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Feature selection

Feature selection is a process of selecting a subset of original
features with minimum loss of information related to final task
(classification, regression, etc.)
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Applications of feature selection

@ Why feature selection?

e increase predictive accuracy of classifier

improve optimization stability by removing multicollinearity
increase computational efficiency

reduce cost of future data collection

make classifier more interpretable

@ Not always necessary step:
e some methods have implicit feature selection
o decision trees and tree-based (RF, ERT, boosting)

e regularization
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Types of features

Define f - the feature, F = {f1, f,...fp} - full set of features,
S=F\{f}.
o Strongly relevant feature:
p(yIf,S) # p(ylS)

o Weakly relevant feature:

p(ylf,S) = p(y|S), but 35" C S: p(y|f,S") # p(y|S')
o Irrelevant feature:

VS C St op(ylf,S") = p(y|S")

Aim of feature selection

Find minimal subset S C F such that P(y|S) ~ P(y|F), i.e. leave
only relevant and non-redundant features.
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Specification

o Need to specify:

o quality criteria J(X)
o subset generation method 5,55, S3, ...
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Types of feature selection algorithms

@ Completeness of search:
o Complete
o exhaustive search complexity is 2° — 1.
e Suboptimal

o deterministic
e random (deterministic with randomness / completely random)

@ Integration with predictor

e independent (filter methods)
e uses predictor quality (wrapper methods)
o is embedded inside predictor (embedded methods)
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Classifer dependency types

o filter methods

o rely only on general measures of dependency between features
and output

e more universal

e are computationally efficient
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Classifer dependency types

o filter methods

o rely only on general measures of dependency between features
and output

e more universal

e are computationally efficient

e wrapper methods

o subsets of variables are evaluated with respect to the quality of

final classification
e give better performance than filter methods
e more computationally demanding

o embedded methods

o feature selection is built into the classifier
o feature selection and model tuning are done jointly
o example: classification trees, methods with L; regularization.
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Filter methods

Table of Contents

© Filter methods
o Kullback-Leibler divergence & entropy
@ Mutual information
@ Probability measures
@ Context relevant measures
@ Cluster measures
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Filter methods

Correlation

@ two class:

p(f,}/): Zl(f’_f_-)(.yl_Y) a
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o Benefits:

e simple to compute

o applicable both to continuous and discrete features/output.
o does not require calculation of p.d.f.
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Filter methods

Correlation for non-linear relationship

e Correlation captures only linear relationship.

o Example: X ~ Uniform[—1,1], Y = X?. X,Y are
uncorrelated but dependent.

@ Other examples of data and its correlation:
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Filter methods

Kullback-Leibler divergence & entropy

© Filter methods
@ Kullback-Leibler divergence & entropy
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Filter methods

Kullback-Leibler divergence & entropy

Kullback-Leibler divergence

Kullback-Leibler divergence

For two p.d.f. P(x) and Q(x) Kullback-Leibler divergence

KL(P||Q) equals >, P(x)In gg())

@ Properties:

o defined only for P(x) and Q(x) such that
QR(x)=0= P(x)=0
o KL(P||Q) >0
o P(x) = Q(x)V¥x <=> KL(P||Q) = 0 (for discrete r.v.)
o KL(P||Q) # KL(QI|P)
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Filter methods

Kullback-Leibler divergence & entropy

Kullback-Leibler divergence

e Symmetrical distance: KLgm(P||Q) = KL(P||Q) + KL(Q||P)
@ Information theoretic meaning:

o true data distribution P(x)
o estimated data distribution Q(x)

KL(PIIQ) = = > P(x)In Q(x +ZP )In P(x

o KL(P||Q) shows how much longer will be the average length
of the code word.
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Filter methods

Kullback-Leibler divergence & entropy

Entropy

@ Entropy of random variable Y:

o level of uncertainty of Y
e proportional to the average number of bits needed to code the

outcome of Y using optimal coding scheme (— In p(y) for
outcome y).

e Entropy of Y after observing X:

H(Y|X) = Zp X)Zp y1x) In p(y|x)
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Filter methods

Mutual information

© Filter methods

@ Mutual information
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Filter methods

Mutual information

Mutual information

Mutual information measures how much X gives information
about Y:

