Байесовская теория классификации и методы восстановления плотности

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

10 апреля 2014

Содержание

- 1 Оптимальный байесовский классификатор
 - Вероятностная постановка задачи классификации
 - Задача восстановления плотности распределения
 - Наивный байесовский классификатор
- Непараметрическое восстановление плотности
 - Одномерный случай
 - Многомерный случай
 - Метод парзеновского окна
- Параметрическое восстановление плотности
 - Принцип максимума правдоподобия
 - Нормальный дискриминантный анализ
 - Проблемы мультиколлинеарности и переобучения

Постановка задачи

$$X$$
 — объекты, Y — ответы, $X \times Y$ — в.п. с плотностью $p(x,y)$;

Дано:

$$X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$$
 — простая выборка;

Найти:

классификатор $a\colon X\to Y$ с минимальной вероятностью ошибки.

Временное допущение: пусть известна совместная плотность

$$p(x, y) = p(x) P(y|x) = P(y)p(x|y).$$

P(y) — априорная вероятность класса y;

p(x|y) — функция правдоподобия класса y;

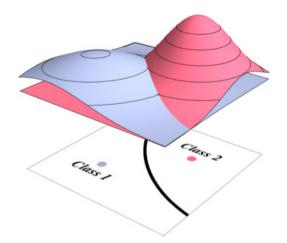
P(y|x) — апостериорная вероятность класса y;

Принцип максимума апостериорной вероятности:

$$a(x) = \arg\max_{y \in Y} P(y|x) = \arg\max_{y \in Y} P(y)p(x|y).$$

Классификация по максимуму функции правдоподобия

Частный случай: $a(x) = \arg\max_{y \in Y} p(x|y)$ при P(y) = const.



Функционал среднего риска

 $a\colon X \to Y$ разбивает X на непересекающиеся области:

$$A_y = \{x \in X \mid a(x) = y\}, \quad y \in Y.$$

Ошибка: объект x класса y попадает в A_s , $s \neq y$.

Вероятность ошибки: $P(A_s, y) = \int_{A_s} p(x, y) dx$.

Потеря от ошибки: задана $\lambda_{ys}\geqslant 0$, для всех $(y,s)\in Y imes Y$.

Средний риск — мат.ожидание потери для классификатора а:

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y),$$

Оптимальный байесовский классификатор

Теорема

Если известны P(y) и p(x|y), то минимальный средний риск R(a) имеет байесовский классификатор

$$a(x) = \arg\min_{s \in Y} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y).$$

Теорема

Если к тому же $\lambda_{yy}=0$ и $\lambda_{ys}\equiv\lambda_y$ для всех $y,s\in Y$, то минимум среднего риска R(a) достигается при

$$a(x) = \arg \max_{y \in Y} \lambda_y P(y) p(x|y).$$

Итак, есть две подзадачи, причём вторую мы уже решили!

🕛 Дано:

$$X^\ell = (x_i, y_i)_{i=1}^\ell$$
 — обучающая выборка.

Найти:

эмпирические оценки $\hat{P}(y)$ и $\hat{p}(x|y)$, $y \in Y$ (восстановить плотность распределения по выборке).

Дано:

априорные вероятности
$$P(y)$$
, функции правдоподобия $p(x|y)$, $y \in Y$.

Найти:

классификатор $a: X \times Y$, минимизирующий R(a).

Ехидное замечание: Когда вместо P(y) и p(x|y) подставляются их эмпирические оценки, байесовский классификатор перестаёт быть оптимальным.

Задачи эмпирического оценивания

• Оценивание априорных вероятностей частотами

$$\hat{P}(y) = \frac{\ell_y}{\ell}, \quad \ell_y = |X_y|, \quad X_y = \{x_i \in X : y_i = y\}, \quad y \in Y.$$

Оценивание функций правдоподобия:
 Дано:

$$X^m = \{x_1, \dots, x_m\}$$
 — простая выборка (X_y) без ответов y_i).

