Boosting

Victor Kitov

Motivation for ensembles

- Consider *M* classifiers $f_1(x), ..., f_M(x)$, performing binary classification.
- Let $\xi_1, ... \xi_M$ denote indicators of mistakes by $f_1, ... f_M$ on particular observation x
- Suppose $\xi_1, ..., \xi_M$ are independent binomial variables with $P(\xi_i = 1) = p$
- Then $\mathbb{E}\xi_i = p$, $Var[\xi_i] = p(1-p)$
- Consider F(x) be aggregating classifier, assigning x to the class with maximum votes among $f_1(x), ... f_M(x)$.
- Consider

$$\eta = \frac{\xi_1 + \ldots + \xi_M}{M}$$

- Probability of mistake = probability that majority of $\xi_1, ..., \xi_M$ are ones = $P(\eta > 0.5)$.
- $P(\eta > 0.5) \rightarrow 0$ as $M \rightarrow \infty$ because $\mathbb{E}\eta = p, Var[\eta] = \frac{p(1-p)}{M}$.

Linear ensembles

Linear ensemble:

$$F(x) = f_0(x) + c_1 h_1(x) + \dots + c_M h_M(x)$$

Regression: $\hat{y}(x) = F(x)$ **Binary classification:** $score(y|x) = F(x), \ \hat{y}(x) = sign F(x)$

- Notation: $h_1(x), ..., h_M(x)$ are called *base learners, weak learners, base models*.
- Too expensive to optimize f₀(x), h₁(x), ...h_M(x) and c₁, ...c_M jointly for large M.
- Idea: optimize $f_0(x)$ and then each pair $(h_m(x), c_m)$ greedily.
- After ensemble is built we can fine-tune $c_1, ..., c_M$ by fitting features $f_0(x), h_1(x), ..., h_M(x)$ with linear regression/classifier.

Forward stagewise additive modeling (FSAM)

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$, general form of "base learner" $h(x|\gamma)$ (dependent from parameter γ) and the number M of successive additive approximations.

• Fit initial approximation $f_0(x) = \arg\min_f \sum_{i=1}^N \mathcal{L}(f(x_i), y_i)$

2 For
$$m = 1, 2, ... M$$
:

find next best classifier

$$(c_m, h_m) = \arg\min_{h,c} \sum_{i=1}^N \mathcal{L}(f_{m-1}(x_i) + ch(x_i), y_i)$$

2 set

$$f_m(x) = f_{m-1}(x) + c_m h_m(x)$$

Output: approximation function $f_M(x) = f_0(x) + \sum_{m=1}^{M} c_m h_m(x)$

Comments on FSAM

- Number of steps *M* should be determined by performance on validation set.
- Step 1 need not be solved accurately, since its mistakes are expected to be corrected by future base learners.
 - we can take $f_0(x) = \arg \min_{\beta \in \mathbb{R}} \sum_{i=1}^N \mathcal{L}(\beta, y_i)$ or simply $f_0(x) \equiv 0$.
- By similar reasoning there is no need to solve 2.1 accurately
 - typically very simple base learners are used such as trees of depth=1,2,3.
- For some loss functions, such as $\mathcal{L}(y, f(x)) = e^{-yf(x)}$ we can solve FSAM explicitly.
- For general loss functions gradient boosting scheme should be used.

Adaboost (discrete version): assumptions

- \bullet binary classification task $y \in \{+1,-1\}$
- family of base classifiers $h(x) = h(x|\gamma)$ where γ is some fitted parametrization.
- $h(x) \in \{+1, -1\}$
- classification is performed with
 - $\hat{y} = sign\{f_0(x) + c_1 f_1(x) + ... + c_M f_M(x)\}$
- optimized loss is $\mathcal{L}(y, f(x)) = e^{-yf(x)}$
- FSAM is applied

Adaboost (discrete version): algorithm

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of additive weak classifiers M, a family of weak classifiers $h(x) \in \{+1, -1\}$, trainable on weighted datasets.

