Stochastic Spectral Descent Methods

Дмитрий Ковалев

14 июня 2018 г.

Задача

Рассмотрим задачу квадратичной оптимизации:

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) := \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}$$

- ullet **A** (n imes n симметричная положительно определенная матрица)
- Единственное решение $x_* = \mathbf{A}^{-1}b$
- f(x) сильно выпуклая квадратичная функция

Рандомизированный покомпонентный спуск (RCD)

Алгоритм **1** RCD

```
Параметры: вероятности p_1, \dots, p_n > 0
Инициализация: выбрать x_0 \in \mathbb{R}^n for t = 0, 1, 2 \dots do
Выбрать случайный номер i \in \{1, \dots, n\} с вероятностью p_i x_{t+1} \leftarrow x_t - \frac{\mathbf{A}_{:i}^\top x_t - b_i}{\mathbf{A}_{ii}} e_i, end for
```

Сходимость (Leventhal & Lewis 2010)

Пусть выбраны вероятности $p_i \sim \mathbf{A}_{ii}$. Тогда для достижения точности $\mathbb{E}[\|x_t-x_*\|_{\mathbf{A}}^2] \leq \epsilon$ алгоритму 1 требуется

$$\mathcal{O}\left(rac{\operatorname{Tr}(\mathbf{A})}{\lambda_{\mathsf{min}}(\mathbf{A})}\lograc{1}{\epsilon}
ight)$$

итераций.

Стохастический спуск

Алгоритм 2 Стохастический спуск (Gower & Richtárik 2015)

Параметр: распределение \mathcal{D} на векторах из \mathbb{R}^n Инициализация: выбрать $x_0 \in \mathbb{R}^n$ for $t=0,\,1,\,2\,\dots$ do Выбрать случайный вектор s_t из \mathcal{D} $x_{t+1} \leftarrow x_t - \frac{s_t^\top (\mathbf{A} x_t - b)}{s_t^\top \mathbf{A} s_t} s_t$ end for

Сходимость (Gower & Richtárik 2015, Richtárik & Takáč 2017)

Для достижения точности $\mathbb{E}[\|x_t - x_*\|_{\mathbf{A}}^2] \leq \epsilon$ алгоритму 2 требуется

$$\mathcal{O}\left(\frac{1}{\lambda_{\mathsf{min}}(\mathbf{W})}\log \frac{1}{\epsilon}\right)$$

итераций, где $\mathbf{W}:=\mathbb{E}_{s\sim\mathcal{D}}[\mathbf{A}^{1/2}\mathbf{H}\mathbf{A}^{1/2}]$, $\mathbf{H}:=\frac{ss^\top}{s^\top\mathbf{A}s}$. (Предполагается, что $\mathbb{E}_{s\sim\mathcal{D}}[\mathbf{H}]$ – обратимая матрица)

RCD с произвольными вероятностями

Сходимость RCD с произвольными вероятностями

Пусть выбраны вероятности $p_1,\ldots,p_n>0$. Тогда для достижения точности $\mathbb{E}[\|x_t-x_*\|_{\mathbf{A}}^2]\leq \epsilon$ рандомизированному покомпонентному спуску требуется

$$\mathcal{O}\left(\frac{1}{\lambda_{\min}\left(\mathbf{A}\operatorname{Diag}\left(\frac{p_{i}}{\mathbf{A}_{ii}}\right)\right)}\log\frac{1}{\epsilon}\right) \tag{1}$$

итераций.

RCD с произвольными вероятностями

Равномерные вероятности оптимальны в 2D:

Теорема

Рассмотрим n=2 и RCD с вероятностями $p_1, p_2>0$. Вероятности $p_1=p_2=\frac{1}{2}$ максимизируют скорость сходимости RCD.

«Типичный» выбор вероятностей ($p_i \sim \mathbf{A}_{ii}, \; p_i \sim \|\mathbf{A}_{i:}\|^2$) может оказаться «плохим»:

Теорема

Для любых $n \geq 2$ и T > 0 существует матрица \mathbf{A} , такая что: (i) Скорость сходимости RCD с вероятностями $p_i \sim \mathbf{A}_{ii}$ в T раз хуже, чем скорость сходимости RCD с равномерными вероятностями. (ii) Скорость сходимости RCD с вероятностями $p_i \sim \|\mathbf{A}_{i:}\|^2$ в T раз хуже, чем скорость сходимости RCD с равномерными вероятностями.

RCD с произвольными вероятностями

Полученная скорость сходимости RCD может быть сколь угодно медленной:

Теорема

Для любых $n \geq 2$ и T > 0 существует такая матрица ${\bf A}$, что число итераций (по формуле (1)) RCD с любым выбором вероятностей $p_1,\ldots,p_n>0$ равно $\mathcal{O}(T\log(1/\epsilon))$.