Найти:

эмпирическую оценку плотности $\hat{p}(x)$, аппроксимирующую истинную плотность p(x) на всём X:

$$\hat{p}(x) \to p(x)$$
 при $m \to \infty$.

Анонс: три подхода к оцениванию плотностей

• Параметрическое оценивание плотности:

$$\hat{p}(x) = \varphi(x, \theta).$$

Восстановление смеси распределений:

$$\hat{p}(x) = \sum_{j=1}^{k} w_j \varphi(x, \theta_j), \quad k \ll m.$$

Непараметрическое оценивание плотности:

$$\hat{p}(x) = \sum_{i=1}^{m} \frac{1}{mV(h)} K\left(\frac{\rho(x, x_i)}{h}\right).$$

Наивный байесовский классификатор

Допущение (наивное):

Признаки $f_j: X \to D_j$ — независимые случайные величины с плотностями распределения, $p_i(\xi|y)$, $y \in Y$, $j = 1, \ldots, n$.

Тогда функции правдоподобия классов представимы в виде произведения одномерных плотностей по признакам:

$$p(x|y) = p_1(\xi_1|y) \cdots p_n(\xi_n|y), \quad x = (\xi_1, \dots, \xi_n), \quad y \in Y.$$

Прологарифмируем (для удобства). Получим классификатор

$$a(x) = \arg\max_{y \in Y} \left(\ln \lambda_y \hat{P}(y) + \sum_{i=1}^n \ln \hat{p}_i(\xi_i|y) \right).$$

Восстановление n одномерных плотностей

— намного более простая задача, чем одной *п*-мерной.

Начнём с определения плотности вероятности

Дискретный случай: $|X| \ll m$. Гистограмма значений x_i :

$$\hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} [x_i = x].$$

Одномерный непрерывный случай: $X = \mathbb{R}$. По определению плотности, если P[a, b] — вероятностная мера отрезка [a, b]:

$$p(x) = \lim_{h \to 0} \frac{1}{2h} P[x - h, x + h],$$

Эмпирическая оценка плотности по окну ширины h (заменяем вероятность на долю объектов выборки):

$$\hat{p}_h(x) = \frac{1}{2h} \frac{1}{m} \sum_{i=1}^m [|x - x_i| < h].$$

Локальная непараметрическая оценка Парзена-Розенблатта

Эмпирическая оценка плотности по окну ширины h:

$$\hat{p}_h(x) = \frac{1}{mh} \sum_{i=1}^m \frac{1}{2} \left[\frac{|x - x_i|}{h} < 1 \right].$$

Обобщение: оценка Парзена-Розенблатта по окну ширины h:

$$\hat{p}_h(x) = \frac{1}{mh} \sum_{i=1}^m K\left(\frac{x - x_i}{h}\right),$$

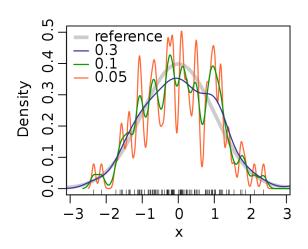
где K(r) — *ядро*, удовлетворяющее требованиям:

- чётная функция;
- нормированная функция: $\int K(r) dr = 1$;
- (как правило) невозрастающая, неотрицательная функция.

В частности, при $K(r) = \frac{1}{2} \left[|r| < 1
ight]$ имеем эмпирическую оценку.

Пример. Ядерные оценки плотности при разных h

Оценка $\hat{p}_h(x)$ существенно зависит от ширины окна h:



Обоснование оценки Парзена-Розенблатта

Теорема (одномерный случай, $X=\mathbb{R}$)

Пусть выполнены следующие условия:

- 1) X^m простая выборка из распределения p(x);
- 2) ядро K(z) непрерывно и ограничено: $\int_X K^2(z) dz < \infty$;
- 3) последовательность h_m : $\lim_{m \to \infty} h_m = 0$ и $\lim_{m \to \infty} m h_m = \infty$.

Тогда:

- 1) $\hat{p}_{h_m}(x) o p(x)$ при $m o \infty$ для почти всех $x \in X$;
- 2) скорость сходимости имеет порядок $O(m^{-2/5})$.

