebral cortex (the largest part) is estimated to contain 15�33
billion neurons
communication is performed by sending electrical and
electro-chemical signals
signals are transmitted through axons - long thin parts of
neurons.

3/46

Neural networks - Victor Kitov

Introduction

Simple model of a neuron

1

w0

))
x1 w1,,

· · · I[w0 + w1x
1 + w2x

2 + ...+ wDx
D ≥ 0] //

· · ·
xD

wD

33

Neuron get's activated in the half-space, de�ned by
w0 + w1x

1 + w2x
2 + ...+ wDx

D ≥ 0.

Each node is called a neuron

Each edge is associated a weight

Constant feature 1 stands for bias

4/46

Neural networks - Victor Kitov

Introduction

Multilayer perceptron architecture1

Hierarchically nested set of
neurons.

Each node has its own
weights.

//

((

��

��

· · ·

!!

66

//

!!!!

· · ·
((· · · · · · · · · · · ·

//

((

==

CC

· · ·
66

//

66

CC

FF

· · ·

==

This is structure of multilayer perceptron - acyclic directed graph.

1Propose neural networks estimating OR,AND,XOR functions on boolean
inputs.

5/46

Neural networks - Victor Kitov

Introduction

Layers

Structure of neural network:

1-input layer
2-hidden layers
3-output layer

6/46

Neural networks - Victor Kitov

Introduction

Continious activations

Pitfall of I[]: it causes stepwise constant outputs, weight
optimization methods become inapliccable.

We can replace I[wT x + w0 ≥ 0] with smooth activation
ϕ(wT x + w0)

1

w0

&&
x1 w1**

· · · I[w0 + wT x ≥ 0] //

· · ·
xD

wD

55

1

w0

%%
x1 w1**

· · · ϕ
(
w0 + wT x

)
//

· · ·
xD

wD

66

7/46

Neural networks - Victor Kitov

Introduction

Typical activation functions

sigmoidal: σ(x) = 1

1+e−x

1-layer neural network with sigmoidal activation is equivalent
to logistic regression

hyperbolic tangent: tangh(x) = ex−e−x

ex+e−x

ReLu: ϕ(x) = [x]+.

8/46

Neural networks - Victor Kitov

Introduction

Activation functions

Activation functions are smooth approximations of step functions:

σ(ax) limits to 0/1-step function as a→∞

tangh(ax) limits to -1/1-step function as a→∞

9/46

Neural networks - Victor Kitov

Introduction

De�nition details

Label each neuron with integer j .

Denote: Ij - input to neuron j , Oj - output of neuron j

Output of neuron j : Oj = ϕ(Ij).

Input to neuron j : Ij =
∑

k∈inc(j) wkjOk + w0j ,

w0j is the bias term
inc(j) is a set of neurons with outging edges incoming to
neuron j .
further we will assume that at each layer there is a vertex with
constant output Oconst ≡ 1, so we can simplify notation

Ij =
∑

k∈inc(j)

wkjOk

10/46

Neural networks - Victor Kitov

Output generation

Table of Contents

1 Introduction

2 Output generation

3 Weight space symmetries

4 Neural network optimization

5 Backpropagation algorithm

6 Invariances

7 Case study: ZIP codes recognition

11/46

Neural networks - Victor Kitov

Output generation

Output generation

Forward propagation is a process of successive calculations of
neuron outputs for given features.

12/46

Neural networks - Victor Kitov

Output generation

Activations at output layer

Regression: ϕ(I) = I

Classi�cation:

binary: y ∈ {+1,−1}

ϕ(I) = p(y = +1|x) = 1

1+ e−I

multiclass: y ∈ 1, 2, ...C

ϕ(O1, ...OC) = p(y = j |x) = eOj∑C
k=1

eOk

, j = 1, 2, ...C

where O1, ...OC are outputs of output layer.

13/46

Neural networks - Victor Kitov

Output generation

Generalizations

each neuron j may have custom non-linear transformation ϕj

weights may be constrained:

non-negative
equal weights
etc.

layer skips are possible

Not considered here: RBF-networks, recurrent networks.
14/46

Neural networks - Victor Kitov

Output generation

Number of layers selection

Number of layers usually denotes all layers except input layer
(hidden layers+output layer)

We will consider only continuous activation functions.

