Regression

Victor Kitov

- Linear regression
- Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Linear regression

- Linear model $f(x,\beta) = \langle x,\beta \rangle = \sum_{i=1}^{D} \beta_i x^i$
- Define $X \in \mathbb{R}^{N \times D}$, $\{X\}_{ij}$ defines the j-th feature of i-th object, $Y \in \mathbb{R}^n$, $\{Y\}_i$ target value for i-th object.
- Ordinary least squares (OLS) method:

$$\sum_{n=1}^{N} (f(x_n,\beta) - y_n)^2 = \sum_{n=1}^{N} \left(\sum_{d=1}^{D} \beta_d x_n^d - y_n \right)^2 \to \min_{\beta}$$

Solution

Stationarity condition:

$$2\sum_{n=1}^{N}x_{n}\left(\sum_{d=1}^{D}\beta_{d}x_{n}^{d}-y_{n}\right)=0$$

In matrix form:

$$2X^T(X\beta-Y)=0$$

so

$$\widehat{\beta} = (X^T X)^{-1} X^T Y$$

This is the global minimum, because the optimized criteria is convex.

 Geometric interpretation of linear regression, estimated with OLS.

Linearly dependent features

- Solution $\widehat{\beta} = (X^T X)^{-1} X^T Y$ exists when $X^T X$ is non-degenerate
- Using property $rank(X) = rank(X^T) = rank(X^TX) = rank(XX^T)$
 - problem occurs when one of the features is a linear combination of the other
 - example: constant unity feature c and one-hot-encoding $e_1, e_2, ... e_K$, because $\sum_k e_k \equiv c$
 - ullet interpretation: non-identifiability of \widehat{eta}
 - solved using:
 - feature selection
 - extraction (e.g. PCA)
 - regularization.

Analysis of linear regression

Advantages:

- single optimum, which is global (for the non-singular matrix)
- analytical solution
- interpretability algorithm and solution

Drawbacks:

- too simple model assumptions (may not be satisfied)
- X^TX should be non-degenerate (and well-conditioned)

- Linear regression
- Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Generalization by nonlinear transformations

Nonlinearity by x in linear regression may be achieved by applying non-linear transformations to the features:

$$x \to [\phi_0(x), \phi_1(x), \phi_2(x), \dots \phi_M(x)]$$

$$f(x) = \langle \phi(x), \beta \rangle = \sum_{m=0}^{M} \beta_m \phi_m(x)$$

The model remains to be linear in w, so all advantages of linear regression remain.

Typical transformations

$\phi_k(x)$	comments
$\exp\left\{-\frac{\ x-\mu\ ^2}{s^2}\right\}$	closeness to point μ in feature space
$x^i x^j$	interaction of features
$\ln x_k$	the alignment of the distribution
III X K	with heavy tails
$F^{-1}(x_k)$	conversion of atypical continious
$I (x_k)$	distribution to uniform ¹

¹why?

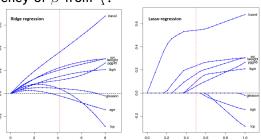
- Linear regression
- Nonlinear transformations
- 3 Regularization & restrictions.
- 4 Different loss-functions
- Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Regularization

• Variants of target criteria $Q(\beta)$ with regularization²:

$$\begin{array}{ll} \sum_{n=1}^{N} \left(x_n^T\beta - y_n\right)^2 + \lambda ||\beta||_1 & \text{Lasso} \\ \sum_{n=1}^{N} \left(x_n^T\beta - y_n\right)^2 + \lambda ||\beta||_2^2 & \text{Ridge} \\ \sum_{n=1}^{N} \left(x_n^T\beta - y_n\right)^2 + \lambda_1 ||\beta||_1 + \lambda_2 ||\beta||_2^2 & \text{Elastic net} \end{array}$$

• Dependency of β from $\frac{1}{\lambda}$:



²Derive solution for ridge regression. Will it be uniquely defined for correlated features?