P i | P2 — KL ot )l0)pl)
Properties:
o MI(X,Y)=MI(Y,X)
o MI(X,Y) = KL(p(x,y)llp(x)p(y)) =0
o MI(X,Y)=H(Y) - H(Y|X)
o MI(X,Y) < min {H(X), H(Y)}
e X, Y- independent <=> MI/(X,Y) =0 .
(for discrete r.v.) HExn

@ X completely identifies Y, then
MI(X,Y)=H(Y) < H(X)
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Mutual information

Mutual information for feature selection

o Normalized variant NMI(X,Y) = M’(XY;/) equals

e zero, when P(Y|X) = P(Y)
e one, when X completely identifies Y.

o Properties of M/ and NMI:

o identifies arbitrary non-linear dependencies
e requires calculation of probability distributions
e continuous variables need to be discretized
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Filter methods

Probability measures

© Filter methods

@ Probability measures
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Filter methods

Probability measures

Relevance based on probabilistic distance

Measure of feature f relevance - distance between p(f|w;) and
p(flw2)
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Filter methods

Probability measures

Distances between probability density functions

Let f(x) = p(f|wi) and g(x) = p(f|wj).
o Total variation: 1 [ |f(x) — g(x)|dx,

o Euclidean: % (f(f(x) — g(x))2dx)1/2

@ Hellinger: <§f (m_ \/m)zd)()l/z

o Symmentrical KL: [ (f(x) — g(x))In %dx
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Filter methods

Probability measures

Distances between cumulative probability functions

Let F(x) = P(f < x|w;) and G(x) = P(f < x|wj):
e Kolmogorov: sup, |F(x) — G(x)|
e Kantorovich: [ |F(x)— G(x)|dx
o Ly ([1F(x) — G(x)[Pdx)"”
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Probability measures

Other

Multiclass extensions:
Suppose, we have a two-class distance score J(wj,w;).
We can extend it to multiclass case using:

J = max J(wj, wj)

Wi Wwj

J =" p(wi)p(w;)(wi,w))
i<j
Presented criteria compare probabilities given 2 different classes.

We may also compare class-unconditional feature distribution with
class-conditional feature distribution.
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Filter methods

Context relevant measures

© Filter methods

@ Context relevant measures
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Filter methods

Context relevant measures

Relevance in context

Individually features may not predict the class, but may be relevant
together:

p(ylx1) = p(y), p(ylx2) = p(y), but p(y|x1, x2) # p(y)
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Context relevant measures

Relief criterion

INPUT:
Training set (xi,y1),(x2,y2),-..(xn, yn)
Number of neighbours K
Distance metric d(x,x’)

for each pattern x, in xi,x2,..xn:
calculate K nearest neighbours of the same class y,:

Xs(n,1)5 Xs(n,2) -+-Xs(n,K)
calculate K nearest neighbours of class different from y,:

Xd(n,1)s Xd(n,2)y +-+Xd(n,K)
for each feature f; in fi,f,...fp:

calculate relevance R(f) =N S% . lx" ults k)‘

x’x \

OUTPUT:
feature relevances R
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Filter methods

Cluster measures

© Filter methods

@ Cluster measures
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Filter methods

Cluster measures

Cluster measures

General idea of cluster measures

Feature subset is good if observations belonging to different classes
group into different clusters.
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Cluster measures

Cluster measures

Define:

o zic =I[y; = w¢], N-number of samples, N;-number of samples
belonging to class w;.

o m= %Z;Xi: me = N%Z,-z,-cx,-,j: 1,2,...C.

e Global covariance: ¥ = £ > :(x — m)(x —m)T,

@ Intraclass covariances: Y. = N% S zie(xi — me)(xi — me)T
o Within class covariance: Sy = S°5_, Rey .

@ Between class covariance: Sg = chzl %(mj — m)(m; —m)

Interpretation

Within class covariance shows how samples are scattered within
classes.