Classi�cation:

single layer network selects arbitrary half-spaces
2-layer network selects arbitrary convex polyhedron (by
intersection of 1-layer outputs)

therefore it can approximate arbitrary convex sets

3-layer network selects (by union of 2-layer outputs) arbitrary
�nite sets of polyhedra

therefore it can approximate almost all sets with well de�ned
volume (Borel measurable)

15/46

Neural networks - Victor Kitov

Output generation

Number of layers selection

Regression

single layer can approximate arbitrary linear function

2-layer network can model indicator function of arbitrary
convex polyhedron
3-layer network can uniformly approximate arbitrary
continuous function (as sum weighted sum of indicators
convex polyhedra)

Su�cient amount of layers

Any continuous function on a compact space can be uniformly
approximated by 2-layer neural network with linear output and wide
range of activation functions (excluding polynomial).

In practice often it is more convenient to use more layers with
less total amount of neurons

model becomes more interpretable and easy to �t.

16/46

Neural networks - Victor Kitov

Output generation

Neural network architecture selection

Network architecture selection:

increasing complexity (control by validation error)
decresing complexity (�optimal brain damage�)

may be used for feature selection

17/46

Neural networks - Victor Kitov

Weight space symmetries

Table of Contents

1 Introduction

2 Output generation

3 Weight space symmetries

4 Neural network optimization

5 Backpropagation algorithm

6 Invariances

7 Case study: ZIP codes recognition

18/46

Neural networks - Victor Kitov

Weight space symmetries

Weight space symmetries

Consider a neural network with 1 hidden layer

with tangh(x) activation functions
consisting of M neurons

19/46

Neural networks - Victor Kitov

Weight space symmetries

Weight space symmetries

The following transformations in weight space lead to neural
networks with equivalent outputs:

for any neuron in hidden layer: simultaneous change of sign of
input and output weights

2M possible equivalent transformations of such kind

for any pair of neurons in the hidden layer: interchange of
input weights between the neurons and simultaneous
interchange of output weights

this is equivalent to reordering of neurons in the hidden layer,
so there are M! such orderings

2MM! equivalent transformations exist in total.
For neural network with K hidden layers, consisting of
Mk , k = 1, 2, ...K neurons each, we obtain

∏K
k=1

2MkMk !
equivalent neural networks.
In general case these are the only symmetries existing in the
weights space.

20/46

Neural networks - Victor Kitov

Neural network optimization

Table of Contents

1 Introduction

2 Output generation

3 Weight space symmetries

4 Neural network optimization

5 Backpropagation algorithm

6 Invariances

7 Case study: ZIP codes recognition

21/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: regression

Single output:

1

N

N∑
n=1

(ŷn(xn)− yn)
2 → min

w

K outputs

1

NK

N∑
n=1

K∑
k=1

(ŷnk(xn)− ynk)
2 → min

w

22/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: regression

Single output:

1

N

N∑
n=1

(ŷn(xn)− yn)
2 → min

w

K outputs

1

NK

N∑
n=1

K∑
k=1

(ŷnk(xn)− ynk)
2 → min

w

22/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classi�cation

Two classes (y ∈ {0, 1}, p = P(y = 1)):

N∏
n=1

p(yn = 1|xn)yn [1− p(yn = 1|xn)]1−yn → max
w

C classes (ync = I{yn = c}):

N∏
n=1

C∏
c=1

p(yn = c|xn)ync → max
w

In practice log-likelihood is maximized.

23/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classi�cation

Two classes (y ∈ {0, 1}, p = P(y = 1)):

N∏
n=1

p(yn = 1|xn)yn [1− p(yn = 1|xn)]1−yn → max
w

C classes (ync = I{yn = c}):

N∏
n=1

C∏
c=1

p(yn = c|xn)ync → max
w

In practice log-likelihood is maximized.

23/46

Neural networks - Victor Kitov

Neural network optimization

Network optimization: classi�cation

Two classes (y ∈ {0, 1}, p = P(y = 1)):

N∏
n=1

p(yn = 1|xn)yn [1− p(yn = 1|xn)]1−yn → max
w

C classes (ync = I{yn = c}):

N∏
n=1

C∏
c=1

p(yn = c|xn)ync → max
w

In practice log-likelihood is maximized.

23/46

Neural networks - Victor Kitov

Neural network optimization

Neural network optimization

Let W denote the total dimensionality of weights space
Let E (ŷ , y) denote the loss function of output
We may optimize neural network using gradient descent:

k = 0
initialize randomly w0 # small values for sigmoid and tangh

while (stop criteria not met):
w k+1 := w k − η∇E(w k)

k := k + 1

Standardization of features makes gradient descend converge
faster
Other optimization methods are more e�cient (such as
conjugate gradients)
Denote W - total number of edges (and weights) in the neural
net.

