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Feature selection

Feature selection is a process of selecting a subset of original

features with minimum loss of information related to �nal task

(classi�cation, regression, etc.)
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Applications of feature selection

Why feature selection?

increase predictive accuracy of classi�er
improve optimization stability by removing multicollinearity
increase computational e�ciency
reduce cost of future data collection
make classi�er more interpretable

Not always necessary step:

some methods have implicit feature selection

decision trees and tree-based (RF, ERT, boosting)

regularization
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Types of features

De�ne f - the feature, F = {f1, f2, ...fD} - full set of features,
S = F\{f }.

Strongly relevant feature:

p(y |f ,S) 6= p(y |S)

Weakly relevant feature:

p(y |f ,S) = p(y |S), but ∃S ′ ⊂ S : p(y |f ,S ′) 6= p(y |S ′)

Irrelevant feature:

∀S ′ ⊂ S : p(y |f ,S ′) = p(y |S ′)

Aim of feature selection

Find minimal subset S ⊂ F such that P(y |S) ≈ P(y |F ), i.e. leave
only relevant and non-redundant features.
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Speci�cation

Need to specify:

quality criteria J(X )
subset generation method S1,S2,S3, ...
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Types of feature selection algorithms

Completeness of search:

Complete

exhaustive search complexity is 2D − 1.

Suboptimal

deterministic
random (deterministic with randomness / completely random)

Integration with predictor

independent (�lter methods)
uses predictor quality (wrapper methods)
is embedded inside predictor (embedded methods)
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Classifer dependency types

�lter methods

rely only on general measures of dependency between features
and output
more universal
are computationally e�cient

wrapper methods

subsets of variables are evaluated with respect to the quality of
�nal classi�cation
give better performance than �lter methods
more computationally demanding

embedded methods

feature selection is built into the classi�er
feature selection and model tuning are done jointly
example: classi�cation trees, methods with L1 regularization.
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Filter methods

Table of Contents

1 Filter methods
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Mutual information

Probability measures

Context relevant measures

Cluster measures

2 Feature subsets generation
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Filter methods

Correlation

two class:

ρ(f , y) =

∑
i (fi − f̄ )(yi − ȳ)[∑

i (fi − f̄ )2
∑

i (yi − ȳ)2
]1/2 =

a

b

multiclass ω1, ω2, ...ωC (micro averaged ρ(f , yc) c = 1, 2, ...C .)

R2 =

∑C
c=1

[∑
i (fi − f̄ )(yic − ȳc)

]2∑C
c=1

∑
i (fi − f̄ )2

∑
i (yic − ȳc)2

=

∑
c a

2
c∑

c b
2
c

Bene�ts:

simple to compute
applicable both to continuous and discrete features/output.
does not require calculation of p.d.f.
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Filter methods

Correlation for non-linear relationship

Correlation captures only linear relationship.

Example: X ∼ Uniform[−1, 1], Y = X 2. X ,Y are

uncorrelated but dependent.

Other examples of data and its correlation:
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Filter methods

Kullback-Leibler divergence & entropy

Kullback-Leibler divergence

Kullback-Leibler divergence

For two p.d.f. P(x) and Q(x) Kullback-Leibler divergence

KL(P||Q) equals
∑

x P(x) ln P(x)
Q(x)

Properties:

de�ned only for P(x) and Q(x) such that
Q(x) = 0⇒ P(x) = 0
KL(P||Q) ≥ 0
P(x) = Q(x)∀x <=> KL(P||Q) = 0 (for discrete r.v.)
KL(P||Q) 6= KL(Q||P)
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Filter methods

Kullback-Leibler divergence & entropy

Kullback-Leibler divergence

Symmetrical distance: KLsym(P||Q) = KL(P||Q) + KL(Q||P)

Information theoretic meaning:

true data distribution P(x)
estimated data distribution Q(x)

KL(P||Q) = −
∑
x

P(x) lnQ(x) +
∑
x

P(x) lnP(x)

KL(P||Q) shows how much longer will be the average length
of the code word.
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Filter methods

Kullback-Leibler divergence & entropy

Entropy

Entropy of random variable Y :

H(Y ) = −
∑
y

p(y) ln p(y)

level of uncertainty of Y
proportional to the average number of bits needed to code the
outcome of Y using optimal coding scheme (− ln p(y) for
outcome y).

