Model generation for machine intelligence

Vadim Strijov

Moscow Institute of Physics and Technology FRC CSC of the Russian Academy of Sciences

2018, February 7th

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

To start an applied project an expert and an analyst set

- 1. Project goal (the expected result of development) main purpose of research
- 2. Project application (how the project result will be applied) environment of measures and impacts
- 3. Historical data description (data formats and timing) algebraic structures of data
- 4. Quality criteria (how the project quality is measured) error function
- 5. Feasibility of the project (how to prove the project feasibility, list possible risks) error analysis

How long the model lives after being put on operation? What replaces it after?

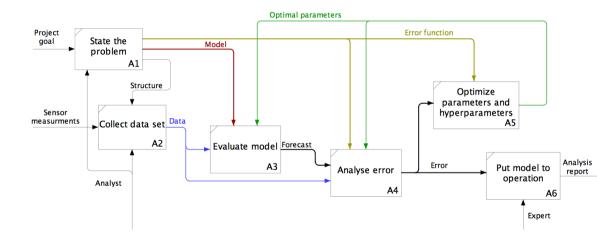
Three sources of quality criteria

- 1. Business: model operation productivity, agent impact to environment
- 2. Theory: statistical hypothesis, bayesian inference
- 3. Technology: optimization requirements, resources

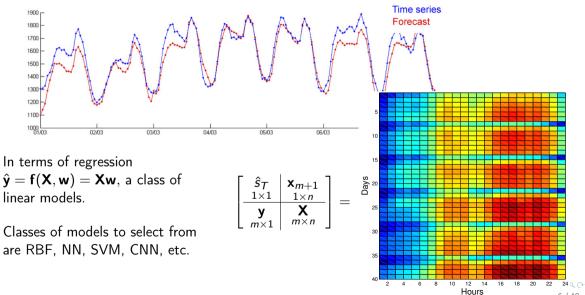
The main criteria of model quality

- ► Precision: MAPE, AUC
- > Stability (diversity): std deviation for prediction, covariance of parameters
- ► Complexity: structure complexity, MDL, evidence of model

Formal problem statement, an analyst has to set


- 1) an algebraic structure for the dataset from measurements
- 2) a data generation hypothesis from 1)
- 3) a model, or a mixture from 2)
- 4) an error function (quality criteria with restrictions) from 2)
- 5) an optimization algorithm from 3) and 4)

The result of the model construction is a Cartesian product


{models \times datasets \times quality criteria}.

Def: Big data rejects the i.i.d. (independent and identically distributed random variables) data generation hypothesis from 2). It requests a mixture model.

Analyst creates a model for expert to put it to operation

Model selection in forecasting

6/48

Binary representation of the model structure

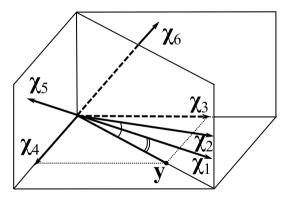
Select a model f from a class \mathfrak{F} by optimizing binary vector $\mathbf{a} \in \mathbb{B}^n$,

$$\hat{y} = f(\mathbf{w}, \mathbf{x}) = a_1 w_1 x_1 + \dots + a_n w_n x_n$$

for the linear model

$$f(\mathbf{w}, \mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{w}$$

and for the neural network

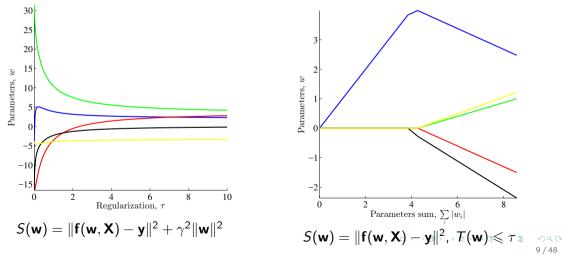

$$\mathbf{f}(\mathbf{w},\mathbf{x}) = \frac{\exp(\mathbf{h}(\mathbf{x}))}{\sum_{j}\exp(h_{j}(\mathbf{x}))}, \qquad \mathbf{h}(\mathbf{x}) = \mathbf{W}_{2}^{\mathsf{T}}\mathsf{tanh}(\mathbf{W}_{1}^{\mathsf{T}}\mathbf{x}), \qquad \mathbf{w} = \mathsf{vec}(\mathbf{W}_{1} \dot{\cdot} \mathbf{W}_{2}),$$

