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History

@ Neural networks originally appeared as an attempt to model
human brain

@ Human brain consists of multiple interconnected neuron cells
o cerebral cortex (the largest part) is estimated to contain
15-33 billion neurons
e communication is performed by sending electrical and
electro-chemical signals

@ signals are transmitted through axons - long thin parts of

neurons.
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Definition

@ linear / logistic regression - simplest case
@ acyclic directed graph

@ verticals called neurons

@ edges correspond to certain weighs

L
@,
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N

@ Structure of neural network:
o 1-input layer
e 2-hidden layers

o 3-output layer s
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Definition

@ Each neuron j is associated a non-linear transformation .
@ For multilayer perceptron class neural networks ¢ belongs to
a class of activation functions.
@ Most common activation functions:
o sigmoidal: o(x) = 1=
@ 1-layer neural network with sigmoidal activation is equivalent to
logistic regression

e hyperbolic tangent: tangh(x) = szr:::
1.0
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Activation functions

Activation functions are smooth approximations of step functions:

26 —a -2 0 2 4

tangh(ax) limits to -1/1-step function as a — oo
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Definition details

@ Label each neuron with integer /.
@ Denote: /; - input to neuron /i, O; - output of neuron /

@ Output of neuron i: O; = A(/;), where A is activation
function.

@ Input to neuron /: /; = Zkeinc(/') Wi Ok + Wio,

@ Wy is the bias term

e inc(f) is a set of neurons with outgoing edges to neuron /.

o further we will assume that at each layer there is a vertex
with constant output O..,s: = 1, so we can simplify notation

li= Y wkOx

keinc(i)

8/38



Neural networks - Victor Kitov
Output generation

Table of Contents

© Output generation

9/38



Neural networks - Victor Kitov
Output generation

Output generation

@ Forward propagation is a process of successive calculations
of neuron outputs for given features.

Input Hidden Output
layer layer layer
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Output generation

@ Output layer transformations

e regression: (/) =1
o classification:

@ 2 classes: sigmoid, indicating target class probability

1

e(l) = W

@ multiple classes: softmax, indicating probabilities of each

class:
&0

o(/; 7IEOL
) = S o™

where OL denotes neuron indices at output layer.
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Generalizations

@ each neuron j may have custom non-linear transformation ¢;
@ weights may be constrained:

@ non-negative

e equal weights

e etc.

@ layer skips are possible

Z2
T2 Y2
inputs 7 outputs
T Y1
23

@ Not considered here: RBF-networks, recurrent networks.
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Number of layers selection

@ Number of layers usually denotes all layers except input layer
(hidden layers+output layer)

@ We will consider only continuous activation functions.

@ Classification:

e single layer network selects arbitrary half-spaces
o 2-layer network selects arbitrary convex polyhedron (by
intersection of 1-layer outputs)

o therefore it can approximate arbitrary convex sets

o 3-layer network selects (by union of 2-layer outputs) arbitrary
finite sets of polyhedra

@ therefore it can approximate almost all sets with well defined
volume (Borel measurable)
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Number of layers selection

@ Regression
e single layer can approximate arbitrary linear function

@ 2-layer network can model indicator function of arbitrary
polyhedron

@ 3-layer network can uniformly approximate arbitrary continuous
function (as sum of indicators of various polyhedra)

Sufficient amount of layers

Any continuous function on a compact space can be uniformly
approximated by 2-layer neural network with linear output and
wide range of activation functions (excluding polynomial).

@ In practice often it is more convenient to use more layers
with fewer amount of neurons

e model becomes more interpretable and tunable
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Neural network architecture selection

@ Network architecture selection:

e increasing complexity (control by validation error)
e decresing complexity (“optimal brain damage”)

@ may be used for feature selection
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Weight space symmetries

@ Consider a neural network with 1 hidden layer

e with fangh(x) activation functions
e consisting of M neurons

Input Hidden Output
layer layer layer
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Weight space symmetries

@ The following transformations in weight space lead to neural
networks with equivalent outputs:
o for any neuron in hidden layer: simultaneous change of sign
of input and output weights
o 2M possible equivalent transformations of such kind
o for any pair of neurons in the hidden layer: interchange of
input weights between the neurons and simultaneous
interchange of output weights
@ this is equivalent to reordering of neurons in the hidden layer,
so there are M! such orderings
o 2YM! equivalent transformations exist in total.
e For neural network with K hidden layers, consisting of
M, k =1,2,...K neurons each, we obtain Hf:1 A
equivalent neural networks.
o In general case these are the only symmetries existing in the
weights space.
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Network optimization: regression

@ Single output:

N
Z yn xn yn)2 — mv‘i/n
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Network optimization: regression

@ Single output:

o K outputs

N K
1 i .
NK Z Z(Unk(xn) - Unk)2 — min
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Network optimization: classification

e Two classes (y € {0,1}, p=P(y =1)):

N
[T p(yn = 112)[1 = pgn = 12)]' 4" = max

n=1
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Network optimization: classification

e Two classes (y € {0,1}, p=P(y =1)):