А как быть в многомерном случае, когда $X = \mathbb{R}^n$?

Два варианта обобщения на многомерный случай

1. Если объекты описываются n числовыми признаками $f_i \colon X \to \mathbb{R}, \ i = 1, \dots, n.$

$$\hat{p}_h(x) = \frac{1}{m} \sum_{i=1}^m \prod_{j=1}^n \frac{1}{h_j} K\left(\frac{f_j(x) - f_j(x_i)}{h_j}\right).$$

2. Если на X задана функция расстояния $\rho(x,x')$:

$$\hat{p}_h(x) = \frac{1}{mV(h)} \sum_{i=1}^m K\left(\frac{\rho(x,x_i)}{h}\right),$$

где $V(h) = \int_X K\left(rac{
ho(x,x_i)}{h}
ight) dx$ — нормирующий множитель.

Замечание: V(h) не должен зависеть от x_i (однородность $\langle X, \rho \rangle$).

Упражнение: Приведите примеры таких K и ρ , чтобы варианты 1 и 2 оказались эквивалентными.

Метод парзеновского окна

Парзеновская оценка плотности для каждого класса $y \in Y$:

$$\hat{p}_h(x|y) = \frac{1}{\ell_y V(h)} \sum_{i: y_i = y} K\left(\frac{\rho(x, x_i)}{h}\right),$$

Метод парзеновского окна (Parzen window):

$$a(x; X^{\ell}, h) = \arg \max_{y \in Y} \lambda_{y} \frac{P(y)}{\ell_{y}} \sum_{i: y_{i} = y} K\left(\frac{\rho(x, x_{i})}{h}\right).$$

Остаются вопросы:

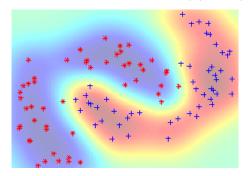
- 1) на что влияет ядро K(r) и как его выбрать?
- 2) на что влияет ширина окна h и как её выбрать?
- 3) откуда взять функцию расстояния $\rho(x, x')$?

Метод парзеновского окна — метрический классификатор

Метод парзеновского окна (Parzen window):

$$a(x; X^{\ell}, h) = \arg\max_{y \in Y} \Gamma_{y}(x), \quad \Gamma_{y}(x) = \lambda_{y} \frac{P(y)}{\ell_{y}} \sum_{i: y_{i} = y} K\left(\frac{\rho(x, x_{i})}{h}\right)$$

Цветом передаётся значение разности $\Gamma_{+}(x) - \Gamma_{*}(x)$:



Выбор метрики (функция расстояния)

Один из возможных вариантов

— взвешенная метрика Минковского:

$$\rho(x,x') = \left(\sum_{j=1}^{n} w_{j} |f_{j}(x) - f_{j}(x')|^{p}\right)^{\frac{1}{p}},$$

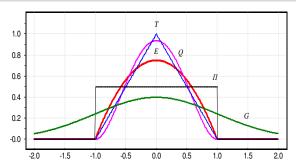
где w_i — неотрицательные веса признаков, p > 0.

В частности, если $w_i \equiv 1$ и p=2, то имеем евклидову метрику.

Роль весов w_i :

- 1) нормировка признаков;
- 2) степень важности признаков;
- 3) отбор признаков (какие $w_i = 0$?);

Часто используемые ядра



$$E(r)=rac{3}{4}(1-r^2)ig[|r|\leqslant 1ig]$$
 — оптимальное (Епанечникова); $Q(r)=rac{15}{16}(1-r^2)^2ig[|r|\leqslant 1ig]$ — квартическое; $T(r)=ig(1-|r|ig)ig[|r|\leqslant 1ig]$ — треугольное; $G(r)=(2\pi)^{-1/2}\exp(-rac{1}{2}r^2)$ — гауссовское; $\Pi(r)=rac{1}{2}ig[|r|\leqslant 1ig]$ — прямоугольное.

