Introduction to machine learning

Victor Kitov

v.v.kitov@yandex.ru

Course information

- Instructor Victor Vladimirovich Kitov
 - MSU, NES
 - practical experience
 - academic experience
 - ensemble learning
- Tasks of the course
- Structure: lectures, seminars
- Practice:
 - theoretical tasks
 - programming using python
 - ipython notebook, numpy, scipy, pandas, scikit-learn.

Recommended materials

- Лекции К.В.Воронцова (видео-лекции и материалы на machinelearning.ru)
- Statistical Pattern Recognition. 3rd Edition, Andrew R. Webb, Keith D. Copsey, John Wiley & Sons Ltd., 2011.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2nd Edition, Springer, 2009. http: //statweb.stanford.edu/~tibs/ElemStatLearn/.
- Machine Learning: A Probabilistic Perspective. Kevin P. Murphy. Massachusetts Institute of Technology. 2012.
- Pattern Recognition and Machine Learning. Christopher M. Bishop. Springer. 2006.
- Any additional public sources wikipedia, articles, tutorials, video-lectures.

Tasks solved by machine learning

Table of Contents

1 Tasks solved by machine learning

Main concepts of machine learning.

3 Practical applications of machine learning

Tasks solved by machine learning

Formal definitions of machine learning

- Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance P at tasks in T improves with experience E.
- Examples: spam filtering, speech recognition, image recognition (face detection, eyes detection, pose detection, person identification).

Tasks solved by machine learning

Major niches of ML

- dealing with huge datasets with many attributes (text categorization)
- hard to formulate explicit rules (image recognition)
- further adaptation to usage conditions is required (voice detection)
- fast adaptation to changing conditions (stock prices prediction)

Tasks solved by machine learning

Connections with other fields

- Computer science
- Pattern recognition
 - recognize patterns and regularities in the data
- Artificial intelligence
 - create devices capable of intelligent behavior
- Time-series analysis
- Theory of probability, statistics
 - rely on probabilistic model
- Optimization methods
- Theory of algorithms

Tasks solved by machine learning

General problem statement

- Set of objects O
- Each object is described by a vector of known characteristics x ∈ X and predicted characteristics y ∈ Y.

$$o \in O \longrightarrow (\mathbf{x}, y)$$

Usually X = R^D, Y - a scalar, but they may be any structural descriptors of objects in general.

Tasks solved by machine learning

General problem statement

- Task: find a mapping f, which could accurately approximate $\mathcal{X} \to \mathcal{Y}$.
 - using a finite «training» set of objects with known (x, y).
 - to apply on a set of objects of interest
- Questions solved in ML:
 - how to select object descriptors features
 - in what sense a mapping *f* should approximate true relationship
 - how to construct f

Tasks solved by machine learning

Examples

- Spam filtering
- Document classification
- Web-page ranking
- Sentimental analysis
- Intrusion/fraud detection
- Churn prediction
- Target detection / classification
- Handwriting recognition
- Part-of-speech tagging
- Credit scoring
- Particle classification

Tasks solved by machine learning

Variants of problem statement

- For each new object x need to associate y.
- What is known:
 - $(x_1, y_1), (x_2, y_2), ... (x_N, y_N)$ supervised learning:
 - x₁, x₂, ...x_N unsupervised learning
 - dimensionality reduction
 - clustering
 - $(x_1, y_1), (x_2, y_2), ...(x_N, y_N), x_{N+1}x_{N+2}, ...x_{N+M}$ semi-supervised learning.
- If predicted objects $x'_1, x'_2, ... x'_K$ for which y is forecasted, are known in advance, then this is «transductive» learning.

Tasks solved by machine learning

Generative and discriminative - models

Generative model

Full distribution p(x, y) is modeled.

• Can generate new observations (x, y)

$$\widehat{y}(x) = \arg \max_{y} p(y|x) = \arg \max_{y} \frac{p(x,y)}{p(x)} = \arg \max_{y} p(y)p(x|y)$$

= $\arg \max_{y} \{\log p(y) + \log p(x|y)\}$

Tasks solved by machine learning

Generative and discriminative - models

Generative model

Full distribution p(x, y) is modeled.