according to the optimal brain damage method the structure vector

$$\mathbf{e}_i^{\mathsf{T}} \Delta \mathbf{w} + w_i = 0$$

Select a stable and precise model given set of features

The sample contains multicollinear χ_1, χ_2 and noisy χ_5, χ_6 features, columns of the design matrix **X**. We want to select two features from six.


Stability and accuracy for a fixed complexity

<u>The solution</u>: χ_3, χ_4 is an orthogonal set of features minimizing the error function.

Katrutsa, Strijov. 2015. Stress-test procedure for feature selection // Chemometrics

Model parameter values with regularization

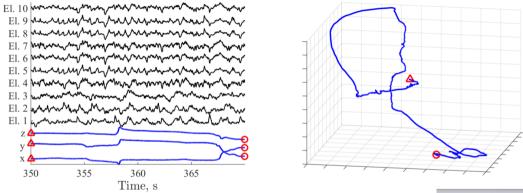
Vector-function
$$\mathbf{f} = \mathbf{f}(\mathbf{w}, \mathbf{X}) = [f(\mathbf{w}, \mathbf{x}_1), \dots, f(\mathbf{w}, \mathbf{x}_m)]^{\mathsf{T}} \in \mathbb{Y}^m$$

Minimize number of similar and maximize number of relevant features the model is defined by a vertex point in the n-dimensional cube.

Introduce a feature selection method QP(Sim, Rel) to solve the optimization problem

$$\mathbf{a}^* = \operatorname*{arg\,min}_{\mathbf{a}\in\mathbb{B}^n} \mathbf{a}^\mathsf{T} \mathbf{Q} \mathbf{a} - \mathbf{b}^\mathsf{T} \mathbf{a},$$

Number of correlated features Sim \rightarrow min, number of correlated to the target Rel \rightarrow max. where matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ of pairwise similarities of features χ_i and χ_j is

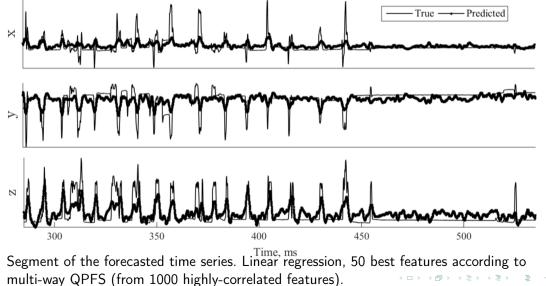

$$\mathbf{Q} = [q_{ij}] = \mathsf{Sim}(oldsymbol{\chi}_i,oldsymbol{\chi}_j) = \left| \mathrm{Cov}(oldsymbol{\chi}_i,oldsymbol{\chi}_j) \div \sqrt{\mathrm{Var}(oldsymbol{\chi}_i)\mathrm{Var}(oldsymbol{\chi}_j)}
ight|$$

and vector $\mathbf{b} \in \mathbb{R}^n$ of feature relevances to the target is

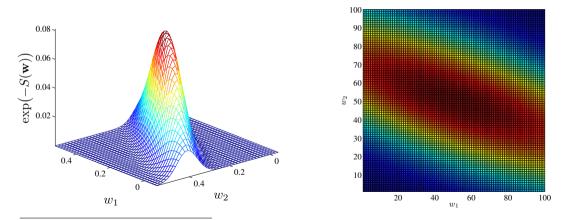
$$\mathbf{b} = [b_i] = \mathsf{Rel}(\boldsymbol{\chi}_i),$$

elements b_i are absolute values of the correlation between feature χ_i and the target **y**.

