Convexity theory

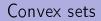
Victor Kitov

Table of Contents

Convex functions

2 Strictly convex functions

3 Concave functions



Definition 1

Set X is convex if
$$\forall x, y \in X, \forall \alpha \in (0, 1)$$
:

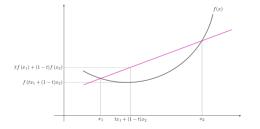
$$\alpha x + (1 - \alpha)y \in X$$

We will suppose that all functions, considered in this lecture will be defined on convex sets.

Definition 2

Function f(x) is **convex** on a set X if $\forall \alpha \in (0, 1], x_1 \in X, x_2 \in X$:

 $f(\alpha x_1 + (1 - \alpha) x_2) \le \alpha f(x_1) + (1 - \alpha) f(x_2)$



¹Using norm axioms, prove that any norm will be a convex function.

Multivariate and univariate convexity

Theorem 1

Let $f : \mathbb{R}^D \to \mathbb{R}$. f(x) is convex $\langle = \rangle g(\alpha) = f(x + \alpha v)$ is 1-D convex for $\forall x, v \in \mathbb{R}^D$ and $\forall \alpha \in \mathbb{R}$ such that $x + \alpha v \in dom(f)$.

= Take $\forall x, v \in \mathbb{R}^D$ and $\forall \alpha_1, \alpha_2, \beta \in \mathbb{R}$. Using convexity of f: $g(\beta\alpha_1 + (1-\beta)\alpha_2) = f(x + v(\beta\alpha_1 + (1-\beta)\alpha_2))$ $= f(\beta(x + \alpha_1 v) + (1 - \beta)(x + \alpha_2 v))$ $<\beta f(x+\alpha_1 v)+(1-\beta)f(x+\alpha_2 v)=\beta g(\alpha_1)+(1-\beta)g(\alpha_2)$ so $g(\alpha)$ is convex. <= Take $\forall x, y \in dom(f)$ and $\forall \alpha \in (0, 1)$. Then using convexity of $g(\alpha) = f(x + \alpha(y - x))$: $g(\alpha) = g(0 \cdot (1 - \alpha) + 1 \cdot \alpha) \le (1 - \alpha)g(0) + \alpha g(1)$ $f((1-\alpha)x+\alpha y)$

Properties

Theorem 2

Suppose f(x) is twice differentiable on dom(f). Then the following properties are equivalent:

• f(x) is convex

$$f(y) \geq f(x) + \nabla f(x)^{T}(y-x) \quad \forall x, y \in dom(f)$$

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in dom(f)$$

We will prove theorem 2 by proving that $1 \Leftrightarrow 2$ and $2 \Leftrightarrow 3$.

Proof 1 => 2

By definition of convexity $\forall \lambda \in (0, 1), x, y \in dom(f)$:

$$egin{aligned} f(\lambda y+(1-\lambda)x) &\leq \lambda f(y)+(1-\lambda)f(x) &= \lambda(f(y)-f(x))+f(x) \Rightarrow \ f(y)-f(x) &\geq rac{f(x+\lambda(y-x))-f(x)}{\lambda} \end{aligned}$$

In the limit $\lambda \downarrow 0$:

$$f(y) - f(x) \ge \nabla f^{T}(x)(y-x)$$

Here we used Taylor's expansion

$$f(x + \lambda(y - x)) = f(x) + \nabla f(x)^{\mathsf{T}} \lambda(y - x) + o(\lambda ||y - x||)$$

Proof
$$2 = >1$$

Take $\forall x, y \in dom(f)$. Apply property 2 to x, y and $z = \lambda x + (1 - \lambda)y$. We get

$$f(x) \ge f(z) + \nabla f^{T}(z)(x-z)$$
(1)
$$f(y) \ge f(z) + \nabla f^{T}(z)(y-z)$$
(2)

Multiplying 1 by λ and 2 by $(1-\lambda)$ and adding, we get

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(z) + \nabla f^{T}(z)(\lambda x + (1 - \lambda)y - z)$$