• Can generate new observations (x, y)

$$\widehat{y}(x) = \arg \max_{y} p(y|x) = \arg \max_{y} \frac{p(x, y)}{p(x)} = \arg \max_{y} p(y)p(x|y)$$

= $\arg \max_{y} \{\log p(y) + \log p(x|y)\}$

Discriminative model

- Discriminative with probability: only p(y|x) is modeled
- Reduced discriminative: only y = f(x) is modeled.

Tasks solved by machine learning

Generative and discriminative - discussion

• Disadvantages of generative models:

- Discriminative models are more general
- p(x|y) may be inaccurate in high dimensional spaces

Tasks solved by machine learning

Generative and discriminative - discussion

• Disadvantages of generative models:

- Discriminative models are more general
- p(x|y) may be inaccurate in high dimensional spaces

• Advantages of generative models:

- Generative models can be adjusted to varying p(y)
- Naturally adjust to missing features (by marginalization)
- Easily detect outliers (small p(x))

Tasks solved by machine learning

Types of target variable

• Types of target variable:

- $\mathcal{Y} = \mathbb{R}$ regression (in supervised learning)
- $\mathcal{Y} = \mathbb{R}^M$ vector regression (in supervised learning) or feature extraction (in unsupervised learning)
- $\mathcal{Y} = \{\omega_1, \omega_2, ... \omega_C\}$ classification (in supervised learning) or clustering (in unsupervised learning).
 - C=2: binary classification, encoding $\mathcal{Y}=\{+1,-1\}$ or $\mathcal{Y}=\{0,1\}.$
 - C>2: multiclass classification
- \mathcal{Y} -set of all sets of $\{\omega_1, \omega_2, ... \omega_C\}$ labeling
 - $\mathcal{Y} = \{ y \in \mathbb{R}^{C} : y_i \in \{0,1\} \}$, $y_i = 1 \Leftrightarrow \text{object is associated}$ with ω_i .

Tasks solved by machine learning

Types of features

- Full object description $\mathbf{x} \in \mathcal{X}$ consists of individual features $x_i \in \mathcal{X}_i$
- Types of feature:
 - $\mathcal{X}_i = \{0,1\}$ binary feature
 - $|\mathcal{X}_i| < \infty$ discrete (nominal) feature
 - $|\mathcal{X}_i| < \infty$ and \mathcal{X}_i is ordered ordinal feature
 - $\mathcal{X}_i = \mathbb{R}$ real feature

Tasks solved by machine learning

Example of classification

Supervised learning: $x = (x_1, x_2)$, y is shown with color

Tasks solved by machine learning

Example of semi-supervised learning

Semi-supervised learning.

Tasks solved by machine learning

Example of clustering

Unsupervised learning: clustering

Tasks solved by machine learning

Example of dimensionality reduction

Unsupervised learning: dimensionality reduction

Main concepts of machine learning.

Table of Contents

Tasks solved by machine learning

2 Main concepts of machine learning.

Practical applications of machine learning

Training set

- Training set: $X \in \mathbb{R}^{N \times D}$ design matrix, $Y \in \mathbb{R}^{N}$ predicted outputs (target values)
- Using X, Y the task is to estimate unknown parameters $\hat{\theta}$ of mapping $\hat{y} = f_{\theta}(x)$ so that it will approximate true relationship y = y(x)
- It is assumed that $z_n = (x_n, y_n)$ for n = 1, 2, ...N are independent and identically distributed random variables (i.i.d).
- Two steps of ML:
 - training
 - application

Main concepts of machine learning.

Train set, test set

Main concepts of machine learning.

Train set, test set

N - number of objects for which targets (Y) are known.

22/53

Main concepts of machine learning.

Train set, test set

D - number of features (advanced case: variable feature count).