Выбор ядра почти не влияет на качество восстановления

Функционал качества восстановления плотности:

$$J(K) = \int_{-\infty}^{+\infty} \mathsf{E}\big(\hat{p}_h(x) - p(x)\big)^2 \, dx.$$

ядро $K(r)$	степень гладкости	$J(K^*)/J(K)$
Епанечникова $K^*(r)$	\hat{p}_h' разрывна	1.000
Квартическое	\hat{p}_h'' разрывна	0.995
Треугольное	\hat{p}_h' разрывна	0.989
Гауссовское	∞ дифференцируема	0.961
Прямоугольное	\hat{p}_h разрывна	0.943

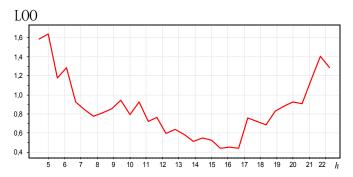
Замечание: в таблице представлены асимптотические значения отношения $J(K^*)/J(K)$ при $m \to \infty$, причём это отношение не зависит от p(x).

Выбор ширины окна

Скользящий контроль Leave One Out:

$$LOO(h, X^{\ell}) = \sum_{i=1}^{\ell} \left[a(x_i; X^{\ell} \backslash x_i, h) \neq y_i \right] \to \min_h,$$

Типичный вид зависимости LOO от h:



Окна переменной ширины

Проблема:

при наличии локальных сгущений любая h не оптимальна.

Идея:

задавать не ширину окна h, а число соседей k.

$$h(x) = \rho(x, x^{(k+1)}),$$

где $x^{(i)} - i$ -й сосед объекта x при ранжировании выборки X^{ℓ} :

$$\rho(x, x^{(1)}) \leqslant \cdots \leqslant \rho(x, x^{(\ell)})$$

Замечание 1:

нормировка V(k) не должна зависеть от y, поэтому выборка ранжируется целиком, а не по классам X_y .

Замечание 2:

Оптимизация k по LOO аналогична оптимизации h.

Принцип максимума правдоподобия

Пусть известна параметрическая модель плотности

$$p(x) = \varphi(x; \theta),$$

где θ — параметр, φ — фиксированная функция.

Задача — найти оптимальное θ по простой выборке X^m .

Принцип максимума правдоподобия:

$$L(\theta; X^m) = \sum_{i=1}^m \ln \varphi(x_i; \theta) \to \max_{\theta}.$$

Необходимое условие оптимума:

$$\frac{\partial}{\partial \theta} L(\theta; X^m) = \sum_{i=1}^m \frac{\partial}{\partial \theta} \ln \varphi(x_i; \theta) = 0,$$

где функция $\varphi(x;\theta)$ достаточно гладкая по параметру θ .

Многомерное нормальное распределение

Пусть $X=\mathbb{R}^n$ — объекты описываются n числовыми признаками.

Гипотеза: классы имеют n-мерные гауссовские плотности:

$$p(x|y) = \mathcal{N}(x; \mu_y, \Sigma_y) = \frac{e^{-\frac{1}{2}(x - \mu_y)^\intercal \Sigma_y^{-1}(x - \mu_y)}}{\sqrt{(2\pi)^n \det \Sigma_y}}, \quad y \in Y,$$

где $\mu_y \in \mathbb{R}^n$ — вектор матожидания (центр) класса $y \in Y$, $\Sigma_y \in \mathbb{R}^{n \times n}$ — ковариационная матрица класса $y \in Y$ (симметричная, невырожденная, положительно определённая).

Теорема

1. Разделяющая поверхность

$$\{x \in X \mid \lambda_y P(y) p(x|y) = \lambda_s P(s) p(x|s)\}$$
 квадратична для всех $y, s \in Y, y \neq s$.

2. Если $\Sigma_v = \Sigma_s$, то она вырождается в линейную.