WIMAGINE (clinatec.fr) 64-Channel ECoG implant and physical motion

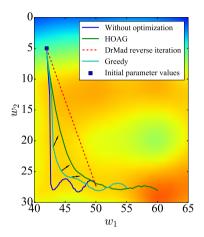


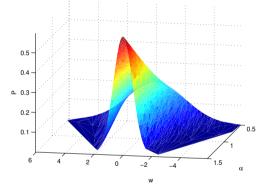
Extracts (350–370s) from voltage and wrist position time series for monkey A and 3D wrist trajectory for the same extract.


Motrenko, Strijov, 2018. Multi-way feature selection for ECoG-based BCI //Expert Systems with Applications, sub.

The wrist motion trajectory prediction with ECoG

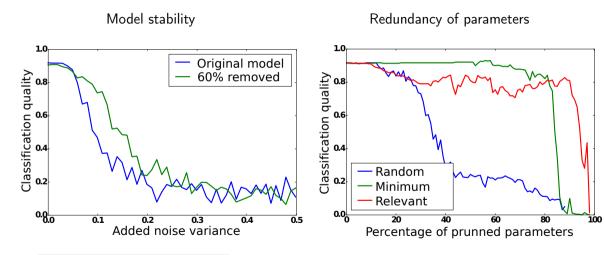
Empirical distribution of model parameters


There given a sample $\{\mathbf{w}_1, \ldots, \mathbf{w}_K\}$ of realizations of the m.r.v. w and an error function $S(\mathbf{w}|\mathfrak{D}, \mathbf{f})$. Analyze the set $\{s_k = \exp(-S(\mathbf{w}_k|\mathfrak{D}, \mathbf{f}))|k = 1, \ldots, K\}$.

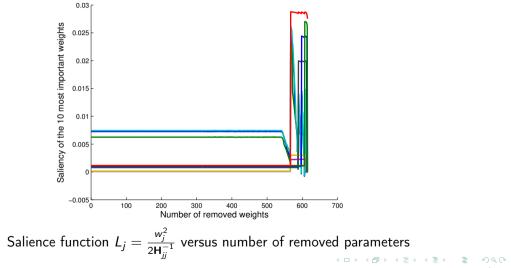

Kuznetsov, Tokmakova, Strijov. 2016. Analytic methods of structure parameters// Informatica 📱 🔊 ५ ५

13/48

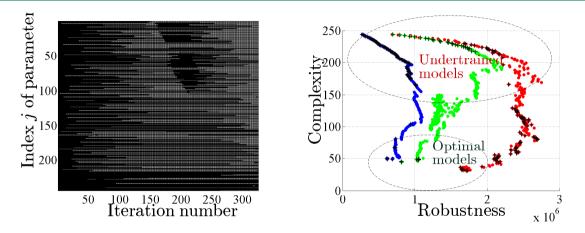
No one expected convergence for various priors...


... since there is no convergence even for a single prior.

Prior of parameters $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1})$ with inverted parameter variance $\mathbf{A} = \alpha \mathbf{I}$ versus posterior distribution $p(\mathbf{w}|\mathfrak{D}, \mathbf{A}, \mathbf{B}, \mathbf{f})$.


Bakhteev, Strijov. 2018. Variational evidence estimation // Automation Remote Control 🧃 🛌 🤤 🗠 🗨

Forecasting quality does not change until almost all connections removed



Def: Deep neural network is a model of exceeding complexity. It ignores the universal approximation theorem (George Cybenko 1989, Kurt Hornik 1991).

Neural network optimal brain damage procedure

Consequent model generation

Popova, Strijov. 2015. Selection of optimal physical activity classification model // Informatics and Applications

Let the universal model be a mixture of superpositions of primitives

The tree Γ_f corresponds to some superposition $f \in \mathfrak{F}$

sum

(ln

Х

 $f = \sin(x) + (\ln x)x$

times

(sin

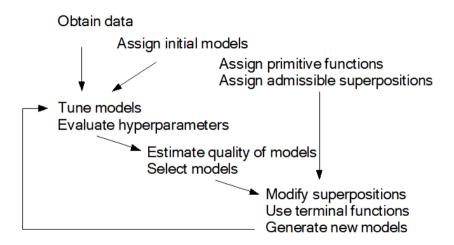
х

Construct a superposition f

1) primitive functions $\mathfrak{G} \ni g : (\mathbf{w}', \mathbf{x}') {\mapsto} \mathbf{x}''$,

2) generation rules Gen and simplification rules Rem,

3) an admissible superposition is $cod(g_{k+1}) \subseteq dom(g_k)$, for any k.