Нижняя оценка на скорость сходимости RCD также может быть сколь угодно плохой:

Теорема

Для любых $n \geq 2$ и T>0 существуют такие $n \times n$ положительно определенная матрица ${\bf A}$ и начальная точка ${\it x}_0$, что число итераций RCD с любыми вероятностями $p_1,\ldots,p_n>0$ равно $\Omega(T\log(1/\epsilon))$.

Стохастический спектральный спуск (SSD)

 Алгоритм 2 (стохастический спуск) достигает оптимальной скорости сходимости

$$\mathcal{O}\left(n\log\frac{1}{\epsilon}\right)$$

в случае, когда распределение $\mathcal D$ состоит из собственных векторов матрицы $\mathbf A$ с равными вероятностями.

• Аналогичный результат в случае, когда распределение ${\mathcal D}$ состоит из **A**-ортогональных векторов с равными вероятностями.

Стохастический спектральный покомпонентный спуск (SSCD)

Собственное разложение матрицы А:

$$\mathbf{A} = \sum_{i=1}^{n} \frac{\lambda_{i} u_{i} u_{i}^{\top}}{\lambda_{i}^{\top}}$$

собственные значения: $0<\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_n$ собственные векторы:

Предположим, что известны векторы u_1,\ldots,u_k и значения $\lambda_1,\ldots,\lambda_{k+1}.$

Алгоритм 3 SSCD

Параметр: Выбрать $k \in \{0, \dots, n-1\}$; $C_k = k \lambda_{k+1} + \sum_{i=k+1}^n \lambda_i$ Запустить Алгоритм 2 с распределением \mathcal{D} :

$$s_t = egin{cases} e_i & ext{c} ext{ вероятностью} & p_i = rac{\mathbf{A}_{ii}}{C_k}, & i = 1, 2, \dots, n \ u_i & ext{c} ext{ вероятностью} & p_{n+i} = rac{\lambda_{k+1} - \lambda_i}{C_k}, & i = 1, 2, \dots, k. \end{cases}$$

Сходимость SSCD

Теорема

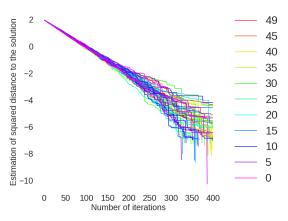
Для любого $n \ge 2$, алгоритм 3 (SSCD) сходится с линейной скоростью

$$\mathbb{E}[\|x_t - x_*\|_{\mathbf{A}}^2] \le \left(1 - \frac{\lambda_{k+1}}{C_k}\right)^t \|x_0 - x_*\|_{\mathbf{A}}^2.$$

Более того, скорость сходимости улучшается с ростом числа k, и интерполируется между скоростью $RCD \lambda_1/\mathrm{Tr}(\mathbf{A})$ для k=0, и оптимальной скоростью 1/n для k=n-1:

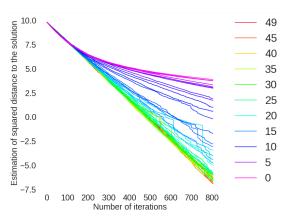
$$\frac{\lambda_1}{\operatorname{Tr}(\mathbf{A})} = \frac{\lambda_1}{C_0} \le \cdots \le \frac{\lambda_{k+1}}{C_k} \le \cdots \le \frac{\lambda_n}{C_{n-1}} = \frac{1}{n}.$$

Сходимость SSCD: Не зависит от k если собственные значения кластеризованы



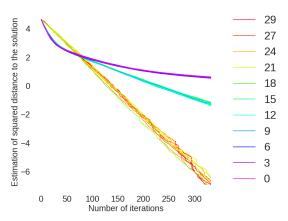
Собственные значения равномерно распределены на [10; 11]; n=50

Скорость сходимости SSCD растет с увеличением $\it k$



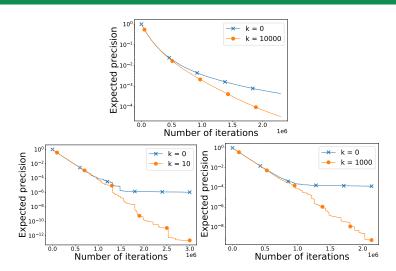
Собственные значения равномерно распределены на $[0; 10^5]; n = 50$

Сходимость SSCD: скачок скорости, когда k переходит между кластерами собственных значений



По одной трети собственных значений распределены равномерно на отрезках $[10;11],\ [100;101]$ и [1,000;1,001] соответственно; n=30

Сходимость SSCD: разреженная матрица, $n=10^5$



Верхний ряд: спектр **A** равномерно распределен на [1,100]. Нижний ряд: спектр содержится в двух кластерах: [1,2] и [100,200].

Заключение

Некоторые результаты не вошедшие в презентацию

- оптимальность распределения в алгоритме 3 (SSCD)
- использование **приближенных** сопряженных и собственных направлений
- распределенные варианты методов

Участие в конференциях

 KAUST Research Workshop on Optimization and Big Data. Poster Session.