Linear monotonic regression

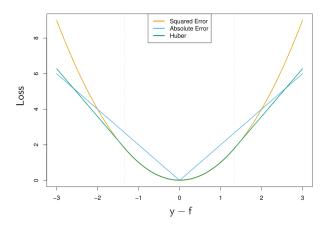
 We can impose restrictions on coefficients such as non-negativity:

$$\begin{cases} Q(\beta) = ||X\beta - Y||^2 \to \min_{\beta} \\ \beta_i \ge 0, \quad i = 1, 2, ...D \end{cases}$$

- Example: avaraging of forecasts of different prediction algorithms
- $\beta_i = 0$ means, that *i*-th component does not improve accuracy of forecasting.

- Linear regression
- Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Non-quadratic loss functions³⁴



³What is the value of constant prediction, minimizing sum of squared errors?

⁴What is the value of constant prediction, minimizing sum of absolute errors?

Conditional non-constant optimization

• For $x, y \sim P(x, y)$ and prediction being made for fixed x:

$$rg\min_{f(x)} \mathbb{E}\left\{\left. (f(x)-y)^2
ight| x
ight\} = \mathbb{E}[y|x]$$

$$rg\min_{f(x)}\mathbb{E}\left\{\left.\left|f(x)-y\right|\,\right|x
ight\}=\mathsf{median}[y|x]$$

- Linear regression
- Nonlinear transformations
- Regularization & restrictions.
- Different loss-functions
- 5 Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Weighted account for observations⁵

Weighted account for observations

$$\sum_{n=1}^{N} w_n (x_n^T \beta - y_n)^2$$

- Weights may be:
 - increased for incorrectly predicted objects
 - · algorithm becomes more oriented on error correction
 - decreased for incorrectly predicted objects
 - they may be considered outliers that break our model

⁵Derive solution for weighted regression.

Robust regression

- Initialize $w_1 = ... = w_N = 1/N$
 - repeat until convergence of ε_i :
 - estimate regression $\hat{y}(x)$ using observations (x_i, y_i) with weights w_i .
 - re-estimate $\varepsilon_i = \widehat{y}(x_i) y_i$, i = 1, 2, ...N.
 - recalculate $w_i = w(\varepsilon_i)$ with $\varepsilon_1, ... \varepsilon_N$
 - normalize weights $w_i = \frac{w_i}{\sum_{i=1}^{N} w_i}$

- Linear regression
- Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Local constant regression

- Names: Nadaraya-Watson regression, kernel regression
- For each x assume $f(x) = const = \alpha, \alpha \in \mathbb{R}$.

$$Q(\alpha, X_{training}) = \sum_{i=1}^{N} w_i(x)(\alpha - y_i)^2 \rightarrow \min_{\alpha \in \mathbb{R}}$$

 Weights depend on the proximity of training objects to the predicted object:

$$w_i(x) = K\left(\frac{
ho(x,x_i)}{h}\right)$$

• From stationarity condition $\frac{\partial Q}{\partial \alpha} = 0$ obtain optimal $\widehat{\alpha}(x)$:

$$f(x,\alpha) = \widehat{\alpha}(x) = \frac{\sum_{i} y_{i} w_{i}(x)}{\sum_{i} w_{i}(x)} = \frac{\sum_{i} y_{i} K\left(\frac{\rho(x,x_{i})}{h}\right)}{\sum_{i} K\left(\frac{\rho(x,x_{i})}{h}\right)}$$

Comments

Under certain regularity conditions $g(x, \alpha) \stackrel{P}{\to} E[y|x]$ Typically used kernel functions⁶:

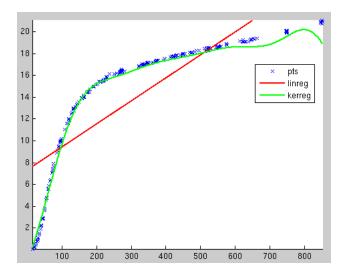
$$K_G(r) = e^{-\frac{1}{2}r^2} - \text{Gaussian kernel}$$

 $K_P(r) = (1 - r^2)^2 \mathbb{I}[|r| < 1] - \text{quartic kernel}$

- The specific form of the kernel function does not affect the accuracy much
- h controls the adaptability of the model to local changes in data
 - how h affects under/overfitting?
 - h can be constant or depend on x (if concentration of objects changes significantly)

⁶Compare them in terms of required computation.