Loss function

- Loss function $\mathcal{L}(\widehat{y}, y)$
- Examples:
 - classification:
 - misclassification rate

$$\mathcal{L}(\widehat{y}, y) = \mathbb{I}[\widehat{y} \neq y]$$

- regression:
 - MAE (mean absolute error):

$$\mathcal{L}(\widehat{y}, y) = |\widehat{y} - y|$$

• MSE (mean squared error):

$$\mathcal{L}(\widehat{y}, y) = (\widehat{y} - y)^2$$

• absolute relative error:
$$\frac{|\widehat{y}-y|}{|y|}$$
, squared relative error: $\left(\frac{\widehat{y}-y}{y}\right)^2$

Main concepts of machine learning.

- In machine learning objects, predicted classes, prediction functions, etc. can be assigned:
 - score, rating this should be maximized
 - loss, cost this should be minimized

. . .

$$loss(z) = -score(z), , ...$$

 $loss(z) = \frac{1}{score(z)}$ for $score(z) > 0$

Main concepts of machine learning.

Function class. Linear example.

• Function class - parametrized set of functions $F = \{f_{\theta}, \theta \in \Theta\}$, from which the true relationship $\mathcal{X} \to \mathcal{Y}$ is approximated.

Main concepts of machine learning.

Function class. Linear example.

- Function class parametrized set of functions $F = \{f_{\theta}, \theta \in \Theta\}$, from which the true relationship $\mathcal{X} \to \mathcal{Y}$ is approximated.
- Examples of linear class functions:
 - regression:

$$f(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2 + \dots + \theta_D x^D$$

Function class. Linear example.

- Function class parametrized set of functions $F = \{f_{\theta}, \theta \in \Theta\}$, from which the true relationship $\mathcal{X} \to \mathcal{Y}$ is approximated.
- Examples of linear class functions:
 - regression:

$$f(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2 + \dots + \theta_D x^D$$

• binary classification $y \in \{+1, -1\}$:

$$f(x) = \operatorname{sign}\{\theta_0 + \theta_1 x^1 + \theta_2 x^2 + \dots + \theta_D x^D\},\$$

Function class. K-NN example.

• denote for each x:

i(x, k) indexes k-th most close object to x in the feature space
regression:

$$f(x) = \frac{1}{K} (y_{i(x,1)} + ... + y_{i(x,K)})$$

classification:

$$f(x) = \operatorname{argmax} \left\{ \sum_{i \in I(x,K)} \mathbb{I}[y_i = 1], \sum_{i \in I(x,K)} \mathbb{I}[y_i = 2], \dots \sum_{i \in I(x,K)} \mathbb{I}[y_i = 2] \right\}$$

Empirical risk

• Machine learning algorithm associates $f_{\hat{H}}(\cdot)$ to (X, Y)

- in the function class $F = \{f_{\theta}, \ \theta \in \Theta\}$
- for given loss function $\mathcal{L}(\widehat{y}, y)$
- Empirical risk:

$$L(\theta|X,Y) = \frac{1}{N}\sum_{n=1}^{N} \mathcal{L}(f_{\theta}(x_n), y_n)$$

• Method of empirical risk minimization:

$$\widehat{ heta} = rgmin_{ heta} L(heta | X, Y)$$

Main concepts of machine learning.

Estimation of empirical risk

• Generally it holds that:

$$L(\widehat{\theta}|X,Y) < L(\widehat{\theta}|X',Y')$$

where X, Y is the training sample and X', Y' is the new data.

- $L(\widehat{ heta}|X',Y')$ can be estimated using :
 - separate validation set
 - o cross-validation
 - leave-one-out method

Main concepts of machine learning.

4-fold cross validation example

Divide training set into K parts, referred as «folds» (here K = 4). Variants:

- randomly
- randomly with stratification (w.r.t target value or feature value).

Main concepts of machine learning.

4-fold cross validation example

Use folds 1,2,3 for model estimation and fold 4 for model evaluation.

