Feature selection

Victor Kitov

Feature selection

Feature selection is a process of selecting a subset of original features with minimum loss of information related to final task (classification, regression, etc.)

Applications of feature selection

- Why feature selection?
 - increase predictive accuracy of classifier
 - improve optimization stability by removing multicollinearity
 - increase computational efficiency
 - reduce cost of future data collection
 - make classifier more interpretable
- Not always necessary step:
 - some methods have implicit feature selection
 - decision trees and tree-based (RF, ERT, boosting)
 - regularization

Types of features

Define f - the feature, $F=\{f_1,f_2,...f_D\}$ - full set of features, $S=F\backslash\{f\}.$

• Strongly relevant feature:

$$p(y|f,S) \neq p(y|S)$$

• Weakly relevant feature:

$$p(y|f,S) = p(y|S), \text{ but } \exists S' \subset S: p(y|f,S')
eq p(y|S')$$

Irrelevant feature:

$$\forall S' \subset S : p(y|f,S') = p(y|S')$$

Aim of feature selection

Find minimal subset $S \subset F$ such that $P(y|S) \approx P(y|F)$, i.e. leave only *relevant* and *non-redundant* features.

Specification

- Need to specify:
 - quality criteria J(X)
 - subset generation method S_1, S_2, S_3, \dots

Types of feature selection algorithms

- Completeness of search:
 - Complete
 - exhaustive search complexity is $2^D 1$.
 - Suboptimal
 - deterministic
 - random (deterministic with randomness / completely random)
- Integration with predictor
 - independent (filter methods)
 - uses predictor quality (wrapper methods)
 - is embedded inside predictor (embedded methods)

Classifer dependency types

• filter methods

- rely only on general measures of dependency between features and output
- more universal
- are computationally efficient

Classifer dependency types

filter methods

- rely only on general measures of dependency between features and output
- more universal
- are computationally efficient

wrapper methods

- subsets of variables are evaluated with respect to the quality of final classification
- give better performance than filter methods
- more computationally demanding

Classifer dependency types

filter methods

- rely only on general measures of dependency between features and output
- more universal
- are computationally efficient

wrapper methods

- subsets of variables are evaluated with respect to the quality of final classification
- give better performance than filter methods
- more computationally demanding

embedded methods

- feature selection is built into the classifier
- feature selection and model tuning are done jointly
- example: classification trees, methods with L_1 regularization.

Filter methods

Table of Contents

- Kullback-Leibler divergence & entropy
- Mutual information
- Probability measures
- Context relevant measures
- Cluster measures

Peature subsets generation

Filter methods

Correlation

• two class:

$$\rho(f, y) = \frac{\sum_{i} (f_{i} - \bar{f})(y_{i} - \bar{y})}{\left[\sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{i} - \bar{y})^{2}\right]^{1/2}} = \frac{a}{b}$$

• multiclass $\omega_1, \omega_2, ... \omega_C$ (micro averaged $\rho(f, y_c) c = 1, 2, ... C$.)

$$R^{2} = \frac{\sum_{c=1}^{C} \left[\sum_{i} (f_{i} - \bar{f})(y_{ic} - \bar{y}_{c})\right]^{2}}{\sum_{c=1}^{C} \sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{ic} - \bar{y}_{c})^{2}} = \frac{\sum_{c} a_{c}^{2}}{\sum_{c} b_{c}^{2}}$$

Benefits:

- simple to compute
- applicable both to continuous and discrete features/output.
- does not require calculation of p.d.f.

Correlation for non-linear relationship

- Correlation captures only linear relationship.
- Example: X ~ Uniform[-1,1], Y = X². X, Y are uncorrelated but dependent.
- Other examples of data and its correlation:

Filter methods

Kullback-Leibler divergence & entropy

Filter methods

• Kullback-Leibler divergence & entropy

- Mutual information
- Probability measures
- Context relevant measures
- Cluster measures

Filter methods

Kullback-Leibler divergence & entropy

Kullback-Leibler divergence

Kullback-Leibler divergence

For two p.d.f. P(x) and Q(x) Kullback-Leibler divergence KL(P||Q) equals $\sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$