- Initialize observation weights $w_i = 1/n$, i = 1, 2, ...n.
- **2** for m = 1, 2, ... M:
 - fit $h^m(x)$ to training data using weights w_i
 - 2 compute weighted misclassification rate:

$$E_m = \frac{\sum_{i=1}^N w_i \mathbb{I}[h^m(x) \neq y_i]}{\sum_{i=1}^N w_i}$$

- if $E_M > 0.5$ or $E_M = 0$: terminate procedure.
- compute $c_m = \frac{1}{2} \ln ((1 E_m)/E_m)$
- increase all weights, where misclassification with h^m(x) was made:

$$w_i \leftarrow w_i e^{2c_m}, i \in \{i : h^m(x_i) \neq y_i\}$$

Output: composite classifier $f(x) = \text{sign}\left(\sum_{m=1}^M c_m h^m(x)\right)$

Set initial approximation, typically $f_0(x) \equiv 0$. Apply FSAM for m = 1, 2, ... M:

$$(c_m, h^m) = \arg \min_{c_m, h^m} \sum_{i=1}^N \mathcal{L}(f_{m-1}(x_i) + c_m h^m(x), y_i)$$

= $\arg \min_{c_m, h^m} \sum_{i=1}^N e^{-y_i f_{m-1}(x_i)} e^{-c_m y_i h^m(x)}$
= $\arg \min_{c_m, h^m} \sum_{i=1}^N w_i^m e^{-c_m y_i h^m(x_i)}, \quad w_i^m = e^{-y_i f_{m-1}(x_i)}$

$$\sum_{i=1}^{N} w_{i}^{m} e^{-c_{m}y_{i}h^{m}(x_{i})} = \sum_{i:h^{m}(x_{i})=y_{i}} w_{i}^{m} e^{-c_{m}} + \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m} e^{c_{m}}$$
$$= e^{-c_{m}} \sum_{i:h^{m}(x_{i})=y_{i}} w_{i}^{m} + e^{c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$
$$= e^{c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m} + e^{-c_{m}} \sum_{i=1}^{N} w_{i}^{m} - e^{-c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$
$$= e^{-c_{m}} \sum_{i} w_{i}^{m} + (e^{c_{m}} - e^{-c_{m}}) \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$

Since $c_m \ge 0$ $h_m(x)$ should be found from

$$h_m(x_i) = rgmin_h \sum_{\substack{ ext{ off } n \ y_i
ext{ off }}}^N w_i^m \mathbb{I}[h(x_i)
eq y_i]$$

Denote
$$F(c_m) = \sum_{i=1}^n w_i^m \exp(-c_m y_i h^m(x_i))$$
. Then

$$\frac{\partial F(c_m)}{\partial c_m} = -\sum_{i=1}^N w_i^m e^{-c_m y_i h^m(x_i)} y_i h^m(x_i) = 0$$

$$-\sum_{i:h^m(x_i)=y_i} w_i^m e^{-c_m} + \sum_{i:h^m(x_i)\neq y_i} w_i^m e^{c_m} = 0$$

$$e^{2c_m} = \frac{\sum_{i:h^m(x_i)\neq y_i} w_i^m}{\sum_{i:h^m(x_i)\neq y_i} w_i^m}$$

$$c_m = \frac{1}{2} \ln \frac{\left(\sum_{i:h^m(x_i)\neq y_i} w_i^m\right) / \left(\sum_{i=1}^N w_i^m\right)}{\left(\sum_{i:h^m(x_i)\neq y_i} w_i^m\right) / \left(\sum_{i=1}^N w_i^m\right)} = \frac{1}{2} \ln \frac{1-E_m}{E_m},$$
where $E_m := \frac{\sum_{i=1}^N w_i^m \mathbb{I}[h^m(x_i)\neq y_i]}{\sum_{x_i\neq y_i \neq i=1}^N w_i^m}$

Weights recalculation:

$$w_{i}^{m+1} \stackrel{df}{=} e^{-y_{i}f_{m}(x_{i})} = e^{-y_{i}f_{m-1}(x_{i})}e^{-y_{i}c_{m}h^{m}(x_{i})}$$