24/46

Neural networks - Victor Kitov

Neural network optimization

Gradient calculation

Direct ∇E (w) calculation, using

∂E

∂wi
=

E (w + εi)− E (w)

ε
+ O(ε)

or better

∂E

∂wi
=

E (w + εi)− E (w − εi)
2ε

+ O(ε2)

has complexity O(W 2) [W forward propagations to evaluate
W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all
derivatives.

25/46

Neural networks - Victor Kitov

Neural network optimization

Multiple local optima problem

Optimization problem for neural nets is non-convex.

Di�erent optima will correspond to:

di�erent starting parameter values
di�erent training samples

So we may solve task many times for di�erent conditions and
then

select best model
alternatively: average di�erent obtained models to get
ensemble

26/46

Neural networks - Victor Kitov

Backpropagation algorithm

Table of Contents

1 Introduction

2 Output generation

3 Weight space symmetries

4 Neural network optimization

5 Backpropagation algorithm

6 Invariances

7 Case study: ZIP codes recognition

27/46

Neural networks - Victor Kitov

Backpropagation algorithm

De�nitions

Denote wij be the weight of edge, connecting i-th and j-th
neuron.

De�ne δj =
∂E
∂Ij

= ∂E
∂Oj

∂Oj

∂Ij

Since E depends on wij through the following functional
relationship E (wij) ≡ E (Oj(Ij(wij))), using the chain rule we
obtain:

∂E

∂wij
=
∂E

∂Ij

∂Ij
∂wij

= δjOi

because
∂Ij
∂wij

= ∂
∂wij

(∑
k∈inc(j) wkjOk

)
= Oi , where inc(j) is a

set of all neurons with outgoing edges to neuron j .
∂E
∂Ij

= ∂E
∂Oj

∂Oj

∂Ij
= ∂E

∂Oj
ϕ′(Ij), where ϕ is the activation function.

28/46

Neural networks - Victor Kitov

Backpropagation algorithm

Output layer

If neuron j belongs to the output node, then error ∂E
∂Oj

is

calculated directly.
For output layer deltas are calculated directly:

δj =
∂E

∂Oj

∂Oj

∂Ij
=

∂E

∂Oj
ϕ′(Ij) (1)

example for training set = {single point x and true vector of
outputs (y1, ...y|OL|)}:

for E = 1

2

∑
j∈OL(Oj − yj)

2 :

∂E

∂Oj
= Oj − yj

for ϕ(I) = sigm(I):

ϕ′(Ij) = σ(Ij) (1− σ(Ij)) = Oj(1− Oj)

�nally
δj = (Oj − yj)Oj(1− Oj)29/46

Neural networks - Victor Kitov

Backpropagation algorithm

Inner layer

If neuron j belongs some hidden layer, denote
out(j) = {k1, k2, ...km} the set of all neurons, receiving output
from neuron j .

The e�ect of Oj on E is fully absorbed by Ik1,Ik2 , ...Ikm , so

∂E (Oj)

∂Oj
=
∂E (Ik1,Ik2 , ...Ikm)

∂Oj
=

∑
k∈out(j)

(
∂E

∂Ik

∂Ik
∂Oj

)
=

∑
k∈out(j)

(δkwjk)

So for layers other than output layer we have:

δj =
∂E

∂Ij
=

∂E

∂Oj

∂Oj

∂Ij
=

∑
k∈out(j)

(δkwjk)ϕ
′(Ij) (2)

Weight derivatives are calculated using errors and outputs:

∂E

∂wij
=
∂E

∂Ij

∂Ij
∂wij

= δjOi (3)

30/46

Neural networks - Victor Kitov

Backpropagation algorithm

Backpropagation

Backpropagation algorithm:

1 Forward propagate xn to the neural network, store all inputs Ii
and outputs Oi for each neuron.

2 Calculate δi for all i ∈output layer using (1).
3 Backpropagate δi from �nal layer backwards layer by layer

using (2).
4 Using calculated deltas and outputs calculate ∂E

∂wij
with (3).

Algorithm complexity: O(W), where W is total number of
edges.

Updates:

batch
stochastic

using minibatches of objects

31/46

Neural networks - Victor Kitov

Backpropagation algorithm

Regularization

Constrain model complexity directly

constrain number of neurons
constrain number of layers
impose constraints on weights

Take a �exible model

use early stopping during iterative evaluation (by controlling
validation error)
quadratic regularization

Ẽ (w) = E (w) + λ
∑
i

w2

i

32/46

Neural networks - Victor Kitov

Invariances

Table of Contents

1 Introduction

2 Output generation

3 Weight space symmetries

4 Neural network optimization

5 Backpropagation algorithm

6 Invariances

7 Case study: ZIP codes recognition

33/46

Neural networks - Victor Kitov

Invariances

Invariances

It may happen that solution should not depend on certain
kinds of transformations in the input space.