Квадратичный дискриминант

Теорема

Оценки максимума взвешенного правдоподобия, $y \in Y$:

$$\hat{\mu}_{y} = \frac{1}{\ell_{y}} \sum_{i: y_{i} = y} x_{i};$$

$$\hat{\Sigma}_{y} = \frac{1}{\ell_{y}} \sum_{i: y_{i} = y} (x_{i} - \hat{\mu}_{y}) (x_{i} - \hat{\mu}_{y})^{\mathsf{T}}.$$

Квадратичный дискриминант — подстановочный алгоритм:

$$a(x) = \arg\max_{y \in Y} \left(\ln \lambda_y P(y) - \frac{1}{2} (x - \hat{\mu}_y)^\mathsf{T} \hat{\Sigma}_y^{-1} (x - \hat{\mu}_y) - \frac{1}{2} \ln \det \hat{\Sigma}_y \right).$$

Линейный дискриминант Фишера

Допущение:

ковариационные матрицы классов равны: $\Sigma_{v} = \Sigma$, $y \in Y$.

Оценка максимума правдоподобия для Σ:

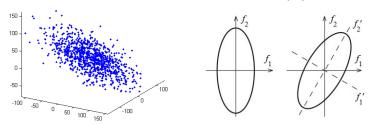
$$\hat{\Sigma} = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_i - \hat{\mu}_{y_i}) (x_i - \hat{\mu}_{y_i})^{\mathsf{T}}$$

Линейный дискриминант — подстановочный алгоритм:

$$\begin{split} \mathbf{a}(\mathbf{x}) &= \arg\max_{\mathbf{y} \in Y} \ \lambda_{\mathbf{y}} \hat{P}(\mathbf{y}) \hat{p}(\mathbf{x}|\mathbf{y}) = \\ &= \arg\max_{\mathbf{y} \in Y} \ \left(\underbrace{\ln(\lambda_{\mathbf{y}} \hat{P}(\mathbf{y})) - \frac{1}{2} \hat{\mu}_{\mathbf{y}}^{\mathsf{T}} \hat{\Sigma}^{-1} \hat{\mu}_{\mathbf{y}}}_{\beta_{\mathbf{y}}} + \mathbf{x}^{\mathsf{T}} \underbrace{\hat{\Sigma}^{-1} \hat{\mu}_{\mathbf{y}}}_{\alpha_{\mathbf{y}}} \right); \\ \mathbf{a}(\mathbf{x}) &= \arg\max_{\mathbf{y} \in Y} \ \left(\mathbf{x}^{\mathsf{T}} \alpha_{\mathbf{y}} + \beta_{\mathbf{y}} \right). \end{split}$$

Геометрический смысл предположения о нормальности классов

Каждый класс — облако точек эллиптической формы:

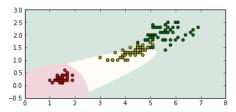


Если $\Sigma = \mathrm{diag}(\sigma_1^2, \dots, \sigma_n^2)$: оси эллипсоида параллельны ортам В общем случае: $\Sigma = VSV^{\mathsf{T}}$ — спектральное разложение, $V = (v_1, \dots, v_n)$ — ортогональные собственные векторы Σ , $S = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ — собственные значения $(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu) = (x-\mu)^{\mathsf{T}}VS^{-1}V^{\mathsf{T}}(x-\mu) = (x'-\mu')^{\mathsf{T}}S^{-1}(x'-\mu')$.

 $x' = V^{\mathsf{T}} x$ — декоррелирующее ортогональное преобразование

Геометрический смысл квадратичного дискриминанта

Пример. Ирисы Фишера: три класса по 50 объектов, разделяющие поверхности — квадратичные

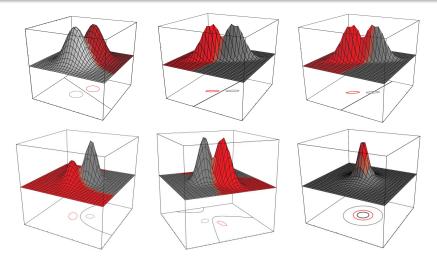


Если $\Sigma_s = \Sigma_t$, то разделяющая поверхность линейная:

$$(\mathbf{x} - \mu_{\mathsf{s}t})^{\mathsf{T}} \Sigma^{-1} (\mu_{\mathsf{s}} - \mu_{\mathsf{t}}) = \ln(\lambda_{\mathsf{t}} P(\mathsf{t}) / \lambda_{\mathsf{s}} P(\mathsf{s})),$$