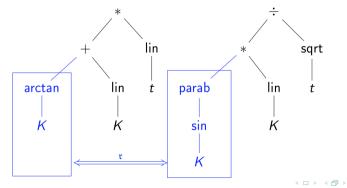

A model is the superposition $f(\mathbf{w}, \mathbf{x}) = (g_1 \circ \cdots \circ g_K)(\mathbf{w})(\mathbf{x})$. Construct a tree Γ_f

1) the root * of the tree Γ_f has the single vertex,

2) other vertices V_i correspond to the functions $g_r \in \mathfrak{G}$: $V_i \mapsto g_r$,

3) the leaves Γ_f correspond to elements of the vector **x**.

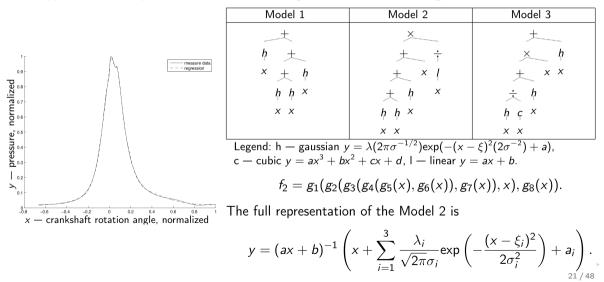
Consequent model generation



Add-delete strategy modifies a model to select it from a class, it searches around the maximum model evidence.

Genetic optimization constructs symbolic regression model structure

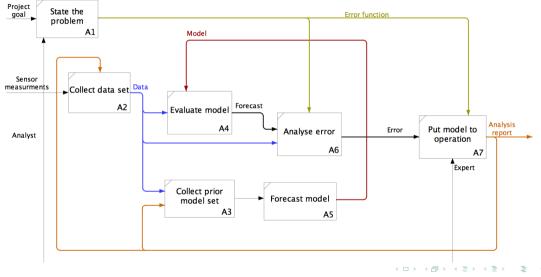
To create a model as a superposition of primitive functions


- 1) exchange random sub-trees between two models,
- 2) replace a random primitive for another one,
- 3) select the best models and repeat.

20 / 48

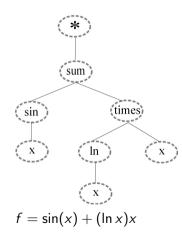
Simple superposition has 14 parameters versus 2-NN has 64 parameters

Approximate the pressure in the combusting camera of a diesel engine


TREC text document collection has 2M documents times 200K requests

f_1	$e^{\sqrt{\ln(x/y)}}$	h1	$g\left(rac{g(x)}{\sqrt{\ln(x)+x}} ight) - \ln(y)$
f_2	$\sqrt{\frac{\ln(x)}{\sqrt{y}}}$	h ₂	$g\left(rac{g(x)}{\sqrt{rac{1}{2}\ln(x)+x}} ight) - \ln(y)$
f ₃	$\sqrt[4]{\frac{x}{y}}$	h ₃	$g\left(\ln\left(\frac{g(x)}{\sqrt{\frac{1}{2}\ln(x)+x}}\right) - \ln(y)\right)$
f4	$\sqrt{y + \sqrt{\frac{x}{y}}}$	h4	$g\left(\frac{g(x)}{\sqrt{g(\sqrt{x})+x}}\right) - \ln(y)$
f ₅	$\sqrt{\sqrt{\frac{x}{y}} \cdot e^{-y}}$	h ₅	$g\left(rac{g(x)}{\sqrt{\ln(x)+\ln(y)}} ight) - \ln(y)$
f ₆	$\sqrt{\sqrt{x} + \sqrt{\frac{x}{y}}}$	h ₆	$g\left(\frac{g(\ln(x))}{\sqrt{\ln(x)+x}}\right) - \ln(y)$

The information retrieval rank models with quality of Mean Average Precision = 14.03 for TREC-8 by the USA National Institute of Standards and Technology.