= $f(z) = f(\lambda x + (1 - \lambda)y)$

Proof 2 = >3, 1 dimensional case

Take $\forall x, y \in dom(f), y > x$. Following property 2, we have:

$$f(y) \ge f(x) + f'(x)(y - x)$$

$$f(x) \ge f(y) + f'(y)(x - y)$$

So

$$f'(x)(y-x) \leq f(y) - f(x) \leq f'(y)(y-x)$$

After dividing by $(y - x)^2$ we get

$$\frac{f'(y) - f'(x)}{y - x} \ge 0 \quad \forall x, y, x \neq y$$

Taking $y \to x$ we get

$$f''(x) \ge 0 \quad \forall x \in dom(f)$$

Proof 3 = >2, 1 dimensional case

By mean value version of Taylor theorem we get for some $z \in [x, y]$:

$$f(y) = f(x) + f'(x)(y-x) + \frac{1}{2}f''(z)(y-x)^2 \ge f(x) + f'(x)(y-x)$$

since $f''(z) \ge 0$ by condition 3.

Proof $2 \le 3$ for *D*-dimensional case

From theorem 1 convexity of f(x) is equivalent to convexity of $g(\alpha) = f(x + \alpha v) \ \forall x, v \in \mathbb{R}^D$ and $\alpha \in \mathbb{R}$ such that $z = x + \alpha v \in dom(f)$. From property 3 this is equivalent to

$$g''(\alpha) = v^T \nabla^2 f(x + \alpha v) v \ge 0$$

Because z and v are arbitrary, last condition is equivalent to $\nabla^2 f(x) \succcurlyeq 0.$

Optimality for convex functions

Theorem 3

Suppose convex function f(x) satisfies $\nabla f(x^*) = 0$ for some x^* . Then x^* is the global minimum of f(x).

Proof. Since f(x) is convex, then from condition 2 of theorem $2\forall x, y \in dom(f)$:

$$f(x) \ge f(y) + \nabla f^{T}(y)(x-y)$$

Taking $y = x^*$ we have

$$f(x) \ge f(x^*) + \nabla f^T(x^*)(x - x^*) = f(x^*)$$

Since x was arbitrary, x^* is a global minimum.

Optimality for convex functions³

Comments on theorem (3):

- ∇f(x*) = 0 is necessary condition for local minimum. Together with convexity it becomes sufficient condition.
- ∇f(x*) = 0 without convexity is not sufficient for any local optimality.

Properties of minimums of convex function defined on convex set²:

- Set of global minimums is convex
- Local minimum is global minimum

²Prove them

³Prove that global minimums of convex function (defined on convex set) form a convex set.

Jensen's inequality

Theorem 4

For any convex function f(x) and random variable X it holds that

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}X)$$

Proof. For simplicity consider differentiable⁴ f(x). From property 2 of theorem 2 $\forall x, y \in \text{dom}(f)$:

$$f(x) \geq f(y) + \nabla f^{T}(y)(y-x)$$

By taking x = X and $y = \mathbb{E}X$, obtain

$$f(X) \ge f(\mathbb{E}X) + \nabla f^{T}(\mathbb{E}X)(\mathbb{E}X - X)$$

After taking expectation of both sides, we get

$$\mathbb{E}f(X) \ge f(\mathbb{E}X) + \nabla f^{\mathsf{T}}(\mathbb{E}X)(\mathbb{E}X - \mathbb{E}X) = f(\mathbb{E}X)$$

⁴ for general proof consider sub-derivatives, which always exist.

Alternative proof of Jensen's inequality

• Convexity => by induction for $\forall K = 2, 3, ...$ and $\forall p_k \ge 0 : \sum_{k=1}^{K} p_k = 1$

$$\sum_{k=1}^{K} f(p_k x_k) \leq \sum_{k=1}^{K} p_k f(x_k)$$
(3)

• For r.v. X_K with $P(X_K = x_i) = p_i$ (3) becomes

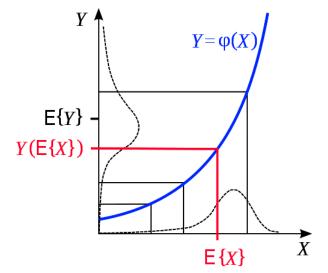
$$f(\mathbb{E}X_{\mathcal{K}}) \leq \mathbb{E}f(X_{\mathcal{K}}) \tag{4}$$

For arbitrary X we may consider X_K ↑ X. In the limit K → ∞
 (4) becomes⁵

$$f(\mathbb{E}X) \leq \mathbb{E}f(X)$$

⁵Strictly speaking you need to prove continuity of f and \mathbb{E} here.