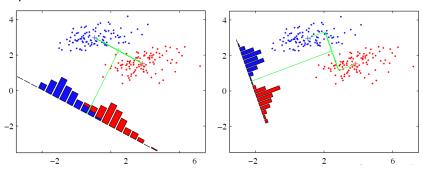
где $\mu_{st} = \frac{1}{2}(\mu_s + \mu_t)$ — середина между центрами классов.

Геометрический смысл квадратичного дискриминанта



Геометрический смысл линейного дискриминанта

В одномерной проекции на направляющий вектор разделяющей гиперплоскости классы разделяются наиболее чётко, то есть вероятность ошибки минимальна.



Квадратичный дискриминант

Недостатки квадратичного дискриминанта:

- ullet Если $\ell_y < n$, то матрица $\hat{\Sigma}_y$ вырождена.
- ullet Чем меньше ℓ_y , тем менее устойчива оценка $\hat{\Sigma}_y$.
- Оценки $\hat{\mu}_{y}$, $\hat{\Sigma}_{y}$ неустойчивы к выбросам.
- Если классы не нормальны, всё совсем плохо...

Линейный дискриминант:

- более устойчив,
- но хуже описывает классы различной формы.

Далее — меры по улучшению алгоритма:

- Регуляризация ковариационной матрицы
- Цензурирование выборки (отсев шума)
- Смеси нормальных распределений

Проблема мулитиколлинеарности

Проявления мулитиколлинеарности:

- ullet матрица $\hat{\Sigma}$ (или $\hat{\Sigma}_{y}$) близка к вырожденной;
- есть (приближённые) линейные зависимости признаков;
- есть собственные значения $\hat{\Sigma}$, близкие к нулю;
- число обусловленности $\mu(\hat{\Sigma}) = \frac{\lambda_{\max}}{\lambda_{\min}} \gg 1.$

Последствия мулитиколлинеарности:

- ullet обратная матрица $\hat{\Sigma}^{-1}$ неустойчива;
- относительные погрешности растут: если $v = \hat{\Sigma}^{-1} u$, то $\frac{\|\delta v\|}{\|v\|} \leqslant \mu(\hat{\Sigma}) \frac{\|\delta u\|}{\|u\|}$;
- ullet векторы нормалей $lpha_{\scriptscriptstyle V} = \hat{\Sigma}^{-1} \hat{\mu}_{\scriptscriptstyle V}$ неустойчивы;
- ullet переобучение: на X^ℓ всё хорошо, на X^k всё плохо.

Пути повышения качества классификации

- Улучшение обусловленности ковариационной матрицы:
 - регуляризация
 - обнуление недиагональных элементов
 - наивный байесовский классификатор
- Понижение размерности:
 - отбор признаков (features selection)
 - преобразование n признаков в n' < n признаков (PCA)
 - редукция размерности по А.М.Шурыгину (частный случай отбора признаков)
- Цензурирование выборки (отсев шума)
- Усложнение модели (смесь нормальных распределений)

Регуляризация ковариационной матрицы

Идея:

преобразовать матрицу $\hat{\Sigma}$ так, чтобы все собственные векторы v остались, а все собственные значения λ увеличились на τ :

$$(\hat{\Sigma} + \tau I_n)v = \lambda v + \tau v = (\lambda + \tau)v.$$

Рецепт:

- 1) обращение $\hat{\Sigma} + \tau I_n$ вместо $\hat{\Sigma}$;
- 2) выбор параметра регуляризации au по скользящему контролю.

Обнуление элементов ковариационной матрицы

$$\hat{\Sigma} = \|\sigma_{ij}\|_{n \times n}$$

Идея: обнулить статистически незначимые ковариации σ_{ij} .