N
[T p(yn = 112)[1 = pgn = 12)]' 4" = max

n=1

@ C classes (Ync = I{yn = c}):
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Network optimization: classification

e Two classes (y € {0,1}, p=P(y =1)):

N
[T p(yn = 112)[1 = pgn = 12)]' 4" = max

n=1

@ C classes (Ync = I{yn = c}):

N C
HH Yn = Clan) y”c—>max
n=1c=1

@ In practice log-likelihood is maximized.
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Neural network optimization

o Let W denote the total dimensionality of weights space
@ Let £(y,y) denote the loss function of output
@ We may optimize neural network using gradient descent:

while (stop criteria not met):

W = wk — nVE(WH)

@ Standardization of features makes gradient descend
converge faster

@ Other optimization methods are more efficient (conjugate
gradients)
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Neural network optimization

@ Direct VE(w) calculation, using

OE  E(w+¢;)—E(w)
ow . + O(¢)

or better
OE _ E(w+¢j)— E(w—¢)) n 0(52)
ow; €

has complexity O( W2) [W forward propagations to evaluate
W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all
derivatives.
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Multiple local optima problem

@ Instability with respect to:

o different starting parameter values
o different subsamples
o different feature selections

@ Solutions

o select best optimum from local optima
e average predictions for different local optima
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Invariances

@ It may happen that solution should not depend on certain
kinds of transformations in the input space.

@ Example: character recognition task

e translation invariance

e scale invariance

@ invariance to small rotations

@ invariance to small uniform noise

t 1
ardkils
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Invariances

@ Approaches to build an invariant model:

e augment training objects with their transformed copies
according to given invariances

@ amount of possible transformations grows exponentially with
the number of invariances

e add regularization term to the target cost function, which
penalizes changes in output after invariant transformations

@ see tangent propagation

o extract features that are invariant to transformations
o build the invariance properties into the structure of neural
network

@ see convolutional neural networks
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Augmentation of training samples

@ generate a random set of invariant transformations
@ apply these transformations to training objects

© obtain new training objects

LK
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Tangent propagation

@ Denote s(x, &) be vector x after invariant transformation
parametrized by &.

@ Denote
as(xfh g)

s

to be as small, as possible.

) -/ki =

Th —

ox;

Oy
o We want i

§=0
@ Sensitivity of yx to small invariant transformation:

- - 1
=0 0T o6 o
@ Tangent propagation - modify target cost function:

D 2
Z?ZZ E+ A‘EE: 2{: (?E::jnki7hi)
n  k i=1
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Convolutional neural networks

@ Convolutional neural network:
o Used for image analysis
o Consists of a set of convolutional layer / sub-sampling layer
pairs and aggregating layer

Sub-sampling

Input image Convolutional layer
P & Y layer
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Convolutional neural networks

@ Convolutional layer

o Convolutional layer consists of a number of feature maps

o Feature map has the same dimensionality as input layer

o Locality: each neuron in the feature map takes output from
small neigborhood of input layer neurons

o Equivalence: the same transformation is applied by each
neuron in the feature map

@ obtained by constraining sets of weights to each feature map
layer neuron to be equal

@ similar to convolution with moving adaptive kernel

o effectively it is feature extraction from a region
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Convolutional neural networks

@ Sub-sampling layer

o Consists of a number of planes, each corresponding to
respective feature map on the previous convolutional layer

o Locality: Sub-sampling layer neurons take output from small
neigborhood of respective feature map neurons

@ neigbourhoods are chosen to be contiguous and
non-overlapping

e Aggregation: input of each neuron / is: w;y + wj1F, where
Wjo, W;1 are adjustable weights and F is aggregation function
(sum or max of activations of respective feature map neurons)

o Implements small translational invariance

@ There may be a sequence of convolutional and sub-sampling
layers
e gradual dimensionality reduction
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Case study: ZIP codes recognition

Case study (due to Hastie et al. The Elements of
Statistical Learning)

ZIP code recognition task

01V=3 4867 849
ocl2245¢78 49
0134567 61
013757879
213375417 8 9
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Net1: no hidden layer

Net2: 1 hidden layer, 12 hidden units fully connected

Net3: 2 hidden layers, locally connected

Net4: 2 hidden layers, locally connected with weight sharing

Net5: 2 hidden layers, locally connected, 2 levels of weight
sharing

Local Connectivity
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Case study: ZIP codes recognition

Results
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Training Epochs
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Addition

@ Deep learning
@ Neural networks weights may be constrained to belong to
mixture density
o E « E— )\P(w), where P(w) is the mixture probability of
weights
e soft forcing of weights to group into similar clusters
@ Neural networks may model not only real value outputs, but
densities

e each output - frequency of histogram bin
@ each output - either prior or mean or variance of mixture of
parametrized density (normal, beta, etc.)

37/38



Neural networks - Victor Kitov
Case study: ZIP codes recognition

Conclusion

@ Advantages of neural networks:

e can model accurately complex non-linear relationships
o easily parallelizable

o Disadvantages of neural networks:

e hardly interpretable (“black-box” algorithm)
e optimization requires skill

@ too many parameters
@ may converge slowly
@ may converge to inefficient local minimum far from global one
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