Kulunchakov, Strijov. 2017. Generation of simple structured Information Retrieval functions by genetic algorithm without stagnation // Expert Systems with Applications

One model to forecast models

Link matrix \mathbf{Z}_f estimation limitations

The link matrix \mathbf{Z}_f for the tree Γ_f

	sum	times	In	sin	x
*	1	0	0	0	0
sum	0	1	1	0	0
times	0	0	0	1	1
ln	0	0	0	0	1
sin	0	0	0	0	1

The link probability matrix \mathbf{P}_f for the tree Γ_f

	sum	times	ln	sin	X
*	0.7	0.1	0.1	0.1	0.2
sum	0.2	0.7	0.8	0.1	0.2
times	0.1	0.3	0	0.8	0.8
In	0.2	0.1	0.3	0.1	0.9
sin	0.1	0.2	0.1	0	0.8

 $\mathfrak Z$ is a set of matrices corresponding to the superpositions from $\mathfrak F.$

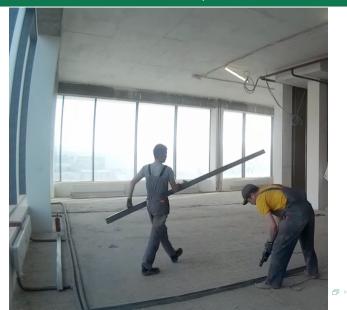
Structure learning problem

There is given a sample $\mathfrak{D} = \{(\mathbf{D}_k, f_k)\}$ where the element $\mathbf{D}_k = (\underset{m \times n}{\mathbf{X}}, \underset{m \times 1}{\mathbf{y}})$, there given \mathfrak{G} and $\mathfrak{F} = \{f_s \mid \mathbf{f}_s : (\hat{\mathbf{w}}_k, \mathbf{X}) \mapsto \mathbf{y}, s \in \mathbb{N}\}$. The goal

to find an algorithm $a: \mathbf{D}_k \mapsto f_s$ following the condition

$$\mathbf{Z}_{f_s} = \arg \max_{\mathbf{Z} \in \mathfrak{Z}} \sum_{i,j} P_{ij} \times Z_{i,j}.$$

The index \hat{s} , что $f_{\hat{s}}$ provides a minimum for the error function S:

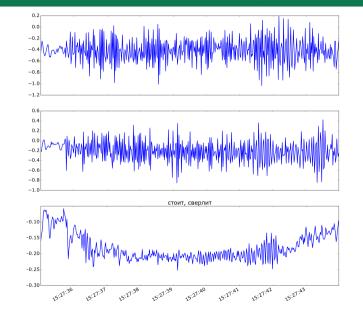

$$\hat{s} = \arg\min_{s \in \{1,...,|\mathfrak{F}|\}} S(f_s \mid \hat{\mathbf{w}}_k, \mathbf{D}_k),$$

where $\hat{\mathbf{w}}_k$ is an optimal vector of parameters f_s for each $f_s \in \mathfrak{F}$ with the fixed \mathbf{D}_k :

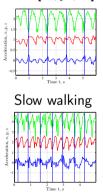
$$\hat{\mathbf{w}}_k = \arg\min_{\mathbf{w}\in\mathbb{W}_s} S(\mathbf{w} \mid f_s, \mathbf{D}_k).$$

25 / 48

Complex action: workers construct a rack (Forecsys.ru, behavioral analysis)


★ E ★ E ★ O < (*
 26 / 48
</p>

Complex movement: the worker is drilling while standing


Х

у

z

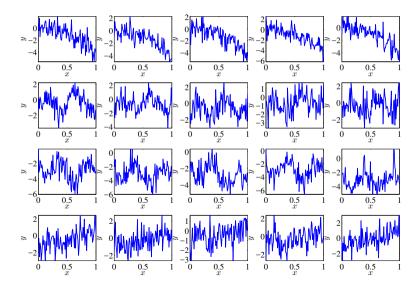
Acceleration time series $[x_t, y_t, z_t]^{\mathsf{T}}$.