Illustration of Jensen's inequality



Generating convex functions⁶

- Any norm is convex
- If $f(\cdot)$ and $g(\cdot)$ are convex, then
 - f(x) + g(x) is convex
 - F(x) = f(g(x)) is convex for non-decreasing $f(\cdot)$
 - $F(x) = \max{f(x), g(x)}$ is convex
- These properties can be extrapolated on any number of functions.
- If f(x) is convex, $x \in \mathbb{R}^D$, then for all $\alpha > 0$, $Q \in \mathbb{R}^{D \times D}$, $Q \geq 0$, $B \in \mathbb{R}^{K \times D}$, $c \in \mathbb{R}^K$, K = 1, 2, ... the following functions are also convex:
 - $\alpha f(x)$ is convex

•
$$B_{-}^T x + c$$

- $x^T Q x + B x + c$,
- F(x) = f(Bx + c), for $x \in \mathbb{R}^D$,

⁶Prove these properties.

Exercises

Are the following functions convex?

• f(x) = |x|• $f(x) = ||x||_1 + ||x||_2^2$ • $f(x) = (3x_1 - 5x_2)^2 + (4x_1 - 2x_2)^2$ • $x \ln x, -\ln x, -x^p \text{ for } x > 0, p \in (0, 1).$ • $x^p, p > 1.$ • $\ln(1 + e^{-x}), [1 - x]_+$ • $F(w) = \sum_{n=1}^{N} [1 - w^T x_n]_+ + \lambda \sum_{d=1}^{D} |w_d|$ • $F(w) = \sum_{n=1}^{N} \ln(1 - w^T x_n) + \lambda \sum_{d=1}^{D} w_d^2$ Exercises

Suppose f(x) and g(x) are convex. Can the following functions be non-convex?

• $f(x) - g(x), f(x)g(x), f(x)/g(x), |f(x)|, f^{2}(x), \min\{f(x), g(x)\}$

Suppose f(x) is convex, $f(x) \ge 0 \ \forall x \in \text{dom}(f), k \ge 1$. Can $g(x) = f^k(x)$ be non-convex?

Table of Contents

Convex functions

- 2 Strictly convex functions
- 3 Concave functions

Strictly convex functions⁷

Definition 3

Function f(x) is strictly convex on a set X if $\forall \alpha \in (0, 1], x_1, x_2 \in X, x_1 \neq x_2$: $f(\alpha x_1 + (1 - \alpha) x_2) < \alpha f(x_1) + (1 - \alpha) f(x_2)$

⁷Prove that global minimum of strictly convex function defined on convex set is unique.

Criterion for strict convexity

Theorem 5

Function f(x) is strictly convex $\langle = \rangle \forall x, y \in dom(f), x \neq y$: $f(y) > f(x) + \nabla f(x)^{T}(y - x)$ (5)

<= The same as proof 2=>1 for theorem 2 with replacement $\geq \rightarrow >$.

Criterion for strict convexity

=> Using property 2 of theorem 2 we have

$$\forall x, z: \quad f(z) \ge f(x) + \nabla f(x)^T (z - x) \tag{6}$$

Suppose (5) does not hold, so $\exists y: f(y) = f(x) + \nabla f(x)^T (y - x)$. It follows that

$$\nabla f(x)^{T}(y-x) = f(y) - f(x)$$
(7)

Consider $u = \alpha x + (1 - \alpha)y$ for $\forall \alpha \in (0, 1)$. Using (6) and (7):

$$f(u) = f(\alpha x + (1 - \alpha)y) \ge f(x) + \nabla f(x)^{T}(u - x)$$

= $f(x) + \nabla f(x)^{T}(\alpha x + (1 - \alpha)y - x)$
= $f(x) + \nabla f(x)^{T}(1 - \alpha)(y - x)$
= $f(x) + (1 - \alpha)(f(y) - f(x)) = (1 - \alpha)f(y) + \alpha f(x)$

Obtained inequality f(αx + (1 − α)y) ≥ (1 − α)f(y) + αf(x) contradicts strict convexity. So (6) should hold as strict inequality (5).

Jensen's inequality

Theorem 6

For strictly convex function f(x) equality in Jensen's inequality

 $\mathbb{E}[f(X)] \geq f(\mathbb{E}X)$

holds $\langle = \rangle X = \mathbb{E}X$ with probability 1.