Воплощение:

Для всех i, j = 1, ..., n, i < j

- 1) вычисляется коэффициент корреляции $r_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{ii}}};$
- 2) статистика $T_{ij}=rac{r_{ij}\sqrt{n-2}}{\sqrt{1-r_{ij}^2}}$ имеет t-распределение Стьюдента с n-2 степенями свободы;
- 3) если $|T_{ij}|\leqslant t_{1-\frac{\alpha}{2}}$ кванти́ль распределения Стьюдента при заданном уровне значимости α , то полагается $\sigma_{ii}:=\sigma_{ii}:=0$.

Диагонализация ковариационной матрицы

Идея: пусть признаки некоррелированы: $\sigma_{ij}=0$, $i\neq j$.

Замечание: для нормального распределения некоррелированность независимость

Получаем наивный байесовский классификатор:

$$\begin{split} \hat{p}_j(\xi|y) &= \frac{1}{\sqrt{2\pi}\hat{\sigma}_{yj}} \exp\left(-\frac{(\xi - \hat{\mu}_{yj})^2}{2\hat{\sigma}_{yj}^2}\right), \quad y \in Y, \quad j = 1, \dots, n; \\ a(x) &= \arg\max_{y \in Y} \left(\ln\lambda_y \hat{P}(y) + \sum_{i=1}^n \ln\hat{p}_j(\xi_j|y)\right), \quad x \equiv (\xi_1, \dots, \xi_n); \end{split}$$

где $\hat{\mu}_{yj}$ и $\hat{\sigma}_{yj}$ — оценки среднего и дисперсии j-го признака, вычисленные по X_v — подвыборке класса y.

Редукция размерности по А. М. Шурыгину

Идея:

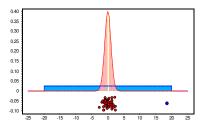
сведение n-мерной задачи к серии двумерных задач путём подключения признаков по одному.

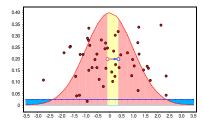
Набросок алгоритма:

- 1) найти два признака, в подпространстве которых классы наилучшим образом разделимы;
- 2) новый признак: $\psi(x) = x^{\mathsf{T}} \alpha_y$ проекция на нормаль к разделяющей прямой в пространстве двух признаков;
- 3) выбрать из оставшихся признаков тот, который в паре с $\psi(x)$ даёт наилучшую разделимость;
- 4) если разделимость не улучшилась, прекратить;
- 5) иначе GOTO 2);

Проблема выбросов (outliers)

Эмпирическое среднее является оценкой матожидания, неустойчивой к редким большим выбросам.





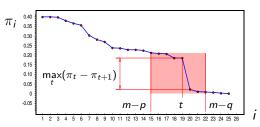
Пример. Одномерная нормальная плотность $\mathcal{N}(0,1)$, загрязнённая равномерным на [-20,+20] распределением, $\ell=50$, смещение эмпирического среднего 0.359.

Цензурирование выборки (отсев выбросов)

Идея: задача решается дважды; после первого раза объекты с наибольшими ошибками исключаются из обучения.

Алгоритм (для задачи восстановления плотности)

- 1) оценить параметр $\hat{\theta}$ по всей выборке X^m ;
- 2) вычислить правдоподобия $\pi_i = \varphi(x_i; \hat{\theta})$ для всех $x_i \in X^m$;
- 3) отсортировать выборку по убыванию: $\pi_1 \geqslant \ldots \geqslant \pi_m$;
- 4) удалить из X^m объекты, попавшие в конец ряда;
- 5) оценить параметр $\hat{\theta}$ по укороченной выборке X^m ;



Резюме в конце лекции

- Эту формулу надо помнить: $a(x) = \arg\max_{y \in Y} \lambda_y P(y) p(x|y).$
- Наивный байесовский классификатор: предположение о независимости признаков.
 Как ни странно, иногда это работает.
- Три подхода к восстановлению плотности p(x|y) по выборке:
 - Параметрический подход = модель плотности распределения + принцип максимума правдоподобия.
 - Непараметрический подход наиболее прост и приводит к методу парзеновского окна.
 - Разделение смеси распределений