Example: character recognition task

translation invariance
scale invariance
invariance to small rotations
invariance to small uniform noise

34/46

Neural networks - Victor Kitov

Invariances

Invariances

Approaches to build an invariant model:

augment training objects with their transformed copies
according to given invariances

amount of possible transformations grows exponentially with
the number of invariances

add regularization term to the target cost function, which
penalizes changes in output after invariant transformations

see tangent propagation

extract features that are invariant to transformations
build the invariance properties into the structure of neural
network

see convolutional neural networks

35/46

Neural networks - Victor Kitov

Invariances

Augmentation of training samples

1 generate a random set of invariant transformations

2 apply these transformations to training objects

3 obtain new training objects

36/46

Neural networks - Victor Kitov

Invariances

Tangent propagation

Denote s(x , ξ) be vector x after invariant transformation
parametrized by ξ.
Denote

τn =
∂s(xn, ξ)

∂ξ

∣∣∣∣
ξ=0

, Jki =
∂yk
∂xi

We want ∂yk
∂ξ

∣∣∣
ξ=0

to be as small, as possible.

Sensitivity of yk to small invariant transformation:

∂yk
∂ξ

∣∣∣∣
ξ=0

=
D∑
i=1

∂yk
∂xi

∂xi
∂ξ

=
D∑
i=1

Jkiτi

Tangent propagation - modify target cost function:

Ẽ = E + λ
∑
n

∑
k

(
D∑
i=1

Jnkiτni

)2

37/46

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

Convolutional neural network:

Used for image analysis
Consists of a set of convolutional layer / sub-sampling layer
pairs and aggregating layer

38/46

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

Convolutional layer

Convolutional layer consists of a number of feature maps
Feature map has the same dimensionality as input layer
Locality: each neuron in the feature map takes output from
small neigborhood of input layer neurons
Equivalence: the same transformation is applied by each
neuron in the feature map

obtained by constraining sets of weights to each feature map
layer neuron to be equal
similar to convolution with moving adaptive kernel
e�ectively it is feature extraction from a region

39/46

Neural networks - Victor Kitov

Invariances

Convolutional neural networks

Sub-sampling layer

Consists of a number of planes, each corresponding to
respective feature map on the previous convolutional layer
Locality: Sub-sampling layer neurons take output from small
neigborhood of respective feature map neurons

neigbourhoods are chosen to be contiguous and
non-overlapping

Aggregation: input of each neuron i is: wi0 + wi1F , where
wi0, wi1 are adjustable weights and F is aggregation function
(sum or max of activations of respective feature map neurons)
Implements small translational invariance

There may be a sequence of convolutional and sub-sampling
layers

gradual dimensionality reduction

40/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Table of Contents

1 Introduction

2 Output generation

3 Weight space symmetries

4 Neural network optimization

5 Backpropagation algorithm

6 Invariances

7 Case study: ZIP codes recognition

41/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Case study (due to Hastie et al. The Elements of
Statistical Learning)

ZIP code recognition task

42/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Neural network structures

Net1: no hidden layer
Net2: 1 hidden layer, 12 hidden units fully connected
Net3: 2 hidden layers, locally connected
Net4: 2 hidden layers, locally connected with weight sharing
Net5: 2 hidden layers, locally connected, 2 levels of weight sharing

43/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Results

44/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Addition

Deep learning

Neural networks weights may be constrained to belong to
mixture density

Ẽ ← E − λP(w), where P(w) is the mixture probability of
weights
soft forcing of weights to group into similar clusters

Neural networks may model not only real value outputs, but
densities

each output - frequency of histogram bin
each output - either prior or mean or variance of mixture of
parametrized density (normal, beta, etc.)

45/46

Neural networks - Victor Kitov

Case study: ZIP codes recognition

Conclusion

Advantages of neural networks:

can model accurately complex non-linear relationships
easily parallelizable

Disadvantages of neural networks:

hardly interpretable (�black-box� algorithm)
optimization requires skill

too many parameters
may converge slowly
may converge to ine�cient local minimum far from global one

46/46

	Introduction
	Output generation
	Weight space symmetries
	Neural network optimization
	Backpropagation algorithm
	Invariances
	Case study: ZIP codes recognition

