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Linear regression

o Linear model f(x, 8) = (x, 8) = Y2, fix’
o Define X € R¥D {X}; defines the j-th feature of i-th object,
Y e R, {Y}; - target value for /-th object.

@ Ordinary least squares (OLS) method:

N

N D 2
D (F(@n B) —un) = <Z Baxy — yn) — min
n=1 d=1

n=1
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Solution

Stationarity condition:

N D
Zan (Z 6dxf,' — y,,) =0
n=1 d=1
In matrix form:
2XT(XB-Y)=0

SO

B=X"X)"'"XxTy
This is the global minimum, because the optimized criteria is
convex.

@ Geometric interpretation of linear regression, estimated with
OoLS.
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Linearly dependent features

e Solution 3 = (X"X)~'XTY exists when X7 X is
non-degenerate
@ Using property
rank(X) = rank(XT) = rank(X"X) = rank(XXT)
e problem occurs when one of the features is a linear
combination of the other

@ example: constant unity feature ¢ and one-hot-encoding
e1,€,...ex, because ), ex = ¢

@ interpretation: non-identifiability of B
o solved using:

o feature selection
@ extraction (e.g. PCA)
@ regularization.
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Analysis of linear regression

Advantages:
@ single optimum, which is global (for the non-singular matrix)
@ analytical solution

@ interpretability algorithm and solution

Drawbacks:
@ too simple model assumptions (may not be satisfied)

@ X7X should be non-degenerate (and well-conditioned)
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Generalization by nonlinear transformations

Nonlinearity by x in linear regression may be achieved by
applying non-linear transformations to the features:

x = [po(x), D1(x), d2(x), - om(x)]

f(x) = (¢(x), B :g:: Bm®m(x

The model remains to be linear in w, so all advantages of linear
regression remain.
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Typical transformations

| k(%) | comments

2
exp {—@} closeness to point u in feature space

x'x interaction of features
the alignment of the distribution

Inx . .
k with heavy tails
F_1(x ) conversion of atypical continious
k distribution to uniform'
'why?
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Regularization

@ Variants of target criteria Q(/3) with regularizationz:

2
ZnN:1 (x78 — £/n)2 + Al|B] 1 Lasso
>t (xh 5 — yn)2 + AlIB8l13 Ridge
ZnN:1 (x;ﬁ —4n)" + M8l + )\2||ﬁ||% Elastic net

@ Dependency of 3 from +:

Ridge regression

2Derive solution for ridge regression. Will it be uniquely defined for

correlated features? 1/26
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Linear monotonic regression

@ We can impose restrictions on coefficients such as
non-negativity:

Q(B) = |IXB — YI|* — ming
B3>0 i=12.D

@ Example: avaraging of forecasts of different prediction
algorithms

@ 5; = 0 means, that /-th component does not improve
accuracy of forecasting.
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Different loss-functions

Non-quadratic loss functions3*

Squared Error
—— Absolute Error
—— Huber

Loss

3What is the value of constant prediction, minimizing sum of squared errors?

4What is the value of constant prediction, minimizing sum of absolute errors?
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Conditional non-constant optimization

@ For x,y ~ P(x,y) and prediction being made for fixed x:

argminE{ ((z) - 4’| x} = Elgla]

arg ;’r(ur)\]E {|f(x) — y|| x} = median[y|x]
X
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Weighted account for observations®

@ Weighted account for observations
N
Z Wn(xrz-ﬁ - yn)z
n=1

@ Weights may be:
e increased for incorrectly predicted objects
@ algorithm becomes more oriented on error correction
o decreased for incorrectly predicted objects

@ they may be considered outliers that break our model

SDerive solution for weighted regression.
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Robust regression

@ Initialize wy = ...=wy =1/N
@ repeat until convergence of ¢;:

o estimate regression y(x) using observations (x;, y;) with
weights w;.
o re-estimate ¢; = §(x;) —yi, i = 1,2,..N.

o recalculate w; = w(e;) with e1,...en
@ normalize weights w; = —z—
2n—1Wn
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Local constant regression

@ Names: Nadaraya-Watson regression, kernel regression
@ For each x assume f(x) = const = a, a € R.

N
O(aaxtruining) = Z wi(x) (o — y,-)2 — min
i=1

acR

@ Weights depend on the proximity of training objects to the
predicted object:

wi(x) = K <p(xl;x,)>

@ From stationarity condition g—g = 0 obtain optimal a(x):

flx, )

= a(x) =

L Sewle) Sk (57)
Sowle) vk ()
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Local non-linear regression
Comments

Under certain regularity conditions g(zx, «) A Ely|x]

Typically used kernel functions®:
Ke(r) = e 2" — Gaussian kernel
Kp(r) = (1—r?)?Ir| < 1] — quartic kernel

@ The specific form of the kernel function does not affect the
accuracy much
@ h controls the adaptability of the model to local changes in data
e how h affects under/overfitting?

e h can be constant or depend on x (if concentration of objects
changes significantly)

5Compare them in terms of required: cemputation.



Regression - Victor Kitov

Local non-linear regression

Example
*
20k
18+
16 * o opts
linreg
14 kerreq

100 200 300 400 a00 600 700 goo

22/26



Regression - Victor Kitov
Local non-linear regression

Local linear regression

@ Local (in neighbourhood of x;) approximation f(x) = x’ 3

@ Solve for w,(x) = K (M)

BER

N
O(/BvﬂO‘Xtraining) = Z Wn(x) (xr,ﬁ - y,,)z — min
n=1
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Local linear regression

@ Local (in neighbourhood of x;) approximation f(x) = x’ 3

@ Solve for w,(x) = K (M)

N 2
Q(B, BolXiraining) = ; Wi () (xrﬂ — y,,) — énelﬁ

@ Advantages of local linear regression:

e compared to local constant kernel linear regression better
predicts:

@ local local minima and maxima
@ linear change at the edges of the training set
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Bias-variance decomposition

Bias-variance decomposition

@ True relationship y = f(x) + ¢
@ This relationship is estimated using training set
(X, Y) ={(xn.yn), n :/\172---N}
@ Recovered relationship f(x)
e Noise ¢ is independent of any x, Ec = 0 and Var[e] = o2

Bias-variance decomposition

Ex v {[f(x) — y(@)?|x} = Exy{f(x)lx} - f(x)]?
+Ex v {[f(x) — Ef(x)]*|x} + o

e Intuition: MSE = bias? + variance + irreducible error

e darts intuition
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Proof of bias-variance decomposition

Define f = f(x), f = f(x), E = Exve.
N 2 ,\ ~ —~ 2 ,\ -\ 2 —~ 2
E(f—f) :E(f—Ef—i—Ef—f) :IE(f—]Ef) + (Ef—f)
+2E [(?f Ef)(Ef — f)]
o~ .\ 2 —~ 2
:E(f—JEf) + (Ef—f)
We used that (Ef — ) is a constant number and hence
E [(? — EF)(Ef — f)} = (Ef — f)E(f — Ef) = 0.
”~ 2 N 2 N 2 2 ~
]E(f—y) - ]E(f—f—s) :E(f—f) +E2 - 2E [(f—f)s}
~ N\ 2 ~ 2
- E(f—Ef) + (Ef—f) + o2

Here E {(?— f)e} =E [(7— f)} Ee = 0 since ¢ is independent of x.
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