Between class covariance shows how classes are scattered between
each other.
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Cluster measures

Scatter magnitude

Theorem 1

Every real symmetric matrix A € R™" can be factorized as
A=UzU"

where ¥ is diagonal and U is orthogonal. ¥ = diag{\A1, A2, ...A\n}
and U = [u1, up, ...up] where \;,i =1,2,...n are eigenvalues and
uj € R™L are corresponding eigenvectors.

o U is basis transform corresponding to rotation, so only ¥
reflects scatter.
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Filter methods

Cluster measures

Measuring scatter of symmetric matrix
Scaling in basis U

3

=
/—2 2

-3

7

o Aggregate measures of scatter tr =) . \; and detX =[] \;

@ Since tr [P‘lBP] = tr B and det [P‘lBP} = det B, we can
estimate scatter with tr A =trX and det A = det X
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Cluster measures

Clusterization quality

o Good clustering: Sy, is small and Sg, ¥ are big.

o Cluster discriminability metrics:

Tr{Sg} detX
Tr{Sw} " det Sw

Tr{S,} S},

31/41



Feature selection - Victor Kitov
Filter methods

Cluster measures

Resume

o Pairwise feature measures

e fail to estimate relevance in context of other features
e are robust to curse of dimensionality

o Context aware measures:

e estimate relevance in context of other features
e prone to curse of dimensionality if distances are calculated
(such as Relief criterion)
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Feature subsets generation

Table of Contents

© Feature subsets generation
@ Deterministic feature selection
@ Randomised feature selection
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Feature subsets generation

Deterministic feature selection

© Feature subsets generation
@ Deterministic feature selection
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Feature subsets generation

Deterministic feature selection

Incomplete search with suboptimal solution

e Consider not all but only the most promising feature subsets.
@ Order features with respect to J(f):

J(h) > J(h) > ... > J(fp)

e select top m
F={f,f,..fn}
o select best set from nested subsets:

S ={{A},{A, h}, ..{f, .. 0}}
F = argmax J(F)

o Comments:

e simple to implement

o if J(f) is context unaware, so will be the features

e example: when features are correlated, it will take many
redundant features
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Feature subsets generation

Deterministic feature selection

Sequential search

@ Sequential forward selection algorithm:
o init: k=0, Fo=0

e while k < max_ features:
o fiy1 = argmaxser J(F U {f})
o Fiy1=FcU{fisx1}
o if J(Fii1) < J(Fi): break
o k=k+1

o return Fy

@ Variants:

e sequential backward selection

e up-k forward search

e down-p backward search

o up-k down-p composite search

o up-k down-(variable step size) composite search
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Feature subsets generation

Randomised feature selection

© Feature subsets generation

@ Randomised feature selection
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Randomised feature selection

Genetic algorithms

@ Analogy to genetic inheritance in biology.
o Each feature set F = {fi(y), fi(2), ---fik)} is represented using
binary vector [by, by, ...bp| where b; = I[f; € F]
o Genetic operations:
o crossover(b', b?) = b, where b; = {Z; ‘;\g;zrs\;::ab'l'ty 3
b} with probability 1 — «

o mutation(b') = b, where b; = . ) .
—b;  with probability o

for some small a.
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Randomised feature selection

Genetic algorithms

INPUT:
size of population B
size of expanded population B’
parameters of mutation 6 (and possibly crossover)
maximum number of iterations T, minimum quality change AJ

ALGORITHM:
generate B feature sets S51,5,..5s randomly.
set t=1, P°={5,5,..58}, J°=J(P°)
while t <= T and |J' - J" !> AJ:
modify P'~! using crossover and mutation:
S(,S5,...55 = modify(P'~|6)
order transformed sets by decreasing quality:
J(S"iw) = (S ) = - I(Sier)
set next population to consist of best representatives:
Pt = {5,-/(1)7 5;/(2)7 ---5,-/(5)}
Jt — Jt(Pt)
t=t+1

OUTPUT: suboptimal set of feature sets P’
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Feature subsets generation

Randomised feature selection

Modifications of genetic algorithm

o Preserve best features and best feature subsets:

o Augment P’t with K best representatives from Pt~1.
o Make mutation probability lower for good features (that
frequently appear in inside representatives).

@ Increase breadth of search:
o Crossover between more than two parents
@ To prevent convergence to local optimum:

e simultaneously modify several populations and allow rare
random transitions between them.
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Feature subsets generation

Randomised feature selection

Extra

@ Tree feature importances (clf.feature importances in
sklearn).

o Consider feature f

Let T(f) be the set of all nodes, relying on feature f when
making split.

efficiency of split at nodet: A/(t) = I(t) = X_ c nitden(r) 7 !(€)
feature importance of f: 3° 1y neAI(t)

o Feature importances from linear classification:

@ fit linear classifier with regularization to data
@ retrieve w (clf.coef _ in scikit-learn)
© importance of feature f; is equal to |w;|.

@ We can reweight features for methods, relying on scaling by
feature importances (such as K-NN).
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