Noting that $-y_{i}h^{m}(x_{i}) = 2\mathbb{I}[h^{m}(x_{i}) \neq y_{i}] - 1$, we can rewrite:
 $w_{i}^{m+1} = e^{-y_{i}f_{m-1}(x_{i})}e^{c_{m}(2\mathbb{I}[h^{m}(x_{i})\neq y_{i}]-1)} =$
 $= w_{i}^{m}e^{2c_{m}\mathbb{I}[h^{m}(x_{i})\neq y_{i}]}e^{-c_{m}} \propto w_{i}^{m}e^{2c_{m}\mathbb{I}[h^{m}(x_{i})\neq y_{i}]}$

Comments:

- We can remove common constants from weights.
- $w_i^{m+1} = w_i^m$ for correctly classified objects by $h_m(x)$.
- $w_i^{m+1} = w_i^m e^{2c_m}$ for incorrectly classified objects by $h_m(x)$.

• so later classifiers will pay more attention to them

Table of Contents

Motivation

- Problem: For general loss function *L* FSAM cannot be solved explicitly
- Analogy with function minimization: when we can't find optimum explicitly we use numerical methods
- Gradient boosting: numerical method for iterative loss minimization

Gradient descent algorithm

$$F(w) \to \min_{w}, \quad w \in \mathbb{R}^{N}$$

Gradient descend algorithm:

INPUT:

 $\eta\text{-}\mathsf{parameter},$ controlling the speed of convergence $M\text{-}\mathsf{number}$ of iterations

ALGORITHM:

initialize w
for
$$m = 1, 2, ...M$$
:
 $\Delta w = \frac{\partial F(w)}{\partial w}$
 $w = w - \eta \Delta w$

Modified gradient descent algorithm

INPUT:

M-number of iterations

ALGORITHM:

initialize w
for
$$m = 1, 2, ...M$$
:
$$\Delta w = \frac{\partial F(w)}{\partial w}$$
$$c^* = \arg \min_c F(w - c\Delta w)$$
$$w = w - c^* \Delta w$$

- Now consider $F(f(x_1), ..., f(x_N)) = \sum_{n=1}^N \mathcal{L}(f(x_n), y_n)$
- Gradient descent performs pointwise optimization, but we need generalization, so we optimize in space of functions.
- Gradient boosting implements modified gradient descent in function space:

• find
$$z_i = -\frac{\partial \mathcal{L}(r, y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$$

• fit base learner $h_m(x)$ to $\{(x_i, z_i)\}_{i=1}^N$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- 2 For each step $m = 1, 2, \dots M$:

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- 2 For each step $m = 1, 2, \dots M$:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- 2 For each step $m = 1, 2, \dots M$:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r, y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - **2** fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to\min_{h_m}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- 2 For each step m = 1, 2, ... M:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r, y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - **2** fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to\min_{h_m}$$

3 solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- 2 For each step m = 1, 2, ... M:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r, y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - **2** fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to\min_{h_m}$$

3 solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

• set $f_m(x) = f_{m-1}(x) + c_m h_m(x)$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- 2 For each step m = 1, 2, ... M:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r, y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - **2** fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2 \to \min_{h_m}$$

3 solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

• set $f_m(x) = f_{m-1}(x) + c_m h_m(x)$ **Output**: approximation function $f_M(x) = f_0(x) + \sum_{m=1}^M c_m h_m(x)$

Gradient boosting: examples

In gradient boosting

$$\sum_{n=1}^{N} \left(h_m(x_n) - \left(-\frac{\partial \mathcal{L}(r,y)}{\partial r} |_{r=f^{m-1}(x_n)} \right) \right)^2 \to \min_{h_m}$$

Specific cases:

•
$$\mathcal{L} = \frac{1}{2} (r - y)^2 \Longrightarrow -\frac{\partial \mathcal{L}}{\partial r} = -(r - y) = (y - r)$$