Main concepts of machine learning.

4-fold cross validation example

Use folds 1,2,4 for model estimation and fold 3 for model evaluation.

Main concepts of machine learning.

4-fold cross validation example

Use folds 1,3,4 for model estimation and fold 2 for model evaluation.

Main concepts of machine learning.

4-fold cross validation example

Use folds 2,3,4 for model estimation and fold 1 for model evaluation.

4-fold cross validation example

Denote

- k(n) fold to which observation (x_n, y_n) belongs to: $n \in I_k$.
- $\hat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

Main concepts of machine learning.

4-fold cross validation example

- Denote
 - k(n) fold to which observation (x_n, y_n) belongs to: $n \in I_k$.
 - $\hat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

4-fold cross validation example

- Denote
 - k(n) fold to which observation (x_n, y_n) belongs to: $n \in I_k$.
 - $\hat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

- For *K*-fold CV we have:
 - K parameters $\widehat{\theta}^{-1}, ... \widehat{\theta}^{-K}$
 - K models $f_{\widehat{\theta}^{-1}}(x), ... f_{\widehat{\theta}^{-\kappa}}(x)$.
 - K estimations of emirical risk: $\widehat{L}_k = \frac{1}{|I_k|} \sum_{n \in I_k} \mathcal{L}(f_{\widehat{\theta}^{-k}}(x_n), y_n), \ k = 1, 2, ... K.$

4-fold cross validation example

- Denote
 - k(n) fold to which observation (x_n, y_n) belongs to: $n \in I_k$.
 - $\hat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

- For *K*-fold CV we have:
 - K parameters $\hat{\theta}^{-1}, ... \hat{\theta}^{-K}$
 - K models $f_{\widehat{\theta}^{-1}}(x), ... f_{\widehat{\theta}^{-\kappa}}(x)$.
 - K estimations of emirical risk: $\widehat{L}_k = \frac{1}{|I_k|} \sum_{n \in I_k} \mathcal{L}(f_{\widehat{\theta}^{-k}}(x_n), y_n), \ k = 1, 2, ... K.$
- Using $\widehat{L}_1,...\widehat{L}_K$ we can estimate variance & use statistics!

Main concepts of machine learning.

Comments on cross-validation

- When number of folds K is equal to number of objects N, this is called **leave-one-out method**.
- Cross-validation uses the i.i.d.¹ property of observations
- Stratification by target helps for imbalanced/rare classes.

¹i.i.d.=independent and identically distributed

Cross-validation vs. A/B testing

- A/B testing:
 - O divide objects randomly into two groups A and B.
 - apply model 1 to A
 - apply model 2 to B
 - compare final results

Comparison of cross-validation and A/B test:

cross-validation	A/B test
evaluates forecasting	evaluates final business
quality	quality ² (may evaluate
	forecasting quality as well)
uses available data, only	requires time and resources for
computational costs	collecting & evaluating
	feedback from objects of
	groups A and B

²final business quality may be high₃₇even when forecasting quality is low.

Main concepts of machine learning.

Hyperparameters selection

• Suppose we want to select hyperparameters of the model:

- regression: # of features d, e.g. $x, x^2, ...x^d$
- K-NN: number of neighbors K
- What are gotchas when using CV?

Main concepts of machine learning.

Hyperparameters selection

- Suppose we want to select hyperparameters of the model:
 - regression: # of features d, e.g. $x, x^2, ...x^d$
 - K-NN: number of neighbors K
- What are gotchas when using CV?
- To assess method with selected hyperparameters we need separate test set.

Main concepts of machine learning.

Levels of fitting

Underfitted model

Model that oversimplifies true relationship $\mathcal{X} \to \mathcal{Y}$.

Overfitted model

Model that is too tuned on particular peculiarities (noise) of the training set instead of the true relationship $\mathcal{X} \to \mathcal{Y}$.

true relationship

Main concepts of machine learning.

Examples of overfitted/underfitted models

Main concepts of machine learning.