- Properties:
 - defined only for P(x) and Q(x) such that $Q(x) = 0 \Rightarrow P(x) = 0$
 - $KL(P||Q) \geq 0$
 - $P(x) = Q(x) \forall x \le KL(P||Q) = 0$ (for discrete r.v.)
 - $KL(P||Q) \neq KL(Q||P)$

Filter methods

Kullback-Leibler divergence & entropy

Kullback-Leibler divergence

- Symmetrical distance: $KL_{sym}(P||Q) = KL(P||Q) + KL(Q||P)$
- Information theoretic meaning:
 - true data distribution P(x)
 - estimated data distribution Q(x)

$$KL(P||Q) = -\sum_{x} P(x) \ln Q(x) + \sum_{x} P(x) \ln P(x)$$

• *KL*(*P*||*Q*) shows how much longer will be the average length of the code word.

Filter methods

Kullback-Leibler divergence & entropy

Entropy

• Entropy of random variable Y:

$$H(Y) = -\sum_{y} p(y) \ln p(y)$$

- level of uncertainty of Y
- proportional to the average number of bits needed to code the outcome of Y using optimal coding scheme $(-\ln p(y))$ for outcome y).
- Entropy of Y after observing X:

$$H(Y|X) = -\sum_{x} p(x) \sum_{y} p(y|x) \ln p(y|x)$$

Filter methods

Mutual information

Filter methods

• Kullback-Leibler divergence & entropy

Mutual information

- Probability measures
- Context relevant measures
- Cluster measures

Filter methods

Mutual information

Mutual information

Mutual information measures how much X gives information about Y:

$$MI(X,Y) = \sum_{x,y} p(x,y) \ln \left[\frac{p(x,y)}{p(x)p(y)} \right] = KL(p(x,y)||p(x)p(y))$$

Properties:

- MI(X, Y) = MI(Y, X)
- $MI(X, Y) = KL(p(x, y)||p(x)p(y)) \ge 0$
- MI(X, Y) = H(Y) H(Y|X)
- $MI(X, Y) \leq \min \{H(X), H(Y)\}$
- X, Y- independent <=> MI(X, Y) = 0(for discrete r.v.)
- X completely identifies Y, then $MI(X, Y) = H(Y) \le H(X)$

Filter methods

Mutual information

Mutual information for feature selection

- Normalized variant $NMI(X, Y) = \frac{MI(X, Y)}{H(Y)}$ equals
 - zero, when P(Y|X) = P(Y)
 - one, when X completely identifies Y.
- Properties of *MI* and *NMI*:
 - identifies arbitrary non-linear dependencies
 - requires calculation of probability distributions
 - continuous variables need to be discretized

Filter methods

Probability measures

Filter methods

- Kullback-Leibler divergence & entropy
- Mutual information

• Probability measures

- Context relevant measures
- Cluster measures

Filter methods

Probability measures

Relevance based on probabilistic distance

Measure of feature f relevance - distance between $p(f|\omega_1)$ and $p(f|\omega_2)$

Filter methods

Probability measures

Distances between probability density functions

Let
$$f(x) = p(f|\omega_i)$$
 and $g(x) = p(f|\omega_j)$.

- Total variation: $\frac{1}{2}\int |f(x) g(x)|dx$,
- Euclidean: $\frac{1}{2} \left(\int (f(x) g(x))^2 dx \right)^{1/2}$

• Hellinger:
$$\left(\frac{1}{2}\int \left(\sqrt{f(x)}-\sqrt{g(x)}\right)^2 dx\right)^{1/2}$$

• Symmentrical KL: $\int (f(x) - g(x)) \ln \frac{f(x)}{g(x)} dx$

Filter methods

Probability measures

Distances between cumulative probability functions

Let
$$F(x) = P(f \le x | \omega_i)$$
 and $G(x) = P(f \le x | \omega_j)$:

- Kolmogorov: $\sup_{x} |F(x) G(x)|$
- Kantorovich: $\int |F(x) G(x)| dx$

•
$$L_p: (\int |F(x) - G(x)|^p dx)^{1/p}$$

Filter methods

Probability measures

Other

Multiclass extensions:

Suppose, we have a two-class distance score $J(\omega_i, \omega_j)$. We can extend it to multiclass case using:

 $J = \max_{\omega_i,\omega_j} J(\omega_i,\omega_j)$

$$J = \sum_{i < j} p(\omega_i) p(\omega_j) J(\omega_i, \omega_j)$$

Presented criteria compare probabilities given 2 different classes. We may also compare class-unconditional feature distribution with class-conditional feature distribution.