< ■ > < ■ > ■ - ∽ Q (27 / 48

Jogging

Time series samples for physical activity monitoring

Instances

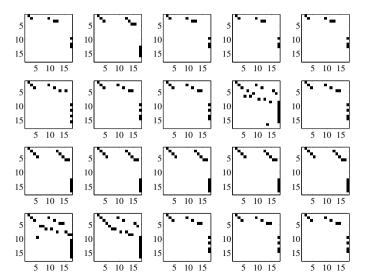

Classes

One

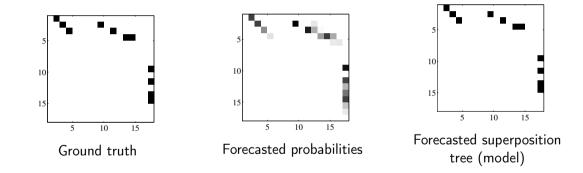
Three

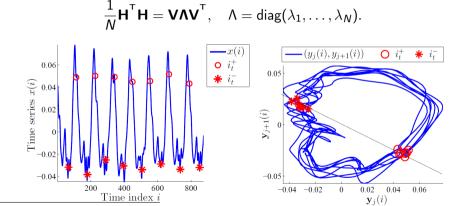
Time series samples for physical activity monitoring

Instances

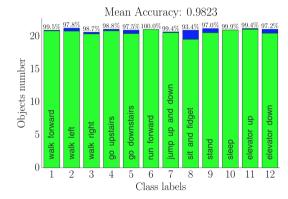

Classes

One


Three


≣ ્ગેલ્ 29/48

The initial and the forecasted superposition


Human gait detection with time series segmentation

Find dissection of the trajectory of principal components $\mathbf{y}_j = \mathbf{H}\mathbf{v}_j$, where \mathbf{H} is the Hankel matrix and \mathbf{v}_j are its eigenvectors:

Replace universal models for interpretable superposition: NN \rightarrow SSA+LgR

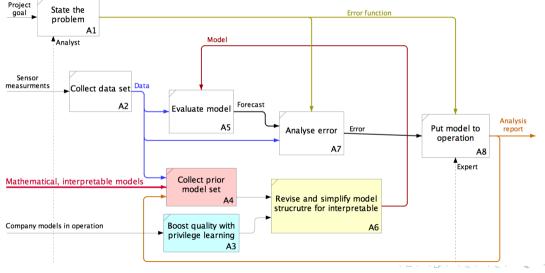
Neural network replaced by Singular Structure Analysis + Linear regression boosts quality and puts the model into a wristwatch.

Performance of the human physical activities classification

Ignatov, Strijov. 2015. Human activity recognition // Multimedia Tools and Applications 🖘 📱 🗠 🤉

Discover the iris by linear mixture (possible example)

Replace a proprietary algorithm or CNN for mixture of linear models to drop the computational complexity.



Example of interpretable modelling

Chigrinsky. 2017. Modeling of the iris movement by optical flow//BS Thesis, adv. by Matveev 📱 🔊 a 🖉

Put interpretable models to operation along with privilege learning models

34 / 48

List of the model generation paradigms

- 1. Binary/continuous/graph optimization of model structures
- 2. Neural networks forecast hyperparameters of neural networks (ref. NIPS 2017)
- 3. Networks forecast superpositions
- 4. Interpretable models replace neural network blocks
- 5. Company models boost quality of neighbor models by privilege learning

- $1. \ \mbox{Lay}$ the foundations for the forecasting of model structures
- 2. Develop the theory of local modeling for signals of wearable devices
- 3. Deploy standards to exchange local and universal models

30+ projects start 14.2.18. with 60 analysts, experts and MIPT students:

практика Стрижов 🏮 🔍