Entropy of Y after observing X :

H(Y |X ) = −
∑
x

p(x)
∑
y

p(y |x) ln p(y |x)
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Mutual information

1 Filter methods

Kullback-Leibler divergence & entropy

Mutual information

Probability measures

Context relevant measures

Cluster measures

15/41



Feature selection - Victor Kitov

Filter methods

Mutual information

Mutual information

Mutual information measures how much X gives information

about Y :

MI (X ,Y ) =
∑
x ,y

p(x , y) ln

[
p(x , y)

p(x)p(y)

]
= KL (p(x , y)||p(x)p(y))

Properties:

MI (X ,Y ) = MI (Y ,X )

MI (X ,Y ) = KL(p(x , y)||p(x)p(y)) ≥ 0

MI (X ,Y ) = H(Y )− H(Y |X )

MI (X ,Y ) ≤ min {H(X ),H(Y )}
X ,Y - independent <=> MI (X ,Y ) = 0

(for discrete r.v.)

X completely identi�es Y , then

MI (X ,Y ) = H(Y ) ≤ H(X )
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Filter methods

Mutual information

Mutual information for feature selection

Normalized variant NMI (X ,Y ) = MI (X ,Y )
H(Y ) equals

zero, when P(Y |X ) = P(Y )
one, when X completely identi�es Y .

Properties of MI and NMI :

identi�es arbitrary non-linear dependencies
requires calculation of probability distributions
continuous variables need to be discretized
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Filter methods

Probability measures
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Filter methods

Probability measures

Relevance based on probabilistic distance

Measure of feature f relevance - distance between p(f |ω1) and
p(f |ω2)
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Filter methods

Probability measures

Distances between probability density functions

Let f (x) = p(f |ωi ) and g(x) = p(f |ωj).

Total variation: 1

2

´
|f (x)− g(x)|dx ,

Euclidean: 1

2

(´
(f (x)− g(x))2dx

)
1/2

Hellinger:

(
1

2

´ (√
f (x)−

√
g(x)

)
2

dx

)
1/2

Symmentrical KL:
´

(f (x)− g(x)) ln f (x)
g(x)dx
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Filter methods

Probability measures

Distances between cumulative probability functions

Let F (x) = P(f ≤ x |ωi ) and G (x) = P(f ≤ x |ωj):

Kolmogorov: supx |F (x)− G (x)|
Kantorovich:

´
|F (x)− G (x)|dx

Lp:
(´
|F (x)− G (x)|pdx

)
1/p
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Filter methods

Probability measures

Other

Multiclass extensions:

Suppose, we have a two-class distance score J(ωi , ωj).
We can extend it to multiclass case using:

J = max
ωi ,ωj

J(ωi , ωj)

J =
∑
i<j

p(ωi )p(ωj)J(ωi , ωj)

Presented criteria compare probabilities given 2 di�erent classes.

We may also compare class-unconditional feature distribution with

class-conditional feature distribution.
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Filter methods
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Filter methods

Context relevant measures

Relevance in context

Individually features may not predict the class, but may be relevant

together:

p(y |x1) = p(y), p(y |x2) = p(y), but p(y |x1, x2) 6= p(y)

corr [X ,Y ] and MI (X ,Y ) measure only individual feature
relevance.

we could estimate MI ([X1,X2, ...XK ],Y ) but for large K
p(X1,X2, ...XK ) would be inaccurate.
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Filter methods

Context relevant measures

Relief criterion

INPUT:
Training set (x1, y1), (x2, y2), ...(xN , yN)
Number of neighbours K
Distance metric d(x , x ′) # usually Euclidean

for each pattern xn in x1, x2, ...xN:
calculate K nearest neighbours of the same class yn:

xs(n,1), xs(n,2), ...xs(n,K)

calculate K nearest neighbours of class different from yn:
xd(n,1), xd(n,2), ...xd(n,K)

for each feature fi in f1, f2, ...fD:

calculate relevance R(fi ) =
∑N

n=1

∑K
k=1

|x in−x id(n,k)|

|x in−x i
s(n,k)

|

OUTPUT:
feature relevances R
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Filter methods

Cluster measures
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Filter methods

Cluster measures

Cluster measures

General idea of cluster measures

Feature subset is good if observations belonging to di�erent classes

group into di�erent clusters.
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Filter methods

Cluster measures

Cluster measures

De�ne:

zic = I[yi = ωc ], N-number of samples, Ni -number of samples

belonging to class ωi .

m = 1

N

∑
i xi , mc = 1

Nc

∑
i zicxi , j = 1, 2, ...C .

Global covariance: Σ = 1

N

∑
i (x −m)(x −m)T ,

Intraclass covariances: Σc = 1

Nc

∑
i zic(xi −mc)(xi −mc)T

Within class covariance: SW =
∑C

c=1

Nc
N Σc

Between class covariance: SB =
∑C

c=1

Nc
N (mj −m)(mj −m)

Interpretation

Within class covariance shows how samples are scattered within

classes.