Filter methods

Context relevant measures

Filter methods

- Kullback-Leibler divergence & entropy
- Mutual information
- Probability measures

Context relevant measures

Cluster measures

Filter methods

Context relevant measures

Relevance in context

Individually features may not predict the class, but may be relevant together:

$$p(y|x_1) = p(y), \ p(y|x_2) = p(y), \ \text{but } p(y|x_1, x_2) \neq p(y)$$

Filter methods

Context relevant measures

Relief criterion

INPUT : Training set $(x_1, y_1), (x_2, y_2),(x_N, y_N)$ Number of neighbours K Distance metric $d(x, x')$ # usually Euclidean
for each pattern x_n in x_1, x_2, \dots, x_N :
calculate K nearest neighbours of the same class y_n :
$X_{s(n,1)}, X_{s(n,2)}, \ldots X_{s(n,K)}$
calculate K nearest neighbours of class different from y_n :
$X_{d(n,1)}, X_{d(n,2)}, \dots X_{d(n,K)}$
for each feature f_i in $f_1, f_2, \dots f_D$:
calculate relevance $R(f_i) = \sum_{n=1}^N \sum_{k=1}^K rac{ x_n^i - x_{d(n,k)}^i }{ x_n^i - x_{s(n,k)}^i }$
OUTPUT :
feature relevances <i>R</i>

Filter methods

Cluster measures

Filter methods

- Kullback-Leibler divergence & entropy
- Mutual information
- Probability measures
- Context relevant measures
- Cluster measures

Filter methods

Cluster measures

Cluster measures

General idea of cluster measures

Feature subset is good if observations belonging to different classes group into different clusters.

Filter methods

Cluster measures

Cluster measures

Define:

- z_{ic} = I[y_i = ω_c], N-number of samples, N_i-number of samples belonging to class ω_i.
- $m = \frac{1}{N} \sum_{i} x_{i}, m_{c} = \frac{1}{N_{c}} \sum_{i} z_{ic} x_{i}, j = 1, 2, ... C.$
- Global covariance: $\Sigma = \frac{1}{N} \sum_{i} (x m)(x m)^{T}$,
- Intraclass covariances: $\Sigma_c = rac{1}{N_c}\sum_i z_{ic}(x_i-m_c)(x_i-m_c)^{\mathcal{T}}$
- Within class covariance: $S_W = \sum_{c=1}^C \frac{N_c}{N} \Sigma_c$
- Between class covariance: $S_B = \sum_{c=1}^{C} \frac{N_c}{N} (m_j m) (m_j m)$

Interpretation

Within class covariance shows how samples are scattered within classes.

Between class covariance shows how classes are scattered between each other.

Filter methods

Cluster measures

Scatter magnitude

Theorem 1

Every real symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be factorized as

 $A = U \Sigma U^T$

where Σ is diagonal and U is orthogonal. $\Sigma = \text{diag}\{\lambda_1, \lambda_2, ...\lambda_n\}$ and $U = [u_1, u_2, ...u_n]$ where $\lambda_i, i = 1, 2, ...n$ are eigenvalues and $u_i \in \mathbb{R}^{n \times 1}$ are corresponding eigenvectors.

U^T is basis transform corresponding to rotation, so only Σ reflects scatter.

Filter methods

Cluster measures

Measuring scatter of symmetric matrix

Scaling in basis U

- Aggregate measures of scatter tr $\Sigma = \sum_i \lambda_i$ and det $\Sigma = \prod_i \lambda_i$
- Since tr [P⁻¹BP] = tr B and det [P⁻¹BP] = det B, we can estimate scatter with tr A = tr Σ and det A = det Σ