• $h_m(x)$ is fitted to compensate regression errors $(y - f_{m-1}(x))$

•
$$\mathcal{L} = [-ry]_+ = > -\frac{\partial \mathcal{L}}{\partial r} = \begin{cases} 0, & ry > 0\\ y, & ry < 0 \end{cases}$$

• $h_m(x)$ is fitted to $y\mathbb{I}[f(x)y < 0]$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- 2 For each step m = 1, 2, ... M:

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- 2 For each step m = 1, 2, ... M:

1 calculate derivatives
$$z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- 2 For each step $m = 1, 2, \dots M$:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - **9** fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{j=1}^{J_m}$.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- 2 For each step m = 1, 2, ... M:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - **2** fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - (a) for each terminal region R_{jm} , $j = 1, 2, ..., J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg \min_{\gamma} \sum_{x_i \in R_{jm}} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- 2 For each step m = 1, 2, ... M:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - **2** fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - for each terminal region R_{jm} , $j = 1, 2, ..., J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg \min_{\gamma} \sum_{x_i \in R_{jm}} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

() update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- 2 For each step m = 1, 2, ... M:
 - calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_{jm}\}_{i=1}^{J_m}$.
 - (a) for each terminal region R_{jm} , $j = 1, 2, ..., J_m$ solve univariate optimization problem:

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

• update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$ Output: approximation function $f_M(x)$

Linear loss function approximation

Consider sample (x, y).

$$\mathcal{L}(f(x) + h(x), y) \approx \mathcal{L}(f(x), y) + h(x) \left. \frac{\partial \mathcal{L}(r, y)}{\partial r} \right|_{r=f(x)}$$

=> $h(x)$ should be fitted to $\left. \frac{\partial \mathcal{L}(r, y)}{\partial r} \right|_{r=f(x)}$.

Newton method of optimization

- Suppose we want $F(w) \rightarrow \min_{w}$
- Let $w^* = \arg \min_w F(w)$
- Then $F'(w^*) = \mathbf{0}$
- Taylor expansion of F'(w) around w to w^* :

$$F'(w^*) = 0 = F'(w) + F''(w)(w^* - w) + o(||w - w^*||)$$

It follows that

$$w^* - w = -\left[F''(w)\right]^{-1}F'(w) + o(||w - w^*||)$$

• Iterative scheme for minimization:

$$w \leftarrow w - \left[F''(w)\right]^{-1}F'(w)$$

- it is scaled gradient descent
- speed of convergence faster (uses quadratic approximation in Taylor expansion)
- converges in one step for quadratic F(w).

Quadratic loss function approximation

$$\mathcal{L}(f(x) + h(x), y) =$$

$$\mathcal{L}(f(x), y) + h(x) \left. \frac{\partial \mathcal{L}(r, y)}{\partial r} \right|_{r=f(x)} + \frac{1}{2} (h(x))^2 \left. \frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} \right|_{r=f(x)} =$$

$$\frac{1}{2} \left. \frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} \right|_{r=f(x)} \left(h(x) + \frac{\frac{\partial \mathcal{L}(r, y)}{\partial r} \Big|_{r=f(x)}}{\frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} \Big|_{r=f(x)}} \right)^2 + const(h(x))$$

accivit

=>
$$h(x)$$
 should be fitted to $-\frac{\frac{\partial \mathcal{L}(r,y)}{\partial r}\Big|_{r=f(x)}}{\frac{\partial^2 \mathcal{L}(r,y)}{\partial r^2}\Big|_{r=f(x)}}$ with weight $\frac{\partial^2 \mathcal{L}(r,y)}{\partial r^2}\Big|_{r=f(x)}$

Example: LogitBoost

Binary classification: $y \in \{+1, -1\}$ Assumption:

$$p(y|x) = \frac{1}{1 + e^{-yf(x)}}$$
(1)