Loss vs. model complexity

Comments:

- expected loss on test set is always higher than on train set.
- left to A: model too simple, underfitting, high bias
- right to A: model too complex, overfitting, high variance

Main concepts of machine learning.

Loss vs. model complexity

Comments:

- expected loss on test set is always higher than on train set.
- right to B there is no need to further increase training set size

Practical applications of machine learning

Table of Contents

Tasks solved by machine learning

Main concepts of machine learning.

Practical applications of machine learning

Practical applications of machine learning

Examples of ML applications

Classification:

- spam filtering
- search engine: do query and document match each other?
- is series of network transactions regular or a hacking attempt?
- will the client with given characteristics switch his mobile operator?
- will given client of a bank return his debt?
- does the signal correspond to the target or noise in radar detection?

Labelling:

• assignment of topics to text documents

Regression:

- determine the flat price by its characteristics
- predict demand for certain product

Practical applications of machine learning

CrispDM methodology

Practical applications of machine learning

CrispDM general comments

- Log each step
 - quantitative: procedures and results in report.
 - qualitative: explain why certain option was taken and alternative options ignored.

Practical applications of machine learning

CrispDM - Business understanding

- Understand business goals and constraints
- State business objective in business terms
- State relevant data mining objective in technical terms
- State success criteria
- Produce plan of project

Practical applications of machine learning

CrispDM - Data understanding

- Collect data
- Understand data
 - qualitative meaning (what and how was measured)
 - quantitative distribution (data type, range, variance, skewness)
- Explore data
 - basic dependencies
 - interesting subsets
 - statistical analysis
- Quality check
 - outliers
 - missing data
 - errors in measurements

Practical applications of machine learning

CrispDM - Data preparation usually takes most of the time

- Select data (select datasets, records, attributes)
- Clean data
 - missing values
 - outliers
 - erroneous values
 - inconsistent groups of attributes
- Construct data
 - derive attributes (normalization, aggregation, composition)
 - use background knowledge
 - fill missing values
- Integrate data together into connected structures (e.g. joined tables)
- Format data (uppercase/lowercase, encoding, etc.)

Practical applications of machine learning

CrispDM - Modeling

• Select relevant models

- depending on data mining objective
- depending on data properties (possibly need to return to data preparation)
- Divide dataset into training/validation/test sets
- Build models
 - choose initial values for model parameters
 - choose parameter estimation techniques
 - estimate parameters
 - post-process results using domain knowledge

Practical applications of machine learning

CrispDM - Evaluation

- evaluate model output quality using technical data mining criteria
 - compare to baseline
 - reliability of results (statistical significance, dependence on specific data assumptions)
 - check for systematic errors and interpret them (may be caused by missed factors/constraints)
- evaluate resulting models (interpretability, efficiency, scalability)
- analyze final business effect

Practical applications of machine learning

CrispDM - Deployment

- plan deployment
- plan monitoring and maintaince
- produce final report
- review project experience
 - from project team
 - from customers

Practical applications of machine learning

Notation used in the course

- If this corresponds the context and there are no redefinitions, then:
 - x vector of known input characteristics of an object
 - y predicted target characteristics of an object specified by x
 - x_i *i*-th object of a set, y_i corresponding target characteristic
 - x^k k-th feature of object specified by x
 - x_i^k k-th feature of object specified by x_i
 - D dimensionality of the feature space: $x \in \mathbb{R}^D$
 - N the number of objects in the training set
 - X design matrix, $X \in \mathbb{R}^{N \times D}$
 - $Y \in \mathbb{R}^N$ target characteristics of a training set
 - $\mathcal{L}(\hat{y}, y)$ loss function, where y is the true value and \hat{y} is the predicted value.
 - $\{\omega_1, \omega_2, ... \omega_C\}$ possible classes, C total number of classes.
 - \hat{z} defines an estimate of z, based on the training set: for example, $\hat{\theta}$ is the estimate of θ , \hat{y} is the estimate of y, etc.