Proof. 1) Consider $X \neq \mathbb{E}X$ with probability 1: From theorem (5) $\forall x \neq y \in \text{dom}(f)$:

$$f(x) > f(y) + \nabla f^{T}(y)(y-x)$$

By taking x = X and $y = \mathbb{E}X$, obtain

$$f(X) > f(\mathbb{E}X) + \nabla f^T(\mathbb{E}X)(\mathbb{E}X - X)$$

After taking expectation of both sides, we get

$$\mathbb{E}f(X) > f(\mathbb{E}X) + \nabla f^{T}(\mathbb{E}X)(\mathbb{E}X - \mathbb{E}X) = f(\mathbb{E}X)$$

2) Consider case $X = \mathbb{E}X$ with probability 1. In this case with probability 1

$$f(X)=f(\mathbb{E}X)$$

which after taking expectation becomes

 $\mathbb{E}f(X) = \mathbb{E}f(\mathbb{E}X) = f(\mathbb{E}X)$

Properties of strictly convex functions¹⁰

Properties of minimums of strictly convex function defined on convex $\mathsf{set}^8\colon$

- Global minimum is unique.
- If $\nabla^2 f(x) \succ 0 \ \forall x \in \mathsf{dom}(f)$, then f(x) is strictly convex
 - proof: use mean value version of Taylor theorem and strict convexity criterion (5).
 - strict convexity does not imply $abla^2 f(x) \succ 0 \, orall x \in \operatorname{dom}(f)^9$

⁸Prove them

⁹Think of an example.

¹⁰Prove that global minimums of convex function (defined on convex set) form a convex set.

Table of Contents

Convex functions

- 2 Strictly convex functions
- 3 Concave functions

Concave functions

Definition 4

Function f(x) is **concave** on a set X if $\forall \alpha \in (0, 1], x_1 \in X, x_2 \in X$:

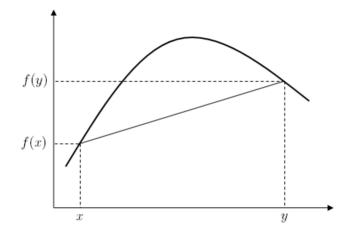
$$f(\alpha x_1 + (1 - \alpha) x_2) \ge \alpha f(x_1) + (1 - \alpha) f(x_2)$$

Definition 5

Function f(x) is strictly concave on a set X if $\forall \alpha \in (0, 1], x_1, x_2 \in X, x_1 \neq x_2$:

$$f(\alpha x_1 + (1 - \alpha) x_2) > \alpha f(x_1) + (1 - \alpha) f(x_2)$$

Concave function example



Properties of concave functions

- f(x) is convex $\iff -f(x)$ is concave
- Differentiable function f(x) is concave $\langle = \rangle \forall x, y \in dom(f)$:

$$f(y) \leq f(x) + \nabla f(x)^{T}(y-x)$$

- Twice differentiable function f(x) is concave $<=>\forall x \in dom(f): \nabla^2 f(x) \geq 0$
- Global maximums of concave function on convex set form a convex set.
- Local maximum of a concave function is global
- $\nabla f(x^*) = 0 \le x^*$ is global maximum.
- Jensen's inequality: for random variable X and concave f(x):

$$\mathbb{E}[f(X)] \leq f(\mathbb{E}X)$$

• equality is achieved $\langle = \rangle f$ is linear on $\{x : P(X = x) > 0\}$.

• this holds when $X = \mathbb{E}X$ with probability 1.

Properties of strictly concave functions

- f(x) is strictly convex $\iff -f(x)$ is strictly concave
- Differentiable function f(x) is concave
 <=>∀x, y ∈ dom(f), x ≠ y:

$$f(y) < f(x) + \nabla f(x)^{T}(y-x)$$

- $\forall x \in dom(f): \nabla^2 f(x) \succ 0 \implies f(x)$ is strictly concave.
- Global maximum of strictly concave function on a convex set is unique.
- Jensen's inequality: for random variable X, and strictly concave f(x):

 $\mathbb{E}[f(X)] < f(\mathbb{E}X)$

when $X \neq \mathbb{E}X$ with some probability>0.

• When $X = \mathbb{E}X$ with probability $1 \mathbb{E}[f(X)] = f(\mathbb{E}X)$