Example



Local linear regression

- Local (in neighbourhood of x_i) approximation $f(x) = x^T \beta$
- Solve for $w_n(x) = K\left(\frac{\rho(x,x_n)}{h}\right)$:

$$Q(\beta, \beta_0 | X_{training}) = \sum_{n=1}^{N} w_n(x) \left(x^T \beta - y_n \right)^2 \to \min_{\beta \in \mathbb{R}}$$

Local linear regression

- Local (in neighbourhood of x_i) approximation $f(x) = x^T \beta$
- Solve for $w_n(x) = K\left(\frac{\rho(x,x_n)}{h}\right)$:

$$Q(\beta, \beta_0 | X_{training}) = \sum_{n=1}^{N} w_n(x) \left(x^T \beta - y_n \right)^2 \to \min_{\beta \in \mathbb{R}}$$

- Advantages of local linear regression:
 - compared to local constant kernel linear regression better predicts:
 - local local minima and maxima
 - · linear change at the edges of the training set

- Linear regression
- Nonlinear transformations
- Regularization & restrictions.
- 4 Different loss-functions
- Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Bias-variance decomposition

- True relationship $y = f(x) + \varepsilon$
- This relationship is estimated using training set $(X, Y) = \{(x_n, y_n), n = 1, 2...N\}$
- Recovered relationship $\widehat{f}(x)$
- Noise ε is independent of any x, $\mathbb{E}\varepsilon=0$ and $\mathit{Var}[\varepsilon]=\sigma^2$

Bias-variance decomposition

$$\mathbb{E}_{X,Y,\varepsilon}\{[\widehat{f}(x)-y(x)]^2|x\} = \mathbb{E}_{X,Y}\{\widehat{f}(x)|x\}-f(x)]^2 + \mathbb{E}_{X,Y}\{[\widehat{f}(x)-\mathbb{E}\widehat{f}(x)]^2|x\}+\sigma^2$$

- Intuition: $MSE = bias^2 + variance + irreducible error$
 - darts intuition

Proof of bias-variance decomposition

Define f = f(x), $\widehat{f} = \widehat{f}(x)$, $\mathbb{E} = \mathbb{E}_{X,Y,\varepsilon}$.

$$\begin{split} \mathbb{E}\left(\widehat{f} - f\right)^2 &= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f} + \mathbb{E}\widehat{f} - f\right)^2 = \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^2 + \left(\mathbb{E}\widehat{f} - f\right)^2 \\ &+ 2\mathbb{E}\left[\left(\widehat{f} - \mathbb{E}\widehat{f}\right)(\mathbb{E}\widehat{f} - f)\right] \\ &= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^2 + \left(\mathbb{E}\widehat{f} - f\right)^2 \end{split}$$

We used that $(\mathbb{E}\widehat{f} - f)$ is a constant number and hence $\mathbb{E}\left[\widehat{f} - \mathbb{E}\widehat{f})(\mathbb{E}\widehat{f} - f)\right] = (\mathbb{E}\widehat{f} - f)\mathbb{E}(\widehat{f} - \mathbb{E}\widehat{f}) = 0.$

$$\mathbb{E}\left(\widehat{f} - y\right)^{2} = \mathbb{E}\left(\widehat{f} - f - \varepsilon\right)^{2} = \mathbb{E}\left(\widehat{f} - f\right)^{2} + \mathbb{E}\varepsilon^{2} - 2\mathbb{E}\left[\widehat{f} - f\right)\varepsilon\right]$$
$$= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f} - f\right)^{2} + \sigma^{2}$$

Here $\mathbb{E}\left[(\widehat{f}-f)\varepsilon
ight]=\mathbb{E}\left[(\widehat{f}-f)
ight]\mathbb{E}arepsilon=0$ since arepsilon is independent of x.