Filter methods

Cluster measures

Clusterization quality

- Good clustering: S_W is small and S_B, Σ are big.
- Cluster discriminability metrics:

$$Tr\{S_W^{-1}S_B\}, \frac{Tr\{S_B\}}{Tr\{S_W\}}, \frac{\det \Sigma}{\det S_W}$$

Filter methods

Cluster measures

- Pairwise feature measures
 - fail to estimate relevance in context of other features
 - are robust to curse of dimensionality
- Context aware measures:
 - estimate relevance in context of other features
 - prone to curse of dimensionality if distances are calculated (such as Relief criterion)

Feature subsets generation

Table of Contents

Filter methods

- 2 Feature subsets generation
 - Deterministic feature selection
 - Randomised feature selection

Feature subsets generation

Deterministic feature selection

Peature subsets generation

- Deterministic feature selection
- Randomised feature selection

Feature subsets generation Deterministic feature selection

Incomplete search with suboptimal solution

- Consider not all but only the most promising feature subsets.
- Order features with respect to J(f):

$$J(f_1) \geq J(f_2) \geq ... \geq J(f_D)$$

• select top m

$$\hat{F} = \{f_1, f_2, \dots f_m\}$$

• select best set from nested subsets:

$$S = \{\{f_1\}, \{f_1, f_2\}, \dots \{f_1, f_2, \dots f_D\}\}$$

$$\hat{F} = \arg \max_{F \in S} J(F)$$

• Comments:

- simple to implement
- if J(f) is context unaware, so will be the features
- example: when features are correlated, it will take many redundant features

Feature subsets generation Deterministic feature selection

Sequential search

- Sequential forward selection algorithm:
 - init: $k = 0, F_0 = \emptyset$
 - while *k* < *max_features*:
 - $f_{k+1} = \arg \max_{f \in F} J(F_k \cup \{f\})$

•
$$F_{k+1} = F_k \cup \{f_{k+1}\}$$

• if $J(F_{k+1}) < J(F_k)$: break

- return F_k
- Variants:
 - sequential backward selection
 - up-k forward search
 - down-p backward search
 - up-k down-p composite search
 - up-k down-(variable step size) composite search

Feature subsets generation

Randomised feature selection

2 Feature subsets generation

Deterministic feature selection

Randomised feature selection

Feature subsets generation Randomised feature selection

Genetic algorithms

- Analogy to genetic inheritance in biology.
- Each feature set $F = \{f_{i(1)}, f_{i(2)}, ..., f_{i(K)}\}$ is represented using binary vector $[b_1, b_2, ..., b_D]$ where $b_i = \mathbb{I}[f_i \in F]$
- Genetic operations:

• crossover
$$(b^1, b^2) = b$$
, where $b_i = \begin{cases} b_i^1 & \text{with probability } \frac{1}{2} \\ b_i^2 & \text{otherwise} \end{cases}$
• mutation $(b^1) = b$, where $b_i = \begin{cases} b_i^1 & \text{with probability } 1 - \alpha \\ \neg b_i^1 & \text{with probability } \alpha \end{cases}$
for some small α .

Feature subsets generation Randomised feature selection

Genetic algorithms

INPUT:

```
size of population B
size of expanded population B'
parameters of mutation \theta (and possibly crossover)
maximum number of iterations T, minimum quality change \Delta J
```

ALGORITHM:

Feature subsets generation Randomised feature selection

Modifications of genetic algorithm

- Preserve best features and best feature subsets:
 - Augment P'^t with K best representatives from P^{t-1} .
 - Make mutation probability lower for good features (that frequently appear in inside representatives).
- Increase breadth of search:
 - Crossover between more than two parents
- To prevent convergence to local optimum:
 - simultaneously modify several populations and allow rare random transitions between them.

Feature subsets generation Randomised feature selection

Extra

- Tree feature importances (*clf.feature_importances_* in sklearn).
 - Consider feature f
 - Let T(f) be the set of all nodes, relying on feature f when making split.
 - efficiency of split at node: $\Delta I(t) = I(t) \sum_{c \in childen(t)} \frac{n_c}{n_c} I(c)$
 - feature importance of $f: \sum_{t \in T(f)} n_t \Delta I(t)$
- Feature importances from linear classification:
 - It linear classifier with regularization to data
 - retrieve w (clf.coef_ in scikit-learn)
 - (a) importance of feature f_i is equal to $|w_i|$.
- We can reweight features for methods, relying on scaling by feature importances (such as K-NN).