Properties:

$$p(y|x) \in [0, 1], p(+1|x) + p(-1|x) = 1$$

Function fitting done with maximum likelihood:

$$p(Y|X) = \prod_{i=1}^{N} p(y_i|x_i) \to \max_f$$

$$f = \arg \max_{f} \sum_{i=1}^{N} \ln p(y_i | x_i) = \arg \min_{f} \sum_{i=1}^{N} \ln (1 + e^{-yf(x)})$$

=> loss function is $\mathcal{L}(f(x), y) = \ln(1 + e^{-yf(x)}).$

Example: LogitBoost

$$\mathcal{L}(r,y) = \ln(1 + e^{-yr})$$
, so
 $\frac{\partial \mathcal{L}(r,y)}{\partial r} = \frac{e^{-yr}(-y)}{1 + e^{-yr}} = -\frac{y}{1 + e^{yr}}$

$$\frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} = -\frac{-y e^{yr} y}{\left(1 + e^{yr}\right)^2} = \frac{e^{yr}}{\left(1 + e^{yr}\right)\left(1 + e^{yr}\right)} = \frac{1}{\left(1 + e^{-yr}\right)\left(1 + e^{yr}\right)}$$

It follows, that
$$\frac{\partial \mathcal{L}(r,y)}{\partial r}\Big|_{r=f(x)} = -yp_{f(x)}(-y)$$
 and
 $\frac{\partial^{2}\mathcal{L}(r,y)}{\partial r^{2}} = p_{f(x)}(y)\left(1 - p_{f(x)}(y)\right)$
 $=> h(x)$ should be fitted to $-\frac{\frac{\partial \mathcal{L}(r,y)}{\partial r}\Big|_{r=f(x)}}{\frac{\partial^{2}\mathcal{L}(r,y)}{\partial r^{2}}\Big|_{r=f(x)}} = y\left(1 + e^{-yf(x)}\right) = \frac{y}{p_{f(x)}(y)}$
with weight $\frac{\partial^{2}\mathcal{L}(r,y)}{\partial r^{2}}\Big|_{r=f(x)} = p_{f(x)}(y)\left(1 - p_{f(x)}(y)\right)$
 c_{m} is not fitted because $h(x)$ is fitted directly to local optimum under
quadratic approximation.

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of steps M. **3** Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of steps M.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- 2 For each step $m = 1, 2, \dots M$:

- **Input**: training dataset (x_i, y_i) , i = 1, 2, ...N; number of steps M.
 - Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
 - **2** For each step m = 1, 2, ... M:
 - calculate targets $z_i = y_i \left(1 + e^{-y f_{m-1}(x_i)}\right)$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of steps M.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

2 For each step m = 1, 2, ... M:

- calculate targets $z_i = y_i \left(1 + e^{-y f_{m-1}(x_i)}\right)$
- **2** calculate weights $w_i = p_{f_{m-1}(x)}(y) (1 p_{f_{m-1}(x)}(y))$
- **3** fit h_m by minimization

$$\sum_{n=1}^N w_n (h_m(x_n) - z_n)^2 \to \min_{h_m}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of steps M.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

2 For each step m = 1, 2, ... M:

- calculate targets $z_i = y_i \left(1 + e^{-y f_{m-1}(x_i)}\right)$
- **2** calculate weights $w_i = p_{f_{m-1}(x)}(y) (1 p_{f_{m-1}(x)}(y))$
- **3** fit h_m by minimization

$$\sum_{n=1}^N w_n (h_m(x_n) - z_n)^2 \to \min_{h_m}$$

• set $f_m(x) = f_{m-1}(x) + h_m(x)$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of steps M.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

2 For each step m = 1, 2, ... M:

- calculate targets $z_i = y_i \left(1 + e^{-yf_{m-1}(x_i)}\right)$
- **2** calculate weights $w_i = p_{f_{m-1}(x)}(y) (1 p_{f_{m-1}(x)}(y))$
- **3** fit h_m by minimization

$$\sum_{n=1}^N w_n(h_m(x_n)-z_n)^2 \to \min_{h_m}$$

3 set
$$f_m(x) = f_{m-1}(x) + h_m(x)$$

Output:

- approximation function $f_M(x) = f_0(x) + \sum_{m=1}^M h_m(x)$
- classifier $\widehat{y} = sign(f_M(x))$
- class probabilities $p(y|x) = \frac{1}{1+e^{-yf_M(x)}}$

Quadratic loss function approximation - discrete h(x)

$$\sum_{i} \mathcal{L}(f(x_{i}) + h(x_{i}), y_{i}) =$$

$$\sum_{i} \mathcal{L}(f(x_{i}), y_{i}) + \sum_{i} ch(x_{i}) \left. \frac{\partial \mathcal{L}(r, y_{i})}{\partial r} \right|_{r=f(x_{i})} + \sum_{i} \frac{1}{2} (ch(x_{i}))^{2} \left. \frac{\partial^{2} \mathcal{L}(r, y_{i})}{\partial r^{2}} \right|_{r=f(x_{i})} =$$

$$\sum_{i} \mathcal{L}(f(x_{i}), y_{i}) + \sum_{i} h(x_{i}) c \left. \frac{\partial \mathcal{L}(r, y_{i})}{\partial r} \right|_{r=f(x_{i})} + \sum_{i} \frac{1}{2} c^{2} \left. \frac{\partial^{2} \mathcal{L}(r, y_{i})}{\partial r^{2}} \right|_{r=f(x_{i})} =$$

$$\sum_{i} \mathcal{L}(f(x_{i}), y_{i}) - c \sum_{i} y_{i} p_{f(x_{i})}(-y_{i}) h(x_{i}) + \frac{1}{2} c^{2} \sum_{i} p_{f(x_{i})}(y_{i}) \left(1 - p_{f(x_{i})}(y_{i})\right)$$
(2)

=> h(x) should be fitted to y_i with weights equal to probability of error $p_{f(x_i)}(-y_i)$. c is the minimizer of (2) and equal to

$$c^{*} = \frac{\sum_{i} y_{i} p_{f(x_{i})}(-y_{i}) h(x_{i})}{\sum_{i} p_{f(x_{i})}(y_{i}) (1 - p_{f(x_{i})}(y_{i}))}$$

26/30

Modification of boosting for trees

- Compared to first method of gradient boosting, boosting of regression trees finds additive coefficients individually for each terminal region R_{jm} , not globally for the whole classifier $h^m(x)$.
- This is done to increase accuracy: forward stagewise algorithm cannot be applied to find R_{jm} , but it can be applied to find γ_{jm} , because second task is solvable for arbitrary *L*.
- Max leaves J
 - ullet interaction between no more than J-1 terms
 - usually $4 \le J \le 8$
- *M* controls underfitting-overfitting tradeoff and selected using validation set

Shrinkage & subsampling

• Shrinkage of general GB, step (d):

$$f_m(x) = f_{m-1}(x) + \nu c_m h_m(x)$$

• Shrinkage of trees GB, step (d):

$$f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$$

• Comments:

- $\nu \in (0,1]$ • $\nu \downarrow \Longrightarrow M \uparrow$
- Subsampling
 - increases speed of fitting
 - may increase accuracy

Boosting - Victor Kitov

Gradient boosting

Case of $C \ge 3$ classes

- Can fit C independent boostings (one vs. all scheme)
 - $\widehat{y} = \arg \max_{y} f_{my}(x)$
- Alternatively can optimize multivariate $\mathcal{L}(f(x), y) = -\ln p(y|x)$
 - using linear or quadratic approximation
 - for quadratic approximation need to invert $\frac{\partial^2}{\partial r^2} F(r, y)\Big|_{r=f(x)}$. Can use diagonal approximation.

Types of boosting

- Loss function *F*:
 - F(|f(x) y|) regression
 - $-\ln p(y|x)$ or $F(y \cdot score(y = +1|x))$ binary classification
 - $-\ln p(y|x)$ multiclass classification
- Optimization
 - analytical (AdaBoost)
 - gradient based
 - based on quadratic approximation
- Base learners
 - continious
 - discrete
- Classification
 - binary
 - multiclass
- Extensions: shrinkage, subsampling