Between class covariance shows how classes are scattered between

each other.
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Filter methods

Cluster measures

Scatter magnitude

Theorem 1

Every real symmetric matrix A ∈ Rnxn can be factorized as

A = UΣUT

where Σ is diagonal and U is orthogonal. Σ = diag{λ1, λ2, ...λn}
and U = [u1, u2, ...un] where λi , i = 1, 2, ...n are eigenvalues and

ui ∈ Rnx1 are corresponding eigenvectors.

UT is basis transform corresponding to rotation, so only Σ
re�ects scatter.
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Filter methods

Cluster measures

Measuring scatter of symmetric matrix

Scaling in basis U

Aggregate measures of scatter trΣ =
∑

i λi and detΣ =
∏

i λi

Since tr
[
P−1BP

]
= trB and det

[
P−1BP

]
= detB , we can

estimate scatter with trA = trΣ and detA = detΣ
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Filter methods

Cluster measures

Clusterization quality

Good clustering: SW is small and SB ,Σ are big.

Cluster discriminability metrics:

Tr{S−1W SB},
Tr{SB}
Tr{SW }

,
detΣ

detSW
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Filter methods

Cluster measures

Resume

Pairwise feature measures

fail to estimate relevance in context of other features
are robust to curse of dimensionality

Context aware measures:

estimate relevance in context of other features
prone to curse of dimensionality if distances are calculated
(such as Relief criterion)
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Feature subsets generation
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Feature subsets generation

Deterministic feature selection

Incomplete search with suboptimal solution

Consider not all but only the most promising feature subsets.

Order features with respect to J(f ):

J(f1) ≥ J(f2) ≥ ... ≥ J(fD)

select top m
F̂ = {f1, f2, ...fm}

select best set from nested subsets:
S = {{f1}, {f1, f2}, ...{f1, f2, ...fD}}

F̂ = argmax
F∈S

J(F )

Comments:

simple to implement
if J(f ) is context unaware, so will be the features
example: when features are correlated, it will take many
redundant features
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Feature subsets generation

Deterministic feature selection

Sequential search

Sequential forward selection algorithm:

init: k = 0, F0 = ∅
while k < max_features:

fk+1 = argmaxf∈F J(Fk ∪ {f })
Fk+1 = Fk ∪ {fk+1}
if J(Fk+1) < J(Fk): break
k=k+1

return Fk

Variants:

sequential backward selection
up-k forward search
down-p backward search
up-k down-p composite search
up-k down-(variable step size) composite search
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Feature subsets generation
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Feature subsets generation

Randomised feature selection

Genetic algorithms

Analogy to genetic inheritance in biology.

Each feature set F = {fi(1), fi(2), ...fi(K)} is represented using

binary vector [b1, b2, ...bD ] where bi = I[fi ∈ F ]

Genetic operations:

crossover(b1, b2) = b, where bi =

{
b1i with probability 1

2

b2i otherwise

mutation(b1) = b, where bi =

{
b1i with probability 1− α
¬b1i with probability α

for some small α.
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Feature subsets generation

Randomised feature selection

Genetic algorithms

INPUT:
size of population B
size of expanded population B ′

parameters of mutation θ (and possibly crossover)
maximum number of iterations T, minimum quality change ∆J

ALGORITHM:
generate B feature sets S1, S2, ...SB randomly.

set t = 1, P0 = {S1, S2, ...SB}, J0 = J(P0)

while t <= T and |J t − J t−1| > ∆J:

modify P t−1 using crossover and mutation:

S ′1, S
′
2, ...S

′
B′ = modify(P t−1|θ)

order transformed sets by decreasing quality:

J(S ′
t
i(1)) ≥ J(S ′

t
i(1)) ≥ ...J(S ′

t
i(B′))

set next population to consist of best representatives:
P t = {S ′i(1), S ′i(2), ...S ′i(B)}

J t = J t(P t)
t = t + 1

OUTPUT: suboptimal set of feature sets P t
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Feature subsets generation

Randomised feature selection

Modi�cations of genetic algorithm

Preserve best features and best feature subsets:

Augment P ′t with K best representatives from P t−1.
Make mutation probability lower for good features (that
frequently appear in inside representatives).

Increase breadth of search:

Crossover between more than two parents

To prevent convergence to local optimum:

simultaneously modify several populations and allow rare
random transitions between them.
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Feature subsets generation

Randomised feature selection

Extra

Tree feature importances (clf.feature_importances_ in

sklearn).

Consider feature f
Let T (f ) be the set of all nodes, relying on feature f when
making split.
e�ciency of split at nodet: ∆I (t) = I (t)−

∑
c∈childen(t)

nc
nt
I (c)

feature importance of f :
∑

t∈T (f ) nt∆I (t)

Feature importances from linear classi�cation:

1 �t linear classi�er with regularization to data
2 retrieve w (clf.coef_ in scikit-learn)
3 importance of feature fi is equal to |wi |.

We can reweight features for methods, relying on scaling by

feature importances (such as K-NN).
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